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Aging is the main risk factor for developing diabetes and other age-related diseases. One
of the most common features of age-related comorbidities is the presence of low-grade
chronic inflammation. This is also the case of metabolic syndrome and diabetes. At the
subclinical level, a pro-inflammatory phenotype was shown to be associated with Type-
2 diabetes mellitus (T2DM). This low to mid-grade inflammation is also present in elderly
individuals and has been termed inflammaging. Whether inflammation is a component of
aging or exclusively associated with age-related diseases in not entirely known. We used
clinical data and biological readouts in a group of individuals stratified by age, diabetes
status and comorbidities to investigate this aspect. While aging is the main predisposing
factor for several diseases there is a concomitant increased level of pro-inflammatory
cytokines. DM patients show an increased level of sTNFRll, sICAM-1, and TIMP-
1 when compared to Healthy, Non-DM and Pre-DM individuals. These inflammatory
molecules are also associated with insulin resistance and metabolic syndrome in
Non-DM and pre-DM individuals. We also show that metformin monotherapy was
associated with significantly lower levels of inflammatory molecules, like TNFα, sTNFRI,
and sTNFRII, when compared to other monotherapies. Longitudinal follow up indicates
a higher proportion of death occurs in individuals taking other monotherapies compared
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to metformin monotherapy. Together our finding shows that chronic inflammation is
present in healthy elderly individuals and exacerbated with diabetes patients. Likewise,
metformin could help target age-related chronic inflammation in general, and reduce the
predisposition to comorbidities and mortality.

Keywords: aging, diabetes, chronic inflammation, metabolic syndrome, insulin resistance, metformin

INTRODUCTION

Population aging has become a concern for both developed
and developing nations. The number of individuals over the
age of 60 was 900 million in 2015 and this number is
expected to rise to 2 billion by the year 2050, of which 80%
of this population will be living in middle and low-income
countries. This demographic change is a current challenge for
developed nations like Japan where 30% of the population
is over the age of 60 years (World Health Organization
[WHO], 2015). Aging is the main risk factor for developing
an age-related disease such as cancer, Alzheimer’s disease and
cardiovascular diseases (World Health Organization [WHO],
2011). Diabetes is one of the common diseases associated
with aging and its risk increases with age (Nguyen et al.,
2012). Type-2 Diabetes mellitus (T2DM) has a worldwide
impact, as the disease has contributed to 1.5 million deaths in
2012. The number of individuals having diabetes has increased
from 180 million in 1980 to 422 million in 2014 and its
prevalence has almost doubled from 4.7% in 1980 to 8.5%
in 2014 among adult population (World Health Organization
[WHO], 2016). One of the main issues with DM is the
collateral damages as shown by the increased prevalence of
conditions impairing kidney function, cardiovascular health, eye
sight and others.

One of the most common features of most age-related
comorbidities including diabetes and its complications is
the presence of low-grade chronic inflammation (Michaud
et al., 2013). The underlying sources for this inflammation
include chronic infection, immunosenescence and obesity
(Pawelec et al., 2014). Not enough has been done to identify
a common mechanism favoring the onset of age-related
chronic inflammation and its consequence, rather much focus,
and resources have been devoted to tackle individual age-
related comorbidities (Goldberg and Dixit, 2015). Chronic
inflammation is getting more attention as a possible player
in many metabolic conditions such as for insulin resistance

Abbreviations: Acar, acarbose; AGP, alpha-1 acid glycoprotein; Gl, glibenclamide;
Glip, glipizide; GLP-1, glucagon-like peptide-1; HDL, high-density lipoprotein;
Ins, insulin; LDL, low-density lipoprotein; MCH, mean corpuscular hemoglobin;
MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular
volume; MDC, macrophage-derived chemokine; Met, metformin; MIP-1d,
macrophage inflammatory protein-1 delta; MM9, matrix metalloproteinase 9;
MPV, mean platelet volume; OC, osteocalcin; OPG, osteoprotegerin; PDGF-
AA, platelet derived growth factor AA; Poly/Neu, polymorphs/neutrophils; PP,
pancreatic polypeptide; RBC, red blood cell; SAA, serum amyloid A; sE-
selectin, soluble E-selectin; sgp130, soluble glycol protein 130; sICAM-1, soluble
intracellular adhesion molecule-1; sIL-1RII, soluble interleukin-1 receptor II;
sTNFRI, soluble tumor necrosis factor receptor I; sTNFRII, soluble tumor necrosis
factor receptor II; sVCAM-1, soluble vascular cell adhesion molecule-1; TIMP-1,
tissue inhibitory of matrix metalloprotease; TNFα, tumor necrosis factor-alpha;
Tol, tolbutamide; TSH, thyroid stimulating hormone; WBC, white blood cell.

