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Objective: To investigate the effects of a 16-week concurrent exercise regimen
[resistance exercise (RE) + functional exercise (FE)] in combination with, or without,
a leucine-enriched whey protein isolate supplement on muscle strength, physical
functioning, aerobic capacity, and cardiometabolic health in older adults (≥60 years).
Physical activity levels were also evaluated 6 months post-cessation of the intervention.

Methods: Forty-six, community-dwelling, previously untrained males, and females [age:
68 ± 5 years (mean ± SD); BMI: 27.8 ± 6.2 kg/m2] who completed the trial were initially
randomized to one of two independent arms [Exercise n = 24 (E); Exercise+Protein
n = 22 (EP)]. Both arms completed 16 weeks of RE (performed to fatigue) (2 times/week)
with FE (1 time/week) on non-consecutive days. Additionally, EP were administered
a leucine-enriched whey protein supplement (3 times/day) for 16 weeks based on
individual body-weight (1.5 g/kg/day).

Results: As a result of dietary supplementation, protein intake increased in EP
(∼1.2 ± 0.4 to 1.5 ± 0.7 g/kg/day) during the intervention. Maximal strength (1RM)
values for leg press (E: +39 ± 7 kg, p = 0.006; EP: +63 ± 7 kg, p < 0.001), chest
press (E: +22 ± 4 kg, p < 0.001; EP: +21 ± 6 kg, p < 0.001), and bicep curl (E:
+7 ± 0 kg, p = 0.002; EP: +6 ± 1 kg, p = 0.008) significantly increased in E and
EP respectively, with no differences between arms (p > 0.05). Physical functioning in
the obstacle course (E: −5.1 ± 6.8 s, p < 0.001; EP: −2.8 ± 0.8 s, p < 0.001) and
short-physical performance battery scores (E: +0.5 ± 0.5, p = <0.001; EP: +0.4 ± 0.5,
p = 0.038), and aerobic capacity in the 6-min walk test (E: +37 ± 24 m, p = 0.014; EP:
+36 ± 3 m, p = 0.005) improved in E and EP respectively, with no differences between
arms (p > 0.05). No significant change was observed for markers of cardiometabolic
health (glycaemic control or blood pressure) (p > 0.05). At follow-up, 86% of older
adults reported to performing physical activity ≥1 per week. Of those, 61% were still
participating in strength- and cardiovascular- based exercise.

Conclusion: Concurrent exercise (RE + FE) offers a potent method to combat
age-related muscle weakness, and our results suggest a high proportion of older adults
may continue to exercise unsupervised. However, leucine-enriched whey protein isolate
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supplementation did not confer any additional benefit in those already consuming
ample amounts of dietary protein at trial enrolment. Future trials should utilize a whole-
foods approach and investigate the effects in frail and non-frail older adults habitually
consuming the RDA of protein, to assess if a higher intake of protein is needed to delay
the onset of muscle weakness.

Trial Registration: Clinicaltrials.gov Identifier: NCT02912130.

Keywords: aging, muscle weakness, exercise, dietary-protein, leucine

INTRODUCTION

The aging epidemic has led to increased awareness of frailty
phenotypes, notably muscle weakness (Fried et al., 2001), which
manifests around 50 years of age, and occurs at a 2–5 times more
rapid rate than muscle mass loss (Goodpaster et al., 2006). In
the United Kingdom alone, estimated annual costs attributed to
muscle weakness are £2.5 billion (Pinedo-Villanueva et al., 2018)
which emphasizes the urgent need for prevention strategies.

Two prophylactics suggested to curtail muscle weakness are
resistance exercise (RE) and dietary-protein. RE is a potent
stimulus to increase muscle strength and physical functioning
(Fiatarone et al., 1990; Stec et al., 2017) whilst epidemiological
data show higher quantities of dietary-protein (>1 g/kg/day) can
curb declines in grip strength (McLean et al., 2016) and mobility
(Mustafa et al., 2018). Nonetheless, the body of evidence to
support the increased requirement of dietary-protein to augment
RE effects on muscle strength is inconclusive. Individual trials
have failed to show benefits (Verdijk et al., 2009; Leenders et al.,
2013; Holwerda et al., 2018) and only when trials are pooled in a
meta-analysis does a positive effect appear (Cermak et al., 2012;
Morton et al., 2017) although this has not always been the case
(Finger et al., 2015; Gade et al., 2018). Disparate findings may be
due to total amount, type and timing of supplemented protein,
and in particular, sub-optimal intakes of the essential amino acid
leucine, the key regulator of muscle anabolism (Devries et al.,
2018). Acute trials utilizing isotope tracers have demonstrated
an anabolic resistance in older adults, whereby higher dosages
of dietary-protein rich in leucine are suggested to overcome this
phenomenon (Moore et al., 2015).

Regarding the optimal intensity of RE, similar increases in
strength have been evident when comparing moderate and heavy
loads in the range of 40–90% of maximum (Morton et al., 2016; da
Silva et al., 2018) once total volume is equated for, and lower loads
are carried out to fatigue. Nevertheless, as 45.1% of 14,807 older
adults (>75 years) suffer chronic musculoskeletal pain (Cimas
et al., 2018) refraining from heavy repetitive loading may be a
more practical choice to maintain adherence long term. Similar to
RE intensity, comparable improvements in strength are apparent
with two compared to three weekly sessions in older adults (Silva
et al., 2017; Stec et al., 2017).

A Cochrane review (Sherrington et al., 2019) recently
highlighted that combining multiple exercises (muscle
strengthening, functional, and balance) offset falls in
community-dwelling older adults by 34%. Considering this,
in addition to the principle of specificity effect (Hawley, 2008;

Reilly et al., 2009), there is strong evidence to include RE
and functional exercise (FE) in a regimen to obtain the
synergistic benefits on muscle strength and physical functioning.
In addition, including FE may act as an added stimulus to
confer cardiometabolic health benefits on blood pressure,
glycaemic control, and aerobic capacity (Whitehurst et al., 2005;
Pollock et al., 2018).

With the aforementioned research in mind, the aim of the
present two-arm trial [Exercise (E); Exercise+Protein (EP)] was
to investigate the synergistic effects of 16-weeks of RE (to fatigue)
with FE, in combination with, or without, a leucine-enriched
whey protein isolate supplement on muscle strength, physical
functioning, and cardiometabolic health in older adults. It was
hypothesized EP would demonstrate superior increases in muscle
strength (our primary outcome) compared to E. Secondary aims
included the effect of treatments on (a) physical functioning,
(b) aerobic capacity, and (c) markers of cardiometabolic health
which we anticipated to be superior in EP compared to E. Of
tertiary interest was to examine physical activity levels 6 months
post-cessation of the trial, which we envisaged to be low.

MATERIALS AND METHODS

Subjects
Sample size was based on an average pooled effect size of
0.5 (range 0.1–0.9) from a previous meta-analysis (Cermak
et al., 2012), which found greater increases in leg strength with
combined RE and dietary-protein vs. RE alone in older adults.
Using G∗Power (Faul et al., 2007) software and setting power
to 80% with alpha at 0.05 (two-tailed) to observe a treatment
effect n ≥ 32 participants were required for final analysis.
Recruitment was conducted via online advertisement detailing
trial information and enrolment was based on initial telephone
screening outlining inclusion and exclusion criteria1. To confirm
eligibility, participants completed a physical activity readiness
questionnaire (PAR-Q) (Thompson et al., 2013) to screen for pre-
existing medical conditions. During this time participants were
briefed on the nature of the trial, associated risks and benefits
before written informed consent was obtained. Participants
were excluded with uncontrolled hypertension (160/100 mmHg),
hypotension (≤100 mmHg), hyperglycaemia (HbA1c ≥ 10%),
on prescribed hormonal and/or anti-inflammatory medication,

1https://clinicaltrials.gov/ct2/show/NCT02912130
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previous history of scheduled exercise (past 12 months), recent
musculoskeletal injury, intolerance to dairy and/or lactose
products (for exhaustive list see text footnote 1). For the
duration of the trial, participants were instructed to refrain from
exercise, and/or nutritional supplements other than administered
by the intervention. Ethical approval was sought from the
North-West of England NHS Research Ethics Committee
United Kingdom (REC No. 16/NW/0480) and the trial was
registered at clinicaltrials.gov as NCT02912130.

Trial Design
Following enrolment, forty-six, non-frail, community-dwelling,
and previously untrained males and females (aged≥60–86 years)
who completed the trial were initially randomized in a single-
blind design to one of two independent arms [Exercise n = 24
(E); Exercise+Protein n = 22 (EP); see Figure 1]. All participants
attended the clinical laboratories at two separate time points
(pre- and post- intervention) where outcome measures were
performed. During the intervention, E and EP attended the
university sports complex gymnasium thrice weekly for one FE
and two RE sessions (supervised by certified exercise trainers)

on non-consecutive days for the duration of 16-weeks. EP were
administered a leucine-enriched whey protein supplement thrice
daily (at breakfast, lunch, and dinner) for 16 weeks based on
individual body-weight. Protein supplements were consumed in
addition to normal dietary intake. To minimize diurnal variation,
the outcome measures were carried out at the same time of day
pre- and post- intervention.

Pre- and Post-outcome Measures
Anthropometry
Participants removed shoes, socks, watches, jewelry, and any
heavy clothing prior to height (nearest 0.1 m; SECA 213
Stadiometer) and weight (nearest 0.1 kg; TANITA MC-180MA)
measurements. Body mass index (BMI) was calculated from
the above measurements using the following validated equation:
body-weight (kg)/height (m2).

Muscle Strength
Strength was evaluated via 5-repetition maximum (RM) using
established guidelines (Baechle and Earle, 2008) on the following
exercises in orderly fashion: leg press, chest press, and

Assessed for eligibility 
(n=53)

Excluded (n=2)
• Not meeting inclusion criteria 

(n=2)

Analysed (n=24)

• Excluded from analysis (n=0)

Lost to follow-up (n=0)

Discontinued intervention (n= 5)
• Musculoskeletal injury (n=2)
• Loss of interest (n=2)
• Work commitments (n=1)

�

Allocated to Exercise (n=29)
• Received allocated intervention (n=29)
• Did not receive allocated intervention 

(n=0)

Lost to follow-up (n=0)

Discontinued intervention (n=0)

Allocated to Exercise+Protein (n=22)
• Received allocated intervention (n=22)
• Did not receive allocated intervention 

(n=0)

Analysed (n=22)
• Excluded from analysis (n=0)

Allocation

Analysis

Follow-Up

Randomised
(n=51)

Enrolment

FIGURE 1 | Flow chart of experimental trial.
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bicep curl. Testing was performed on resistance machines
(leg press and chest press) and with a barbell (bicep curl)
using Technogym equipment at the university sports complex
gymnasium. A∼5 min low-intensity cardiovascular warm up was
first conducted on either a motorized treadmill, cross-trainer, or
bike. Lifting began with a self-selected moderate weight for 15
repetitions followed by 2 min rest before participants completed
a further 10 repetitions with an increased weight selected by the
exercise trainer. If full range of motion with correct posture was
achieved the load was increased by 5 kg and 10 kg for upper-
and lower- body, respectively. This process was continued with
2 min breaks until the true 5RM was obtained. 5RM values were
then transformed to 1RM values using the previously validated
equation (Brzycki, 1993) for strength testing in older adults
(Wood et al., 2002). Final 1RM values in kilograms (kg) were
used for analysis.

Physical Functioning and Aerobic Capacity
Standardized operating procedures were followed for the short-
physical performance battery (SPPB) (Guralnik et al., 1994)
which consisted of three timed components: standing balance, 4-
m gait speed, and time to complete five chair-stands. Participant
scores for each component were totalled between 0 and 12 used
for analysis. The obstacle course was re-adapted from Steele et al.
(2017) and consisted of a 25 m marked course incorporating 90
and 180 degree turns (Figure 2). Using a stopwatch to record
time, participants were instructed to rise from the floor and carry
a kettlebell weight (10 kg for males, 5 kg for females) as fast
as possible around the course. The stopwatch stopped once the
participant was re-seated on the floor at the finish line. Time
in seconds (s) was used for analysis. For the 6 min walk test
(6MWT) standardized operating procedures were followed (ATS
Committee on Proficiency Standards for Clinical Pulmonary
Function Laboratories et al., 2002). A 30 m track was marked
in an environmentally controlled laboratory (17◦C) with chairs
placed at both ends. Participants were instructed to walk up
and down the track covering as much ground as possible within
6 min. Participants were reminded the test was self-paced and
if needed a rest was permitted; however, the stopwatch would
continue to run. Participants completed two 6MWT with a

5 m

FIGURE 2 | Mini obstacle course (25 m).

10 min break between tests, Average of the two distances in
meters (m) was used for analysis.

Blood Pressure and Fasting Blood Samples
Participants were laying rested on a medical bed for ∼5 min
prior to blood pressure measurement. An inflatable cuff
(SphygmoCor R© CPV system; ScanMed Medical) was applied to
the upper arm directly over the brachial artery and subsequent
systolic and diastolic blood pressure readings (mmHg) were
taken and used for analysis. A 35 µm capillary fingerstick
blood sample was then collected in sterile conditions for
the subsequent determination of plasma glucose (mmol/L;
Alere Cholestech LDX Analyzer, Chesire, United Kingdom)
and glycated hemoglobin (HbA1c %; Alere, AfinionTM, AS100,
Cheshire, United Kingdom).

Physical Activity Follow-Up Survey
Six months post-cessation of the intervention all participants
were re-contacted and asked to fill out an online survey (designed
via Bristol Online Survey2). Survey was re-adapted from Forkan
et al. (2006) and consisted of three multiple-choice questions. (1)
How many times have you exercised in the past 4 weeks? (2) If you
exercised in the past 4 weeks what type of exercise was it? (3) How
long did each session last? Individual responses were totalled and
analyzed to illustrate a %.

Exercise Intervention
Participants completed a gym induction and attended a
familiarization day where the correct range of motion for each
RE exercise was demonstrated to ensure technique and minimize
injury risk. Participants also practiced lifting the weight to fatigue
(defined as the point where the weight could no longer be
lifted with correct posture). Participants were provided with a
booklet detailing weekly sessions, specific exercises, and shown
how to track weights. For FE, participants were shown the correct
movement for each exercise and familiarized with the Borg scale
during a practice session. Session attendance was recorded on
arrival at the gymnasium reception desk. Average attendance was
totalled to give a %.

Resistance Exercise
Each sessions lasted ∼50 min; with 5 min warm up of low-
intensity exercise on either a motorized treadmill, cross-trainer or
bike, then continued with 45 min of whole-body REs. Participants
first completed one upper- and lower- body warm up with a
lightweight. Participants then self-selected a moderate weight and
completed 2 sets to fatigue separated by 3 min/between sets and
3 min/between exercises on each of the following machines in
orderly fashion: leg press, chest press, calf press, shoulder press,
seated row, and back extension. Bicep curl was performed last
using a free weighted barbell due to no machine-based option.
Weight was increased for upper- and lower- body exercises by
2.5 and 5 kg, respectively, once the participant completed ≥12
repetitions in both working sets. Maximal effort and progressive
overload was encouraged by the exercise trainer.

2https://admin.onlinesurveys.ac.uk
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Functional Exercise
Warm-up began with ∼10 min of low-intensity dancing to
participants preferred choice of music. FE session consisted of
12 stations re-adapted from Whitehurst et al. (2005) with 1 min
of exercise performed at each individual station before moving
in order to the next. Each station was marked with the exercise
station name, assigned a station number (between 1 and 12) and
marked with a visible Borg CR-10 scale effort sheet. Participants
completed the FE circuit 3 times with 3 min breaks between sets
(see Figure 3). Participants were instructed to provide high effort
throughout the session demonstrating a level of 7–10 on the Borg
scale (Borg and Kaijser, 2006).