and this could impact future treatments. For instance, pro-
inflammatory cytokines like TNFα (Tumor Necrosis Factor α)
which concomitantly increase with adipose tissue accumulation
can have a systemic metabolic effect (Feinstein et al., 1993;
Hotamisligil et al., 1993).

As the aging process depends on many factors from
genetics to environment, identifying and targeting different
markers of aging vs. age-related diseases is crucial to identify
targets that promote healthspan. Pharmacological therapy
using known and safe drugs like metformin has become
one option (Valencia et al., 2017). Metformin is a glucose-
lowering drug that has been used for more than 60 years
(Bailey, 2017). This biguanide is the first-line treatment
against DM but possesses diverse pleiotropic properties. Animal
and clinical studies have suggested other beneficial effects
of metformin besides glucose control. Metformin decreases
inflammatory cytokines, such as TNFα, interleukin (IL)-6, and
IL-1, and the inflammatory response of macrophages and
induces the production of anti-inflammatory cytokines such
as IL-4 and IL-10 (Hyun et al., 2013; Cameron et al., 2016).
It also has a beneficial role in preventing DM (Diabetes
Prevention Program Research Group, 2015), decreases risk of
macrovascular disease and weight gain (Kooy et al., 2009),
anti-depressant effect (Guo et al., 2014), and decreases risk
of cognitive impairment (Ng et al., 2014). Beside preventing
age-related comorbidities metformin treatment increase healthy
lifespan in mice (Anisimov et al., 2011; Martin-Montalvo
et al., 2013) and in Caenorhabditis elegans (Cabreiro et al.,
2013; De Haes et al., 2014). This cumulative data on
the beneficial use of metformin has led to the upcoming
studies like the Veterans Affairs’ Investigation of Metformin
in Pre-Diabetes on Atherosclerotic Cardiovascular OuTcomes
(NCT02915198) which will assess the role of metformin in non-
diabetes individuals.

Aging and DM patients are both associated with increased
inflammation. As aging trajectories and DM management can
be quite heterogeneous, dissecting the inflammatory markers
in clinically stratified cohorts (by age and health status) would
help identifying the impact of age, disease and treatment in
the control of inflammation. Thus, our aim in this study
was to assess inflammation in participants of the Singapore
Longitudinal Aging Study stratified by age, diabetes status,
medication and taking other comorbidities in consideration.
The beneficial role of metformin treatment was tested for soft
(inflammation) and hard outcomes (mortality). Our data suggest
that DM patients taking metformin are significantly advantaged
at the inflammatory level and larger studies should confirm
data from our pilot study that metformin may ultimately reduce
mortality in DM patients.
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MATERIALS AND METHODS