Protein Supplementation and Dietary
Control
All participants recorded their energy intake via 4-day food
diaries pre- and post- intervention. Instructions were given how
to correctly weigh food, measure liquids, and fill in the diaries.
Protein supplements were weighed on scales (Weighstation
Electronic Platform Scale, Devon, United Kingdom) and sealed
in sachet bags (Tesco Stores, United Kingdom) according
to participants’ individual body-mass (g/kg/body-weight).
Participants in EP were administered a Vanilla flavored Whey
Isolate Protein supplement (MyProtein, Northwich, Cheshire,
United Kingdom) (at: 1.5 g/kg/day; 0.5 g/kg/meal) enriched
with Leucine (MyProtein, Northwich, United Kingdom) (at:
0.09 g/kg/day; 0.03 g/kg/meal) and mixed with 200 ml of water
which was ingested thrice daily (breakfast, lunch, dinner) for
16-weeks. This dosage has previously shown to overcome the
anabolic resistance among older adults (Moore et al., 2015).

FIGURE 3 | Functional exercise circuit.

Participants were reminded the protein supplement was to be
consumed in addition to normal dietary intake. Adherence
was assessed via self-report supplement logs and by counting
returned sachets. Compliance with the protein supplement was
totalled across the intervention to show a %.

Statistical Analysis
Statistical analysis was performed using SPSS Statistics 24 (IBM
Corporation, New York, United States). Food diaries were
analyzed for energy and protein content through dietary analysis
software (Nutritics LTD., Ireland). All data were checked for
normality via Shapiro-Wilk test, which were violated for muscle
strength and physical function measures. Percentage change
and log transformations were unsuccessful at normalizing the
data therefore non-parametric methods were utilized. Within-
arm time effects (pre- and post- intervention) were analyzed by
Wilcoxon-ranked paired tests. Between-arm differences (E vs.
EP) were analyzed by Kruskal-Wallis (H) tests. Normality tests
showed normal distribution for anthropometry, blood pressure,
blood glucose, glycated hemoglobin, and food diary measures
therefore parametric testing was utilized. Baseline comparisons
were analyzed by students unpaired (t) tests. Independent arms
were analyzed using a mixed model ANOVA with two arm levels
(E vs. EP) and two time levels (pre- and post- intervention). If
between arm effects were present they were followed up using
Bonferroni post hoc comparisons. Mauchly’s test of sphericity
was used to check homogeneity of variance; where necessary,
any violations of the assumption were corrected using the
Greenhouse–Geisser adjustment. Data are expressed as mean
(±) standard deviation throughout. For descriptive purposes,
percentage (±) is calculated from mean values. The alpha level
for statistical significance was set at p < 0.05 a priori.

RESULTS

Subjects
Participants included in the final analysis were distributed
similarly in each arm and when split by gender no difference
was detected (p = 0.55). Additionally, arms did not differ in any
baseline measure (p > 0.05) (see Table 1).

Exercise and Dietary Adherence
Participants in E and EP attended 77 ± 10% and 78 ± 10% of
their prescribed exercise sessions, respectively. A lower degree of
compliance was observed with dietary- protein supplementation:
EP = 43 ± 14%. As a result of supplementation, protein intake
increased from ∼1.2 ± 0.4 at baseline to 1.5 ± 0.7g/kg/day in EP
during the intervention period.

Effect of Intervention
Anthropometry, Blood Pressure, and Blood Measures
No within- or between- arm differences were observed for
height, weight, BMI, blood pressure, plasma glucose or glycated
hemoglobin (p > 0.05) (Table 2). Although minor (non-
significant) decreases in systolic blood pressure (E: 142 ± 19
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TABLE 1 | Baseline characteristics of participants.

Parameter E EP p value

n = [number] 24 22

Gender [male/female] 12/12 9/13 0.55

Age [years] 66 ± 4 69 ± 6 0.16

Height [m] 1.68 ± 0.1 1.64 ± 0.1 0.13

Weight [kg] 79.5 ± 21.6 74.2 ± 18.1 0.32

BMI [kg/m2] 28.1 ± 7.4 27.4 ± 4.9 0.63

Plasma glucose
[mmol/L]

5.5 ± 0.6 5.4 ± 0.8 0.90

HbA1c [%] 5.5 ± 0.3 5.4 ± 0.3 0.67

Systolic blood pressure
[mmHg]

142 ± 19 147 ± 17 0.36

Diastolic blood
pressure [mmHg]

83 ± 16 82 ± 9 0.81

Leg press 1RM [kg] 131 ± 15 100 ± 48 0.06

Chest press 1RM [kg] 36 ± 16 36 ± 15 0.70

Bicep curl 1RM [kg] 19 ± 7 20 ± 6 0.58

SPPB [0–12] 11.5 ± 0.7 11.6 ± 0.7 0.31

Obstacle course time
[s]

24.6 ± 12.3 22.0 ± 3.6 0.58

6MWT [m] 579 ± 83 582 ± 67 0.84

Energy intake [kcal/d] 1810.5 ± 385.7 1728.1 ± 359.5 0.55

Protein intake [kcal/d] 81.50 ± 27.1 77.26 ± 21.9 0.65

Protein intake
[g/kg/day]

1.10 ± 0.4 1.16 ± 0.4 0.68

Protein intake [% total
energy]

18 ± 4 18 ± 3 0.96

Total carbohydrate
intake [g/day]

191.81 ± 40.2 168.8 ± 41.5 0.14

Total carbohydrate
intake [% total energy]

43 ± 6 39 ± 6 0.11

Total fat intake [g/day] 69.75 ± 18.4 69.56 ± 23.1 0.98

Total fat intake [% total
energy]

35 ± 6 36 ± 7 0.70

Data are shown as means ± standard deviations. No significant differences
were detected between baseline treatments (E, exercise; EP, exercise + protein)
(p > 0.05). HbA1c, glycated hemoglobin; 1RM, 1 repetition maximum; SPPB, short
physical performance battery; 6MWT, 6-min walk test.

to 137 ± 13, −5 mmHg; EP: 147 ± 17 to 143 ± 17,
−4 mmHg) were evident from pre- to post-intervention in E and
EP, respectively.

Muscle Strength
Following 16 weeks of progressive resistance and FE 1RM values
for leg press (E: 131 ± 58 to 170 ± 51 kg, +30%, p = 0.006; EP:
100± 48 to 163± 55 kg,+63%, p< 0.001), chest press (E: 36± 16
to 58± 20 kg,+60%, p< 0.001; EP: 36± 15 to 57± 21 kg,+58%,
p< 0.001) and bicep curl (E: 19± 7 to 26± 7 kg,+37%, p = 0.002;
EP: 20± 6 to 26± 7 kg,+30%, p = 0.008) significantly increased
from pre- to post-intervention in E and EP, respectively.
However, no between-arm differences were observed
(p > 0.05; Figure 4).

Physical Functioning and Aerobic Capacity
Time to complete the obstacle course (E: 24.6 ± 12.3 to
19.5 ± 5.5 s, +21%, p < 0.001; EP: 22.0 ± 3.6 to 19.2 ± 4.1 s,
+13%, p = p < 0.001), performance in the SPPB (E:
11.5 ± 0.7 to 12.0 ± 0.2points, +4%, p = <0.001; EP:
11.6 ± 0.7 to 12.0 ± 0.2 points, +3%, p = 0.038) and aerobic
capacity in 6MWT (E: 579 ± 83 to 616 ± 107 m, +6%,
p = 0.014; EP: 582 ± 67 to 618 ± 64 m, +6%, p = 0.005)
significantly improved from pre- to post-intervention in E and
EP, respectively. No between-arm differences were observed
(p > 0.05; Table 3).

Physical Activity Levels: Post-trial Follow-Up
Forty-two out of 46 participants completed the 6-months
post-trial physical activity survey. No significant differences
were observed between arms for any survey question
(p > 0.05). Pooled results showed 86% (36/42) were still
exercising at least 1/week with 14% (6/42) not exercising.
Of those subjects still exercising 25% (9/36) reported to
performing aerobic exercise (cardiovascular based, i.e., walking,
cycling, jogging, swimming, and yoga), 14% (5/36) reported
performing RE (weight-bearing, i.e., lifting weights, body-weight
exercises) and 61% (22/36) reported to performing both. The
duration of these exercise sessions varied between 45 min
(33%) (12/36), 60 min (33%) (12/36), and >60 min (33%)
(12/36) (see Figure 5).

DISCUSSION

We report 16 weeks of progressive resistance and FE (3
times/week) significantly improved muscle strength, physical

TABLE 2 | Effect of intervention on anthropometry, blood pressure, and blood measures.

Parameter E EP

Pre Post Time p Pre Post Time p Time∗group

Height [m] 1.68 ± 0.1 1.68 ± 0.1 1.000 1.64 ± 0.1 1.64 ± 0.1 1.000 0.302

Weight [kg] 79.5 ± 21.6 78.7 ± 19.8 0.309 74.2 ± 18.1 73.6 ± 17.5 0.970 0.374

BMI [kg/m2] 28.1 ± 7.4 27.8 ± 6.6 0.319 27.4 ± 4.9 27.3 ± 4.5 0.977 0.379

Plasma glucose [mmol/L] 5.5 ± 0.6 5.5 ± 0.8 0.852 5.4 ± 0.8 5.4 ± 0.8 0.516 0.576

HbA1c [%] 5.5 ± 0.3 5.5 ± 0.4 0.339 5.4 ± 0.3 5.5 ± 0.3 0.378 0.821

Systolic pressure [mmHg] 142 ± 19 137 ± 13 0.258 147 ± 17 143 ± 17 0.329 0.894

Diastolic pressure [mmHg] 83 ± 16 82 ± 8 0.413 82 ± 9 83 ± 9 0.810 0.414

Values are means ± standard deviations. No significant differences between treatments (E, exercise; EP, exercise + protein) (p > 0.05). HbA1c, glycated hemoglobin.
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FIGURE 4 | 1RM values for (A) leg press, (B) chest press, and (C) bicep curl in response to independent treatments (E, black; EP, red). Individual data points are
shown with horizontal line indicating the mean and error bars representing the standard deviation. Within-arm time effects were evident post-intervention for leg
press, chest press, and bicep curl all (∗p < 0.05). No between-arm effects observed (p > 0.05).

TABLE 3 | Effect of intervention on physical function and aerobic capacity.

Parameter E EP

Pre Post Time p Pre Post Time p Time∗group

SPPB [1–12] 11.5 ± 0.7 12.0 ± 0.2 <0.001 11.6 ± 0.7 12.0 ± 0.2 0.038 0.924

Obstacle course time [s] 24.6 ± 12.3 19.5 ± 5.5 <0.001 22.0 ± 3.6 19.2 ± 4.1 <0.001 0.930

6MWT [m] 579 ± 83 616 ± 107 0.014 582 ± 67 618 ± 64 0.005 0.974

Values are means ± standard deviations. No significant differences between treatments (E, exercise; EP, exercise + protein) (p > 0.05). SPPB, short physical performance
battery; 6MWT, 6-min walk test.
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TABLE 4 | Dietary-intake from self-recorded 4-day food diaries.

Parameter E EP

Pre Post Time p Pre Post Time p Time∗group

Energy intake [kcal/d] 1810.5 ± 385.7 1944.1 ± 568 0.282 1728.1 ± 359.5 1969.3 ± 429.9 0.012 0.454

Protein intake [kcal/d] 81.50 ± 27.1 77.63 ± 20.5 0.512 77.26 ± 21.9 109.61 ± 30.8∗ <0.001 0.002

Protein intake [g/kg/body mass/day] 1.10 ± 0.4 1.04 ± 0.3 0.361 1.16 ± 0.4 1.63 ± 0.5∗ <0.001 <0.001

Protein intake [% total energy] 18 ± 4 16 ± 3 0.193 18 ± 3 23 ± 6∗ 0.004 0.003

Total carbohydrate intake [g/day] 191.81 ± 40.2 211.09 ± 68.3 0.674 168.8 ± 41.5 187.8 ± 59.7 0.202 0.989

Total carbohydrate intake [% total energy] 43 ± 6 44 ± 6 0.760 39 ± 6 38 ± 7 0.292 0.398

Total fat intake [g/day] 69.75 ± 18.4 72.96 ± 21.7 0.174 69.56 ± 23.1 75.49 ± 24.4 0.165 0.744

Total fat intake [% total energy] 35 ± 6 34 ± 5 0.719 36 ± 7 34 ± 7 0.396 0.688

Values are means ± standard deviations. ∗ Indicates between-arm difference post-intervention (p < 0.05).
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functioning, and aerobic capacity without influencing blood
pressure or glycaemic control in previously untrained
older adults. In addition, leucine enriched-whey protein
supplementation (3 times/day) did not confer any additional
benefit on these outcomes.

We primarily sought to investigate if leucine enriched-
whey protein supplementation would augment muscle strength
during combined exercise training in older adults. Following
recommendations (Paddon-Jones and Rasmussen, 2009; Bauer
et al., 2013) we provided ample amounts of dietary-protein
(0.5 g/kg/meal) enriched with leucine (0.03 g/kg/meal; >3 g per
serving) thrice daily to maximize the muscle protein synthetic
response (Moore et al., 2015). Despite substantial increases in
muscle strength (Figure 4) and physical/aerobic performance
(Table 3) we observed no difference between treatments. This
finding is in line with existing data (Kukuljan et al., 2009; Verdijk
et al., 2009; Leenders et al., 2013; Stragier et al., 2016; Holwerda
et al., 2018) which failed to show a synergistic effect of RE and
dietary-protein in strength among community-dwelling older
adults. Similar to the above trials, our population of older
adults were non-frail i.e., demonstrated high baseline SPPB
(11.5 ± 0.7) and 6MWT (583 ± 75) scores. In contrast, benefits
have been observed in pre-frail/functionally impaired older
adults with lower habitual levels of dietary-protein (Cawood
et al., 2012; Tieland et al., 2012). Thus, the relative good
health of our population who were habitually consuming
adequate amounts of dietary-protein (∼1.2 ± 0.4 g/kg/day)
may have masked any effect of supplementation (Table 4).
Despite increasing dietary-protein intake from ∼1.2 ± 0.4 to
1.5± 0.7 g/kg/day during the present trial, adherence (43± 14%)
was considerably lower than others (Verdijk et al., 2009; Bell
et al., 2017) although similar in those attempting to supplement
3 times/day (Norton et al., 2016). Considering this, coupled
with the undesirable verbal feedback relating to supplement
taste we recommend future trials use a whole-food approach
to increase palatability and adherence as previously described
(Haub et al., 2002; Wright et al., 2018).

All strength measures improved from pre- to post-
intervention by >30% (Figure 4) adding to the current
body of research (Charette et al., 1991; Latham et al., 2004;
Nilwik et al., 2013; Bell et al., 2017) demonstrating prolonged
resistive exercise modalities (≥12 weeks) are a potent method to
combat age-related muscle weakness. Together, these data offer
an alternative approach for older adults who may be reluctant to
use heavy loads due to health or personal constraints.

The observed increases in strength were accompanied by
a favorable shift in physical functioning and aerobic capacity
(Table 3). Whilst difficult to distinguish which part of the
multifaceted exercise regimen contributed specifically to these
improvements, each may have played a complementary role.
For instance, RE increases in strength can improve SPPB
performance (Tieland et al., 2012, 2015) whereas FE may
have predominately enhanced mobility on the obstacle course
(Rosendahl et al., 2008) and provided that added stimulus to
increase endurance on the 6MWT (Whitehurst et al., 2005).
In support, three studies (Arnarson et al., 2013; Kawada et al.,
2013; Oesen et al., 2015) found no effect of RE on 6MWT

distance, whilst in the present trial and in others (Bell et al.,
2017) combining RE with endurance elements of training
resulted in improved 6MWT distance. It is difficult to elaborate
further as it was not the purpose of the trial to compare these
exercise modalities, and associations between neuromuscular
attributes and performance indices are not fully understood
(Jacob et al., 2018). Nonetheless, the above findings are clinically
relevant considering muscle strength declines at an annual rate
of ∼2–3% after the fifth decade of life (Goodpaster et al.,
2006) and is adversely characterized by reductions in functional
capacity (Pavasini et al., 2016), and activities of daily living
(Rantanen et al., 2002).