Study Subjects
The elderly individuals of this study are part of the Singapore
Longitudinal Aging Study 2 (SLAS-2), which is an undergoing
population-based cohort intended to study the biology of
aging among Singaporean elderly individuals above the age of
55 years old. The SLAS-2 study measures different parameters
of 3270 elderly Singaporean. The participants were recruited
by a door to door census and only volunteer individuals
participated in the study. The response rate to participate
in the study was 78.5%. Volunteer participants completed a
range of tests and answered a series of interview questions
within 5–6 interview sessions. The interview includes socio-
demographic data (age, gender, ethnicity) medical history
(hospitalization, medical status, types of medication), physical
health (regular exercise, consumption of alcohol, cigarette
smoking habit) and nutritional intake. Whereas tests like
Boston Naming Test (BNT) and the revised Brief Visuospatial
Memory Test (BVMT-R) were used to assess cognitive function.
Standard physical examination (height, weight, waist and
hip ratio, body mass index) and tests like Performance-
Oriented Mobility Assessment (POMA), hand grip strength,
knee extension test were used to assess the function of the
body. Blood analysis (fasting blood glucose, blood count,
hematocrit level, albumin, creatinine, estimated glomerular
filtration rate) was done by taking a blood sample. Elderly
individuals physically incapable to participate in the study
and those individuals with mental disorders that could not
give informed consent were excluded from the study. The
study was approved by the National University of Singapore
Institutional Review Board, and all participants provided
written informed consent. The young control individuals were
recruited from the National University of Singapore and
any young individual with chronic disease, taking medication
or recently hospitalized was excluded from the study. The
detailed procedure and characteristic of the study cohort have
been previously described (Ng et al., 2009; Lu et al., 2016;
Valenzuela et al., 2017).

Operational Terms
Here for the purpose of this paper we use the following terms
to refer to the specific group, Young refers to individuals,
age between 18 and 29 years, who have no comorbidity
and do not take any medication, Healthy refers to elderly
individuals age range of 55–94 years old, who have no
comorbidity and do not take any medication. Non-Diabetes
(Non-DM) represent elderly individuals age range 55–94 years
old, who are non-diabetes but have at least one comorbidity
and take medication for a specific disease or diseases. Pre-
Diabetes (Pre-DM) represent elderly individuals, age range 55–
94 years old, who have fasting blood glucose between 5.6 and
6.9 mmol/L with no distinction based on co-morbidity. Diabetes
(DM) represents elderly individuals age range 55–94 years old,
those who have a confirmed case of diabetes and taking the
corresponding medication.

Exclusion Criteria
Diabetes patients with no clear anti-diabetes treatment were
not included in the study. Likewise, from the healthy group
individuals those under cholesterol-lower medication were
excluded despite the apparent normal cholesterol levels. Finally,
any individual that has a specific disease like hypertension and
heart disease but that does not take medication for the specific
disease was removed from the analysis. Individuals with severe
physical disabilities or severe to moderate cognitive impairment
(MMSE <19), were excluded from the analysis.

Serology
Blood samples were collected from overnight fasting individuals
in BD Vacutainer R© CPTTM Cell Preparation tubes with Sodium
Citrate (BD Biosciences, San Jose, CA, United States) and
centrifuged at 300 rcf for 20 min. Plasma samples were
collected and stored at −80◦C. Multiplex technology (Millipore
Corp., Billerica, MA, United States) was used according to
manufacturer’s instruction to measure 102 different human
chemokines and cytokines in young and old individuals. After
overnight incubation, the plates were read on a Flexmap 3D
instrument (Luminex Corporation, Austin, TX, United States),
and data were analyzed using Bioplex Manager 6.0 software
(Bio-Rad Laboratories, Hercules, CA, United States).

Fructosamine Measurement
The level of fructosamine was measured using nitro blue
tetrazolium (NBT) assay, performed in microplates. Twenty five
microliters of the sample was added to sodium carbonate
buffer (100 µl and 100 mM, pH 10.8) with nitro blue
tetrazolium (0.25 mM). Microplates were incubated for
15 min at 37◦C and measured spectrophotometrically against
controls at 550 nm after 10 and 15 min of incubation.
The difference between the two readings was used to
calculate the concentration. The fructosamine analog
DMF (dimethylformamide) was used as a standard. All
fructosamine measurements were performed in duplicate.
Standards and NBT reagent were made fresh every week
and stored at −20 and 4◦C, respectively (Baker et al., 1993;
Vlassopoulos et al., 2013).