Our multifaceted exercise regimen was designed to optimize
muscle strength, physical functioning, aerobic capacity and
metabolic health all of which deteriorate with age (Pendergast
et al., 1993; Niccoli and Partridge, 2012). Regarding the latter,
we failed to observe a change in markers of cardiometabolic
health (Table 2) which is in contrast to others (Bell et al.,
2017) employing combined strength and high-intensity interval
exercise. Thus, we postulate the lack of adaptation in glycaemic
control/blood pressure may be due to an insufficient intensity of
the exercise regimen employed, or alternatively, due to a lack of
reduction in body-weight which may have concealed alterations.

Exercise adherence was high (78 ± 10%) across the 16-
week intervention period and was even higher during follow-up
(6 months post-intervention) with 86% (36/46) of previously
untrained older adults reporting to performing physical activity
≥1 per week (Figure 5). Of those, 61% (22/36) were participating
in strength- and cardiovascular- based exercise which aligns
with current exercise recommendations for older adults (Nelson
et al., 2007). The above figures are promising considering older
adults are highlighted as the least active section of society with
astonishingly low numbers (<5%) meeting guidelines (Davis
et al., 2011; Loustalot et al., 2013; Sun et al., 2013; Van Holle et al.,
2014; Dalbo et al., 2015). By continuing to perform concurrent
exercise our older adults are inevitably reducing the risk of
age-related disease (Vellas et al., 2018) and mortality (García-
Hermoso et al., 2018). Even slight increases in RE participation
rates (as achieved here) may significantly relieve the economic
burden of aging as costs attributed to muscle weakness are
estimated at an annual £2,707 per person in the United Kingdom
alone (Pinedo-Villanueva et al., 2018).

Limitations
A clear drawback of our trial was the lack of compliance
(43 ± 14%) to dietary-protein supplementation. As mentioned,
future research should use a whole-food approach as greater
adherence rates (>90%) have been evident (Haub et al.,
2002; Wright et al., 2018). Another perceived limitation may
relate to our population of older adults who were non-frail.
By incorporating frail older adults, perhaps greater effects of
treatments may have been observed. However, as mounting
commentary (Paddon-Jones and Rasmussen, 2009; Bauer et al.,
2013) advocate higher dietary-protein intakes (≥1.2 g/kg/day)
for older adults it would be unwise to examine the effects
in functionally impaired populations alone. For public health
mandates to endorse a greater intake of dietary-protein above
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the current RDA (0.8 g/kg/day); evidence needs to be established
across various populations (i.e., in community-dwelling and
institutionalized older adults).

CONCLUSION

To conclude, 16 weeks of progressive resistance and FE
(3 times/week) significantly improved muscle strength,
physical functioning and aerobic capacity without affecting
blood pressure or glycaemic control in previously untrained
older adults. In addition, leucine-enriched whey protein
supplementation (3 times/day) did not yield further benefits.
Nonetheless, 86% (42/46) of older adults were still performing
strength- and cardiovascular- based exercise 6-months
post-trial demonstrating clinical relevance. Finally, future
research should focus on methods to incorporate high
dietary-protein intakes (∼1.5 g/kg/day) through naturally

occurring food sources in frail and non-frail older adults
habitually consuming the RDA of protein. In turn, this
may improve adherence rates and enable the efficacy of
combined RE with dietary-protein on muscle strength
to be evaluated.

AUTHOR CONTRIBUTIONS

BK, KM, FA, and OK have made substantial contributions to
the trial design, data collection and interpretation, and are fully
conversant with its content. BK wrote the full manuscript.

ACKNOWLEDGMENTS

The authors would like to thank the participants for their
dedication and continuous contribution throughout the trial.

REFERENCES
Arnarson, A., Gudny Geirsdottir, O., Ramel, A., Briem, K., Jonsson, P. V., and

Thorsdottir, I. (2013). Effects of whey proteins and carbohydrates on the efficacy
of resistance training in elderly people: double blind, randomised controlled
trial. Eur. J. Clin. Nutr. 67, 821–826. doi: 10.1038/ejcn.2013.40

ATS Committee on Proficiency Standards for Clinical Pulmonary Function
Laboratories, Crapo, R. O., Casaburi, R., Coates, A. L., Enright, P. L., MacIntyre,
N. R., et al. (2002). ATS statement: guidelines for the six-minute walk
test. Am. J. Respir. Crit. Care Med. 166, 111–117. doi: 10.1164/rccm.166/
1/111

Baechle, T. R., and Earle, R. W. (2008). Essentials of Strength Training and
Conditioning. Champaign, IL: Human Kinetics Publishers. doi: 10.1164/ajrccm.
166.1.at1102

Bauer, J., Biolo, G., Cederholm, T., Cesari, M., Cruz-Jentoft, A. J., Morley, J. E., et al.
(2013). Evidence-based recommendations for optimal dietary protein intake in
older people: a position paper from the PROT-AGE study group. J. Am. Med.
Dir. Assoc. 14, 542–559. doi: 10.1016/J.JAMDA.2013.05.021

Bell, K. E., Snijders, T., Zulyniak, M., Kumbhare, D., Parise, G., Chabowski, A.,
et al. (2017). A whey protein-based multi-ingredient nutritional supplement
stimulates gains in lean body mass and strength in healthy older men: a
randomized controlled trial. PLoS One 12:e0181387. doi: 10.1371/journal.pone.
0181387

Borg, E., and Kaijser, L. (2006). A comparison between three rating scales for
perceived exertion and two different work tests. Scand. J. Med. Sci. Sport 16,
57–69. doi: 10.1111/j.1600-0838.2005.00448.x

Brzycki, M. (1993). Strength testing—predicting a one-rep max from reps-to-
fatigue. J. Phys. Educ. Recreat. Danc. 64, 88–90. doi: 10.1080/07303084.1993.
10606684

Cawood, A. L., Elia, M., and Stratton, R. J. (2012). Systematic review and meta-
analysis of the effects of high protein oral nutritional supplements. Ageing Res.
Rev. 11, 278–296. doi: 10.1016/J.ARR.2011.12.008

Cermak, N. M., Res, P. T., Groot, L. C., De Saris, W. H. M., and Van Loon, L. J. C.
(2012). Protein supplementation augments the adaptive response of skeletal
muscle to resistance type exercise training a meta analysis.pdf. Am. J. Clin. Nutr.
96, 1454–1464. doi: 10.3945/ajcn.112.037556.INTRODUCTION

Charette, S. L., McEvoy, L., Pyka, G., Snow-Harter, C., Guido, D., Wiswell, R. A.,
et al. (1991). Muscle hypertrophy response to resistance training in older
women. J. Appl. Physiol. 70, 1912–1916. doi: 10.1152/jappl.1991.70.5.1912

Cimas, M., Ayala, A., Sanz, B., Agulló-Tomás, M. S., Escobar, A., and Forjaz, M. J.
(2018). Chronic musculoskeletal pain in European older adults: cross-national
and gender differences. Eur. J. Pain 22, 333–345. doi: 10.1002/ejp.1123

da Silva, L. X. N., Teodoro, J. L., Menger, E., Lopez, P., Grazioli, R., Farinha, J., et al.
(2018). Repetitions to failure versus not to failure during concurrent training

in healthy elderly men: a randomized clinical trial. Exp. Gerontol. 108, 18–27.
doi: 10.1016/j.exger.2018.03.017

Dalbo, V. J., Czerepusko, J. B., Tucker, P. S., Kingsley, M. I., Moon, J. R., Young,
K., et al. (2015). Not sending the message: a low prevalence of strength-based
exercise participation in rural and regional central queensland. Aust. J. Rural
Health 23, 295–301. doi: 10.1111/ajr.12207

Davis, A. G., Fox, K. R., Hillsdon, M., Sharp, D. J., Coulson, J. C., and Thompson,
J. L. (2011). Objectively measured physical activity in a diverse sample of
older urban UK adults. Med. Sci. Sport Exerc 43, 647–654. doi: 10.1249/MSS.
0b013e3181f36196

Devries, M. C., McGlory, C., Bolster, D. R., Kamil, A., Rahn, M., Harkness, L.,
et al. (2018). Leucine, not total protein, content of a supplement is the primary
determinant of muscle protein anabolic responses in healthy older women.
J. Nutr. 148, 1088–1095. doi: 10.1093/jn/nxy091

Faul, F., Erdfelder, E., Lang, A.-G., and Buchner, A. (2007). G∗Power 3: a flexible
statistical power analysis program for the social, behavioral, and biomedical
sciences. Behav. Res. Methods 39, 175–191. doi: 10.3758/BF03193146

Fiatarone, M. A., Marks, E. C., Ryan, N. D., Meredith, C. N., Lipsitz, L. A., and
Evans, W. J. (1990). High-intensity strength training in nonagenarians. JAMA
263:3029. doi: 10.1001/jama.1990.03440220053029

Finger, D., Goltz, F. R., Umpierre, D., Meyer, E., Rosa, L. H. T., and Schneider, C. D.
(2015). Effects of protein supplementation in older adults undergoing resistance
training: a systematic review and meta-analysis. Sport Med. 45, 245–255.
doi: 10.1007/s40279-014-0269-4

Forkan, R., Pumper, B., Smyth, N., Wirkkala, H., Ciol, M. A., and Shumway-Cook,
A. (2006). Exercise adherence following physical therapy intervention in older
adults with impaired balance. Phys. Ther. 86, 401–410. doi: 10.1093/ptj/86.3.401

Fried, L. P., Tangen, C. M., Walston, J., Newman, A. B., Hirsch, C., Gottdiener, J.,
et al. (2001). Frailty in older adults: evidence for a phenotype. J. Gerontol. Ser.
A Biol. Sci. Med. Sci. 56, M146–M157. doi: 10.1093/gerona/56.3.M146

Gade, J., Pedersen, R. J., and Beck, A. M. (2018). Effect of protein or essential
amino acid supplementation during prolonged resistance exercise training in
older adults on body composition, muscle strength, and physical performance
parameters: a systematic review. Rehabil. Process Outcome 7:117957271876576.
doi: 10.1177/1179572718765760

García-Hermoso, A., Cavero-Redondo, I., Ramírez-Vélez, R., Ruiz, J. R., Ortega,
F. B., Lee, D.-C., et al. (2018). Muscular strength as a predictor of all-cause
mortality in an apparently healthy population: a systematic review and meta-
analysis of data from approximately 2 million men and women. Arch. Phys.
Med. Rehabil. 99, 2100.e5–2113.e5. doi: 10.1016/J.APMR.2018.01.008

Goodpaster, B. H., Park, S. W., Harris, T. B., Kritchevsky, S. B., Nevitt, M., Schwartz,
A. V., et al. (2006). The loss of skeletal muscle strength, mass, and quality in
older adults: the health, aging and body composition study. J. Gerontol. Ser.
A Biol. Sci. Med. Sci. 61, 1059–1064. doi: 10.1093/gerona/61.10.1059

Frontiers in Physiology | www.frontiersin.org 9 April 2019 | Volume 10 | Article 445

https://doi.org/10.1038/ejcn.2013.40
https://doi.org/10.1164/rccm.166/1/111
https://doi.org/10.1164/rccm.166/1/111
https://doi.org/10.1164/ajrccm.166.1.at1102
https://doi.org/10.1164/ajrccm.166.1.at1102
https://doi.org/10.1016/J.JAMDA.2013.05.021
https://doi.org/10.1371/journal.pone.0181387
https://doi.org/10.1371/journal.pone.0181387
https://doi.org/10.1111/j.1600-0838.2005.00448.x
https://doi.org/10.1080/07303084.1993.10606684
https://doi.org/10.1080/07303084.1993.10606684
https://doi.org/10.1016/J.ARR.2011.12.008
https://doi.org/10.3945/ajcn.112.037556.INTRODUCTION
https://doi.org/10.1152/jappl.1991.70.5.1912
https://doi.org/10.1002/ejp.1123
https://doi.org/10.1016/j.exger.2018.03.017
https://doi.org/10.1111/ajr.12207
https://doi.org/10.1249/MSS.0b013e3181f36196
https://doi.org/10.1249/MSS.0b013e3181f36196
https://doi.org/10.1093/jn/nxy091
https://doi.org/10.3758/BF03193146
https://doi.org/10.1001/jama.1990.03440220053029
https://doi.org/10.1007/s40279-014-0269-4
https://doi.org/10.1093/ptj/86.3.401
https://doi.org/10.1093/gerona/56.3.M146
https://doi.org/10.1177/1179572718765760
https://doi.org/10.1016/J.APMR.2018.01.008
https://doi.org/10.1093/gerona/61.10.1059
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00445 April 23, 2019 Time: 19:29 # 10

Kirk et al. Exercise, Dietary-Protein, and Aging

Guralnik, J. M., Simonsick, E. M., Ferrucci, L., Glynn, R. J., Berkman, L. F.,
Blazer, D. G., et al. (1994). A short physical performance battery assessing lower
extremity function: association with self-reported disability and prediction of
mortality and nursing home admission. J. Gerontol. 49, M85–M94. doi: 10.1093/
geronj/49.2.M85

Haub, M. D., Wells, A. M., Tarnopolsky, M. A., and Campbell, W. W. (2002). Effect
of protein source on resistive-training-induced changes in body composition
and muscle size in older men. Am. J. Clin. Nutr. 76, 511–517. doi: 10.1093/ajcn/
76.3.511

Hawley, J. A. (2008). Specificity of training adaptation: time for a rethink? J. Physiol.
586, 1–2. doi: 10.1113/jphysiol.2007.147397

Holwerda, A. M., Overkamp, M., Paulussen, K. J. M., Smeets, J. S. J., van
Kranenburg, J., Backx, E. M. P., et al. (2018). Protein supplementation after
exercise and before sleep does not further augment muscle mass and strength
gains during resistance exercise training in active older men. J. Nutr. 148,
1723–1732. doi: 10.1093/jn/nxy169

Jacob, M. E., Travison, T. G., Ward, R. E., Latham, N. K., Leveille, S. G., Jette, A. M.,
et al. (2018). Neuromuscular attributes associated with lower extremity mobility
among community-dwelling older adults. J. Gerontol. Ser. A 74, 544–549. doi:
10.1093/gerona/gly102

Kawada, S., Okamoto, Y., Ogasahara, K., Yanagisawa, S., Ohtani, M., and
Kobayashi, K. (2013). Resistance exercise combined with essential amino acid
supplementation improved walking ability in elderly people. Acta Physiol.
Hung. 100, 329–339. doi: 10.1556/APhysiol.100.2013.008

Kukuljan, S., Nowson, C. A., Sanders, K., and Daly, R. M. (2009). Effects of
resistance exercise and fortified milk on skeletal muscle mass, muscle size, and
functional performance in middle-aged and older men: an 18-mo randomized
controlled trial. J. Appl. Physiol. 107, 1864–1873. doi: 10.1152/japplphysiol.
00392.2009

Latham, N. K., Bennett, D. A., Stretton, C. M., and Anderson, C. S. (2004).
Systematic review of progressive resistance strength training in older adults.
J. Gerontol. Ser. A Biol. Sci. Med. Sci. 59, M48–M61. doi: 10.1093/gerona/59.
1.M48