Hematological Profile and General Blood
Profiling
White blood cell count, lymphocyte count, eosinophil
count, monocyte count, basophil count, RBC count,
platelet count, hematocrit, MPV, RBC distribution width,
mean cell hemoglobin (MCH), MCHC, and MCV were
obtained using a Beckman Coulter Hematology Analyzer
(Beckman Coulter, CA, United States). Serum levels of
glucose, creatinine, estimated glomerular filtration rate
(eGFR), triglyceride, total cholesterol, HDL cholesterol,
LDLs, cholesterol and ion concentration were measured
using standard laboratory procedures and techniques at the
National University Hospital Reference Laboratory (NUHS,
Singapore). HOMA2-IR C-peptide (Homeostasis Model
Assessment-Insulin Resistance C-peptide) was calculated using
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FIGURE 1 | Distribution of diabetes and other diseases in the SLAS cohort. (A) A pie chart indicating the percentage of the individual in each group. (B) Prevalence
of confirmed medical conditions in the SLAS cohort. Others indicate [skin disease (1.67%), Gout (1.67%) chronic obstructive Pulmonary Disease (0.76%), Parkinson
disease (0.3%), Anemia (1.2%), and Prostate cancer (1.07%)]. (C) Cases of metabolic syndrome in the four groups using the updated NCEPATP III [National
Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP III)] criteria. The Proportion of Metabolic syndrome within Healthy, Non-DM, Pre DM, and DM
group is 20, 62, 76.8, and 97.2%, respectively. (D) Age-dependent Prevalence of Diabetes, Hypertension, Heart Disease, High Cholesterol, and Metabolic Syndrome
in the SLAS cohort.

a fasting blood glucose and C-peptide level using software
developed by Diabetes Trials Unit, University of Oxford
(Diabetes Trials Unit, 2017).

Statistical Analysis
Data analysis was done using R Commander package from
R software (V3.3.2) and GraphPad Prism (V7.03). The data
was cleaned using Excel spreadsheet and subjects with missing
variables or those individuals with incomplete information were
removed from the analysis. The distribution of the data was
checked using Shapiro–Wilk test using R software (V3.3.2)
and means and Standard Deviation (SD) or median and
interquartile ranges were used to describe contentious data with

or without normal distribution, respectively, and percentage was
used for categorical data set. χ2 tests and Kruskal–Wallis tests
were used to compare categorical variables and quantitative
variables between groups, respectively. Principal Component
Analysis (PCA) was done by first converting the data set into
a logarithmic format (base 10 log was used) and using Facto
minor package of R software. Spearman correlation coefficient
was used to correlate measured cytokines with one another
and with insulin resistance. The ggplot2 package was used to
generate the volcano plots. A statistical test was done by first
running an unbiased comparison of all measured chemokines
and cytokines between young and the four different old groups
(Healthy, Non-DM, Pre-DM, and DM) using Mann–Whitney
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TABLE 1 | General socio-demographic characteristics.

Characteristic Healthy (n = 81) Non-DM (n = 299) Pre DM (n = 70) DM (n = 108) χ2 P-value

Age 65 (62–69) 66 (62–72) 67 (62–72.75) 66 (63–74) 2.5 0.47

Gender, female n (%) 45 (55.6) 187 (62.5) 38 (54.3) 70 (64.8) 3.3 0.35

BMI 24.6 (22.2–26.9) 24.6 (22.3–26.7) 24.9 (23.3–27.4) 25.5 (23–28.4) 7.2 0.064

Race

Chinese 71 (14.8) 265 (55.2) 61 (12.7) 83 (17.3)

Malay 8 (17) 23 (48.9) 7 (14.9) 10 (20.8) 21.5 0.0014

Indian ¬1 2 (6.9) 10 (34.5) 2 (6.9) 15 (51.7)

Smoking

Non/EX/smoker (n) 64/10/7 247/31/21 55/8/7 85/13/10 1.55 0.96

Non/EX/smoker (%) 79/12.3/8.6 82.6/10.4/7 78.6/11.4/10 78.7/12/9.3

ApoE-ε4 carrier, n (%) 11 (14.1) 56 (19.2) 10 (14.5) 6 (5.8)a 10.4 0.014

Glucose metabolism

HOMA2-IR C-peptide∗ 0.73 (0.53–0.9) 0.86 (0.64–1.1)b 1 (0.84–1.46)c,d 1.27 (0.94–1.90)a,e,f 84.5 2.2−16