Leenders, M., Verdijk, L. B., Van Der Hoeven, L., Van Kranenburg, J., Nilwik, R.,
Wodzig, W. K. W. H., et al. (2013). Protein supplementation during resistance-
type exercise training in the elderly. Med. Sci. Sports Exerc. 45, 542–552.
doi: 10.1249/MSS.0b013e318272fcdb

Loustalot, F., Carlson, S. A., Kruger, J., Buchner, D. M., and Fulton, J. E.
(2013). Muscle-strengthening activities and participation among adults in the
United States. Res. Q. Exerc. Sport 84, 30–38. doi: 10.1080/02701367.2013.
762289

McLean, R. R., Mangano, K. M., Hannan, M. T., Kiel, D. P., and Sahni, S. (2016).
Dietary protein intake is protective against loss of grip strength among older
adults in the framingham offspring cohort. J. Gerontol. Ser. A Biol. Sci. Med. Sci.
71, 356–361. doi: 10.1093/gerona/glv184

Moore, D. R., Churchward-Venne, T. A., Witard, O., Breen, L., Burd, N. A., Tipton,
K. D., et al. (2015). Protein ingestion to stimulate myofibrillar protein synthesis
requires greater relative protein intakes in healthy older versus younger
men. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 70, 57–62. doi: 10.1093/gerona/
glu103

Morton, R. W., Murphy, K. T., McKellar, S. R., Schoenfeld, B. J., Henselmans, M.,
Helms, E., et al. (2017). A systematic review, meta-analysis and meta-regression
of the effect of protein supplementation on resistance training-induced gains
in muscle mass and strength in healthy adults. Br. J. Sports Med. 52, 376–384.
doi: 10.1136/bjsports-2017-097608

Morton, R. W., Oikawa, S. Y., Wavell, C. G., Mazara, N., McGlory, C., Quadrilatero,
J., et al. (2016). Neither load nor systemic hormones determine resistance
training-mediated hypertrophy or strength gains in resistance-trained young
men. J. Appl. Physiol. 121, 129–138. doi: 10.1152/japplphysiol.00154.2016

Mustafa, J., Ellison, R. C., Singer, M. R., Bradlee, M. L., Kalesan, B., Holick,
M. F., et al. (2018). Dietary protein and preservation of physical functioning
among middle-aged and older adults in the framingham offspring study. Am. J.
Epidemiol. 187, 1411–1419. doi: 10.1093/aje/kwy014

Nelson, M., Rejeski, W., Blair, S., Duncan, P., Judge, J., King, A., et al.
(2007). Physical activity and public health in older adults: recommendation
from the american college of sports medicine and the american heart
association. Circulation 116, 1094–1105. doi: 10.1161/circulationaha.107.
185650

Niccoli, T., and Partridge, L. (2012). Ageing as a risk factor for disease. Curr. Biol.
22, R741–R752. doi: 10.1016/j.cub.2012.07.024

Nilwik, R., Snijders, T., Leenders, M., Groen, B. B. L., van Kranenburg, J., Verdijk,
L. B., et al. (2013). The decline in skeletal muscle mass with aging is mainly
attributed to a reduction in type II muscle fiber size. Exp. Gerontol. 48, 492–498.
doi: 10.1016/J.EXGER.2013.02.012

Norton, C., Toomey, C., McCormack, W. G., Francis, P., Saunders, J.,
Kerin, E., et al. (2016). Protein supplementation at breakfast and lunch
for 24 weeks beyond habitual intakes increases whole-body lean tissue
mass in healthy older adults. J. Nutr. 146, 65–69. doi: 10.3945/jn.115.
219022

Oesen, S., Halper, B., Hofmann, M., Jandrasits, W., Franzke, B., Strasser, E.-
M. M., et al. (2015). Effects of elastic band resistance training and nutritional
supplementation on physical performance of institutionalised elderly - A
randomized controlled trial. Exp. Gerontol. 72, 99–108. doi: 10.1016/j.exger.
2015.08.013

Paddon-Jones, D., and Rasmussen, B. B. (2009). Dietary protein recommendations
and the prevention of sarcopenia.Curr. Opin. Clin. Nutr. Metab. Care 12, 86–90.
doi: 10.1097/MCO.0b013e32831cef8b

Pavasini, R., Guralnik, J., Brown, J. C., di Bari, M., Cesari, M., Landi, F., et al. (2016).
Short physical performance Battery and all-cause mortality: systematic review
and meta-analysis. BMCMed. 14:215. doi: 10.1186/s12916-016-0763-7

Pendergast, D. R., Fisher, N. M., and Calkins, E. (1993). Cardiovascular,
neuromuscular, and metabolic alterations with age leading to frailty. J. Gerontol.
48, 61–67. doi: 10.1093/geronj/48.special_issue.61

Pinedo-Villanueva, R., Westbury, L. D., Syddall, H. E., Sanchez-Santos, M. T.,
Dennison, E. M., Robinson, S. M., et al. (2018). Health care costs associated
with muscle weakness: a UK population-based estimate. Calcif. Tissue Int. 104,
137–144. doi: 10.1007/s00223-018-0478-1

Pollock, R. D., Duggal, N. A., Lazarus, N. R., Lord, J. M., and Harridge,
S. D. R. (2018). Cardiorespiratory fitness not sedentary time or
physical activity is associated with cardiometabolic risk in active older
adults. Scand. J. Med. Sci. Sports 28, 1653–1660. doi: 10.1111/sms.
13071

Rantanen, T., Avlund, K., Suominen, H., Schroll, M., Frändin, K., and Pertti, E.
(2002). Muscle strength as a predictor of onset of ADL dependence in people
aged 75 years. Aging Clin. Exp. Res. 14, 10–15.

Reilly, T., Morris, T., and Whyte, G. (2009). The specificity of training prescription
and physiological assessment: a review. J. Sports Sci. 27, 575–589. doi: 10.1080/
02640410902729741

Rosendahl, E., Gustafson, Y., Nordin, E., Lundin-Olsson, L., and Nyberg, L. (2008).
A randomized controlled trial of fall prevention by a high-intensity functional
exercise program for older people living in residential care facilities. Aging Clin.
Exp. Res. 20, 67–75. doi: 10.1007/BF03324750

Sherrington, C., Fairhall, N. J., Wallbank, G. K., Tiedemann, A., Michaleff, Z. A.,
Howard, K., et al. (2019). Exercise for preventing falls in older people living in
the community. Coch. Database Syst. Rev. 1:CD012424. doi: 10.1002/14651858.
CD012424.pub2

Silva, R. G., da Silva, D. R. P., da Pina, F. L. C., Nascimento, M. A., do Ribeiro,
A. S., Cyrino, E. S., et al. (2017). Effect of two different weekly resistance
training frequencies on muscle strength and blood pressure in normotensive
older women. Rev. Bras. Cineantropometria Desempenho Hum. 19, 118–127.
doi: 10.5007/1980-0037.2017v19n1p118

Stec, M. J., Thalacker-Mercer, A., Mayhew, D. L., Kelly, N. A., Tuggle, C. S.,
Merritt, E. K., et al. (2017). Randomized, four-arm, dose-response clinical
trial to optimize resistance exercise training for older adults with age-
related muscle atrophy. Exp. Gerontol. 99, 98–109. doi: 10.1016/j.exger.2017.
09.018

Steele, J., Raubold, K., Kemmler, W., Fisher, J., Gentil, P., and Giessing, J. (2017).
The effects of 6 months of progressive high effort resistance training methods
upon strength, body composition, function, and wellbeing of elderly adults.
Biomed. Res. Int. 2017:2541090. doi: 10.1155/2017/2541090

Stragier, S., Baudry, S., Poortmans, J., Duchateau, J., and Carpentier, A. (2016).
Leucine-enriched protein supplementation does not influence neuromuscular
adaptations in response to a 6-month strength training programme in older
adults. Exp. Gerontol. 82, 58–66. doi: 10.1016/j.exger.2016.06.002