Fasting glucose (mmol/L) 4.8 (4.6–5.1) 4.8 (4.5–5.1) 5.85 (5.7–6.2)c,d 7.2 (5.8–8.5)a,e,f 296 2.2−16

Fructosamine (NBT conc) 0.24 (0.23–0.27) 0.25 (0.23–0.27) 0.27 (0.24–0.28)c,d 0.29 (0.26–0.33)a,e,f 58.4 1.28−12

∗HOMA2-IR C-peptide (Homeostasis Model Assessment-Insulin Resistance C-peptide) was calculated using a fasting C-peptide and Fasting glucose level using a
software developed by Diabetes Trials Unit, University of Oxford (Diabetes Trials Unit, 2017). The HOMA2-IR is expressed in arbitrary units. For each measured parameter
the result in the table indicate a Median and interquartile range (IQR, 25–75th percentile) or number (%) as appropriate. Significant difference (P < 0.05) between two
groups is indicated by the symbols, aDM vs. Non-DM, bNon-DM vs. Healthy, cPre-DM vs. Healthy, dPre-DM vs. Non-DM, eDM vs. Healthy, and fDM vs. Pre-DM. Indian
have a significantly higher prevalence of diabetes when compared to Chinese (¬) and Malay (1) and no significant difference was observed between Chinese and Malay
on the prevalence of diabetes.

U-test, we then applied Bonferroni multiple testing correction
(0.05/102 = 4.9−04) and set the P-value 4.9−04 as a cut
of P-value and molecules that showed a P-value less than
4.9−04 were considered as statistically significant. In similar
fashion, we used Kruskal–Wallis test to compare all measured
molecules in an unbiased manner between the four different
old groups (Healthy, Non-DM, Pre-DM and DM) and then
applied Bonferroni multiple testing correction and molecules
that showed a P-value less than 4.9−04 were considered as
statistically significant. For further downstream comparison
of those molecules that pass the Bonferroni multiple testing
correction a P-value <0.05 with a two-side distribution was
considered as statistically significant. The survival data was
analyzed using GraphPad prism and fisher exact test or χ2

test was used depending the number of cases in each group.
The odds ratio and confidence interval was also generated
using GraphPad prism.

RESULTS

Socio-Demographic Characteristics and
Clinical Determinants of DM
In this study we have stratified the elderly group in order to
identify the healthiest vs. individuals with diabetes with/without
comorbidities. We arbitrary used the term “healthy aging” for
elderly individuals with no major morbidity (Lara et al., 2015)
and “unhealthy aging” for elderly individuals with comorbidities.
We used medical history, clinical data, structured questionnaires,
and measured biological parameters to subdivide our cohort
(n = 930) into four groups as, confirmed cases of DM patients
(DM), non diabetes individuals having no comorbidity (Healthy),

non diabetes individuals having at least one comorbidity (Non-
DM), and pre-diabetes individuals with fasting blood glucose
between 5.6 and 6.9 mmol/L (Pre-DM) as detailed in the
Section “Materials and Methods” of the manuscript (Figure 1A).
A group of young individuals with no history of diabetes
was also included.

Hypertension (49.6%), hypercholesterolemia (47%), and DM
(16.6%) represent the three prevalent conditions in our cohort
(Figure 1B and Supplementary Table 1) and the occurrence
of this disease gradually increase along with age (Figure 1D).
Our analysis also demonstrates the incremental prevalence of
metabolic syndrome (MS) from Healthy to Non-DM, Pre-DM,
and DM individuals (Figure 1C). We then matched age, sex
and BMI in the four groups and found the genetic background
to be associated with differential prevalence. Indians have a
higher prevalence of diabetes (P < 0.05) compared to both
Chinese and Malays (Table 1) which is concurrent with a
previous report in Singapore (Chiang et al., 2011). There was no
significant difference between the four groups on smoking status
but significantly low (P < 0.05) ApoE-ε4 (Apolipoprotein E-ε4)
carrier status was found in DM groups compared to the three
other old groups (Table 1). A high proportion of individuals in
the DM group take lipid-lowering drugs which is reflected in the
amount of total cholesterol and LDL (Table 2, P < 0.001). While
HDL levels are lower in the DM group, lipid-lowering drugs
tend to improve the LDL/HDL ratio. The liver function tests
used, ALT/GPT (Alanine aminotransferase/Glutamic-Pyruvate
Transaminase) and AST (Aspartate aminotransferase) do not
show a significant difference between the four groups. The
hematological parameters show significantly higher (P < 0.05)
count of circulating WBC, lymphocyte, monocyte, eosinophil,
and significantly lower (P < 0.05) level of Hematocrit and MCV
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TABLE 2 | Basic clinical of participants.