Sun, F., Norman, I. J., and While, A. E. (2013). Physical activity in older people: a
systematic review. BMC Publ. Health 13:449. doi: 10.1186/1471-2458-13-449

Frontiers in Physiology | www.frontiersin.org 10 April 2019 | Volume 10 | Article 445

https://doi.org/10.1093/geronj/49.2.M85
https://doi.org/10.1093/geronj/49.2.M85
https://doi.org/10.1093/ajcn/76.3.511
https://doi.org/10.1093/ajcn/76.3.511
https://doi.org/10.1113/jphysiol.2007.147397
https://doi.org/10.1093/jn/nxy169
https://doi.org/10.1093/gerona/gly102
https://doi.org/10.1093/gerona/gly102
https://doi.org/10.1556/APhysiol.100.2013.008
https://doi.org/10.1152/japplphysiol.00392.2009
https://doi.org/10.1152/japplphysiol.00392.2009
https://doi.org/10.1093/gerona/59.1.M48
https://doi.org/10.1093/gerona/59.1.M48
https://doi.org/10.1249/MSS.0b013e318272fcdb
https://doi.org/10.1080/02701367.2013.762289
https://doi.org/10.1080/02701367.2013.762289
https://doi.org/10.1093/gerona/glv184
https://doi.org/10.1093/gerona/glu103
https://doi.org/10.1093/gerona/glu103
https://doi.org/10.1136/bjsports-2017-097608
https://doi.org/10.1152/japplphysiol.00154.2016
https://doi.org/10.1093/aje/kwy014
https://doi.org/10.1161/circulationaha.107.185650
https://doi.org/10.1161/circulationaha.107.185650
https://doi.org/10.1016/j.cub.2012.07.024
https://doi.org/10.1016/J.EXGER.2013.02.012
https://doi.org/10.3945/jn.115.219022
https://doi.org/10.3945/jn.115.219022
https://doi.org/10.1016/j.exger.2015.08.013
https://doi.org/10.1016/j.exger.2015.08.013
https://doi.org/10.1097/MCO.0b013e32831cef8b
https://doi.org/10.1186/s12916-016-0763-7
https://doi.org/10.1093/geronj/48.special_issue.61
https://doi.org/10.1007/s00223-018-0478-1
https://doi.org/10.1111/sms.13071
https://doi.org/10.1111/sms.13071
https://doi.org/10.1080/02640410902729741
https://doi.org/10.1080/02640410902729741
https://doi.org/10.1007/BF03324750
https://doi.org/10.1002/14651858.CD012424.pub2
https://doi.org/10.1002/14651858.CD012424.pub2
https://doi.org/10.5007/1980-0037.2017v19n1p118
https://doi.org/10.1016/j.exger.2017.09.018
https://doi.org/10.1016/j.exger.2017.09.018
https://doi.org/10.1155/2017/2541090
https://doi.org/10.1016/j.exger.2016.06.002
https://doi.org/10.1186/1471-2458-13-449
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00445 April 23, 2019 Time: 19:29 # 11

Kirk et al. Exercise, Dietary-Protein, and Aging

Thompson, P. D., Arena, R., Riebe, D., and Pescatello, L. S. (2013). ACSM’s new
preparticipation health screening recommendations from ACSM’s guidelines
for exercise testing and prescription, ninth edition. Curr. Sports Med. Rep. 12,
215–217. doi: 10.1249/JSR.0b013e31829a68cf

Tieland, M., van der Zwaluw, N., Verdijk, L. B., van de Rest, O., de Groot,
L. C. P. G. M., and van Loon, L. J. C. (2012). Protein supplementation
increases muscle mass gain during prolonged resistance-type exercise training
in frail elderly people: a randomized, double-blind, placebo-controlled
trial. J. Am. Med. Dir. Assoc. 13, 713–719. doi: 10.1016/j.jamda.2012.
05.020

Tieland, M., Verdijk, L. B., de Groot, L. C. P. G. M., and van Loon, L. J. C. (2015).
Handgrip strength does not represent an appropriate measure to evaluate
changes in muscle strength during an exercise intervention program in frail
older people. Int. J. Sport Nutr. Exerc. Metab. 25, 27–36. doi: 10.1123/ijsnem.
2013-0123

Van Holle, V., Van Cauwenberg, J., Van Dyck, D., Deforche, B., Van de Weghe,
N., and De Bourdeaudhuij, I. (2014). Relationship between neighborhood
walkability and older adults’ physical activity: results from the Belgian
environmental physical activity study in seniors (BEPAS Seniors). Int. J. Behav.
Nutr. Phys. Act. 11:110. doi: 10.1186/s12966-014-0110-3

Vellas, B., Fielding, R. A., Bens, C., Bernabei, R., Cawthon, P. M., Cederholm, T.,
et al. (2018). Implications of ICD-10 for sarcopenia clinical practice and clinical
trials: report by the international conference on frailty and sarcopenia research
task force. J. Frail. Aging 7, 2–9. doi: 10.14283/jfa.2017.30

Verdijk, L., Jonkers, R. A., Gleeson, B. G., Beelen, M., Meijer, K., Savelberg, H. H.,
et al. (2009). Protein supplementation before and after exercise does not further

augment skeletal muscle hypertrophy after resistance training in elderly men.
Am. J. Clin. Nutr. 89, 608–616. doi: 10.3945/ajcn.2008.26626

Whitehurst, M. A., Johnson, B. L., Parker, C. M., Brown, L. E., and Ford, A. M.
(2005). The benefits of a functional exercise circuit for older adults. J. Strength
Cond. Res. 19, 647–651.

Wood, T. M., Maddalozzo, G. F., and Harter, R. A. (2002). Accuracy of
seven equations for predicting 1-RM performance of apparently healthy,
sedentary older adults. Meas. Phys. Educ. Exerc. Sci. 6, 67–94. doi:
10.1207/S15327841MPEE0602_1

Wright, C., Zhou, J., Sayer, R., Kim, J., Campbell, W., Wright, C. S., et al. (2018).
Effects of a high-protein diet including whole eggs on muscle composition and
indices of cardiometabolic health and systemic inflammation in older adults
with overweight or obesity: a randomized controlled trial. Nutrients 10:946.
doi: 10.3390/nu10070946

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Kirk, Mooney, Amirabdollahian and Khaiyat. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Physiology | www.frontiersin.org 11 April 2019 | Volume 10 | Article 445

https://doi.org/10.1249/JSR.0b013e31829a68cf
https://doi.org/10.1016/j.jamda.2012.05.020
https://doi.org/10.1016/j.jamda.2012.05.020
https://doi.org/10.1123/ijsnem.2013-0123
https://doi.org/10.1123/ijsnem.2013-0123
https://doi.org/10.1186/s12966-014-0110-3
https://doi.org/10.14283/jfa.2017.30
https://doi.org/10.3945/ajcn.2008.26626
https://doi.org/10.1207/S15327841MPEE0602_1
https://doi.org/10.1207/S15327841MPEE0602_1
https://doi.org/10.3390/nu10070946
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

	Exercise and Dietary-Protein as a Countermeasure to Skeletal Muscle Weakness: Liverpool Hope University – Sarcopenia Aging Trial (LHU-SAT)
	Introduction
	Materials and Methods
	Subjects
	Trial Design
	Pre- and Post-outcome Measures
	Anthropometry
	Muscle Strength
	Physical Functioning and Aerobic Capacity
	Blood Pressure and Fasting Blood Samples
	Physical Activity Follow-Up Survey

	Exercise Intervention
	Resistance Exercise
	Functional Exercise

	Protein Supplementation and Dietary Control
	Statistical Analysis

	Results
	Subjects
	Exercise and Dietary Adherence
	Effect of Intervention
	Anthropometry, Blood Pressure, and Blood Measures
	Muscle Strength
	Physical Functioning and Aerobic Capacity
	Physical Activity Levels: Post-trial Follow-Up


	Discussion
	Limitations

	Conclusion
	Author Contributions
	Acknowledgments
	References