Characteristic Healthy (n = 81) Non-DM (n = 299) Pre DM (n = 70) DM (n = 108) χ2 P-value

Markers of lipid profile

Lipid-lowering drug n (%) 0 (0) 165 (55.2)d 22 (31.4)b,e 88 (81.5)a,c,f 2.20−16

Triglycerides (mmol/L) 1.16 (0.89–1.5) 1.24 (0.9–1.6) 1.26 (0.91–1.9) 1.42 (1–1.8)a,f 8.1 0.044

Total cholesterol (mmol/L) 5.45 (5–6.1) 4.99 (4.4–5.7)d 5.39 (4.7–5.9)b 4.33 (3.8 – 5.0)a,c,f 72.1 1.51−15

HDL-C (mmol/L) 1.41 (1.3–1.6) 1.40 (1.2–1.6) 1.36 (1–1.6) 1.19 (1.0–1.4)a,c,f 7.89 3.8−06

LDL-Cholesterol (mmol/L) 3.4 (2.9–4) 2.9 (2.4–3.5)d 3.2 (2.6–3.8)b 2.35 (1.9–2.8)a,c,f 83.45 2.2−16

Cholesterol HDL-C ratio 3.9 (3.4–4.3) 3.49 (2.9–4.3)d 3.81 (3.3–4.7)b 3.58 (3–4.1)c,f 14.9 0.0019

Liver function test

ALT/GPT (µIU/mL) 811.3 (19.8–1394) 758 (19.6–1400) 758.4 (52–1329) 817.2 (50.9–1400) 0.604 0.89

AST (mU/mL) 52 (28–74) 52 (34–77) 48.8 (29.4–77.6) 50.5 (33.7–65.8) 0.72 0.86

Kidney function test

Creatinine (µmol/L) 58.5 (49–73.3) 66 (55–79.5) 64.5 (57–76.5) 66 (51–85) 7.07 0.07

eGFR, MDRD formula 98 (87–110.6) 87.7 (74–101.9)d 89 (80.5–103) 84 (65.4–108)c 15.7 0.0012

Thyroid function tests

TSH (µIU/mL) 2.9 (1.9–3.8) 2.8 (2–4.2) 2.5 (1.7–3.6) 3.6 (2.3–4.7)a,c,f 13.6 0.0034

Free T3 (pg/mL) 1.8 (1.5–2) 1.8 (1.5–2.1) 1.9 (1.5–2.2) 1.9 (1.5–2.2) 1.98 0.57

Free T4 (ng/dL) 1.3 (1.1–1.6) 1.3 (1.2–1.6) 1.3 (1.1–1.5) 1.38 (1.2–1.6) 2.8 0.42

Ion concentration

Anion Gap (mmol/L) 14 (12–15) 13 (12–15) 14 (12–15.7) 14 (12–16) 5.91 0.116

Chloride (mmol/L) 105 (104–106) 105 (103–107) 104 (102–106)b 104 (102–106)a,c 13.19 0.0042

Sodium (mmol/L) 142 (141–143) 142 (141–143) 142 (141–143) 141 (140–142.5)a,c 18.5 0.0003

Potassium (mmol/L) 4.4 (4–4.7) 4.4 (4–4.7) 4.25 (4–4.6) 4.5 (4.1–4.8) 6.42 0.093

Hematological parameters

WBC (×10ˆ9/L) 5.7 (4.9–6.8) 5.9 (4.9–7) 6 (5.5–7.3)e 6.6 (5.4–7.8)a,c 16.4 0.0009

Lymphocytes (abs ×10ˆ9/L) 2 (1.6–2.4) 2 (1.6–2.3) 2 (1.7–2.6) 2.2 (1.8–2.6)a,c 11.18 0.011

Monocytes (abs ×10ˆ9/L) 0.41 (0.35–0.49) 0.43 (0.35–0.51) 0.45 (0.37–0.54)e 0.47 (0.39–0.59)a,c 11.07 0.011

Poly/Neu (abs ×10ˆ9/L) 3.1 (2.6–3.8) 3.2 (2.6–3.9) 3.3 (2.6–4.4) 3.6 (2.9–4.3)a,c 9.97 0.019

Eosinophils (abs ×10ˆ9/L) 0.15 (0.12–0.28) 0.17 (0.11–0.27) 0.18 (0.1–0.32) 0.2 (0.13–0.44)a,c 8.54 0.034

Basophils (abs ×10ˆ9/L) 0.03 (0.02–0.05) 0.03 (0.02–0.05) 0.03 (0.02–0.05) 0.04 (0.025–0.06) 2.83 0.42

RBC (×10ˆ12/L) 4.5 (4.3–4.9) 4.5 (4.2–4.8) 4.6 (4.3–5) 4.5 (4–4.8) 5.88 0.12

Hematocrit (%) 41.3 (39.6–43.8) 40.9 (38.3–43.8) 41.7 (38.9–44.7) 39.4 (36–42)a,c,f 21.9 6.7−05

MPV (fL) 10.5 (9.9–10.9) 10.4 (9.9–10.9) 10.7 (10.3–11.1) 10.5 (9.9–11) 7.03 0.071

RBC distribution width (%) 13.2 (12.7–14) 13.3 (12.8–13.9) 13.3 (12.9–14) 13.4 (12.7–14.4) 1.44 0.69

MCH (pg) 30.1 (29.2–30.9) 30 (29–31) 30 (29–31) 29.8 (28.5–30.9) 5.31 0.15

MCHC (g/dl) 32.8 (32.3–33.3) 32.8 (32.3–33.5) 32.7 (32.2–33.6) 33 (32.3–33.7) 1.26 0.74

MCV (fL) 91.9 (89–94) 91.6 (88.8–94) 90.5 (88.8–94) 89.4 (86.5–92.8)a,c,f 15.6 0.0013

Platelets (×10ˆ9/L) 233 (206–286) 245 (210–279.7) 244.5 (214–283) 255 (224–297) 5.86 0.12

Significant difference (P < 0.05) between two groups is indicated by the symbols, aDM vs. Non-DM, bPre-DM vs. Non-DM, cDM vs. Healthy, dNon-DM vs. Healthy,
ePre-DM vs. Healthy, and fDM vs. Pre-DM. For each measured parameter the result in the table indicate a Median and interquartile range (IQR, 25–75th percentile) or
number (%) as appropriate (Poly/Neu, polymorphs/neutrophils).

in DM group compared to the other three old groups (Table 2),
also concurring with a previous study (Zhang et al., 2017). This
may suggest a dysregulated immune homeostasis with diabetes.

Inflammation in Aging Occurs
Independently of Diabetes
In order to further investigate the inflammatory process
accompanying aging, we first compared the measured
inflammatory molecules between the four groups of elderly
and young healthy individuals. we measured different molecules
including pro-inflammatory molecules like TNFα, IL-6,
MIP-1d, anti-inflammatory molecules including IL-10 and

TGFb1 (Transforming Growth Factor 1), soluble adhesion
molecules like sICAM-1, sE-selectin, sVCAM-1 molecules that
regulate extracellular matrix proteins like MMP and TIMP,
and molecules indicative of pathological condition like TSH
(Thyroid-stimulating hormone). These and other measured
molecules give an overview of general health and inflammatory
status of an individual. Unbiased analysis of all measured
molecules using Principal Component Analysis (PCA) showed
separation between young individuals and the four old groups
(Figures 2A–D). Whereas no clear separation was found between
the four old groups (Supplementary Figures 1A–F). Looking at
individual molecules we show a significantly higher (P < 0.001)
amount of sTNFRII, sICAM-1, and TIMP-1 (Tissue inhibitory
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FIGURE 2 | Higher level of the inflammatory molecules with aging. Unbiased analysis of all measured cytokines and chemokines using Principal Component Analysis
(PCA) shows a clear separation between Young vs. Healthy (A), Young vs. Non-DM (B), Young vs. Pre DM (C), and Young vs. DM (D). Individual comparison of
major cytokines shows a significant difference (P < 0.05) between Young vs. healthy for TIMP-1 (E), sTNFRII (F), sICAM-1 (G), and TNFα (H). P-values were
calculated using non-parametric Mann–Whitney U-test and adjusted for Bonferroni multiple test correction (∗∗∗∗P < 0.0001).

Metalloproteinase protein-1) in healthy elderly compared to
young individuals. This indicates aging by itself without any
comorbidity to be accompanied with an increased level of
inflammatory biomarkers (Figures 2E–H). These molecules
also correlate with one another much strongly (P-value <0.05
for most correlations) in older individuals compared to young
individuals (Supplementary Tables 2, 3). This strong correlation
of inflammatory biomarkers suggests the formation of a
pro-inflammatory network that could associate with loosen
balance between pro-inflammatory and anti-inflammatory
molecules in disease-free aging (Supplementary Figure 4)
(Franceschi et al., 2007).

Inflammation in DM and Metabolic
Syndrome in Aged Individuals
We further compared the level of inflammatory biomarkers
between the four groups and find a high level of these
molecules in DM individuals. Significantly high level (P < 0.05)
of metabolic molecules like PP and C-peptide as well as
inflammatory biomarkers like TNFα, sTNFRll, sICAM-1, TIMP-
1, eotaxin, and sE-selectin were observed in DM group compared

to the other groups (Figures 3A–D and Supplementary
Figures 2A,B). Pre-DM individuals showed significantly high
(P < 0.05) level of sICAM-1 when compared to Non-DM
and Healthy old individuals (Figure 3D and Supplementary
Figure 2D). On the other hand, Healthy old individuals
have a significantly lower level (P < 0.05) of inflammatory
markers compared to the three other groups (Figures 3B–D
and Supplementary Figures 2B,C,E) indicating healthy aging
as defined by clinical phenotype to be matched by biological
(inflammatory) readouts.

Metabolic syndrome is a medical condition that predisposes
individuals to diabetes and atherosclerotic cardiovascular disease
(National Institutes of Health, 2002) whereas insulin resistance
leads to a progressive development of diabetes (Taylor, 2012).
Here we show that inflammatory biomarkers sTNFRII, sICAM-
1 and TIMP-1 significantly (P < 0.05) correlate with insulin
resistance in Healthy, Non-DM, and Pre-DM individuals
indicating early chronic inflammation could be associated
with the development of diabetes (Figures 4A–C). By using
the updated NCEPATP III criteria (Grundy et al., 2005),
we divide each group (except for DM group as almost all
have metabolic syndrome, Figure 1C) based on presence or
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FIGURE 3 | Increased inflammatory molecules in Diabetes individuals. (A) A representative Volcano plot comparing all measured molecules between DM and
Non-DM individuals, red labeled dots indicate a significant difference (P < 0.05) between the two groups. Cytokine comparison between the four groups show
significantly high (P < 0.05) level in DM individuals for TIMP-1 (B), sTNFRII (C), and sICAM-1 (D). The volcano plot was done by first taking the Fold change (which
was calculated by dividing the average value of each molecule in DM and Non-DM individuals) and then using the log2 fold change against the –log10 P-value of
each molecule. P-values were calculated using non-parametric Kruskal–Wallis test and Mann–Whitney U-test for comparing for more than two groups and for
comparing between two groups, respectively, then adjusted for Bonferroni multiple test correction (ns P > 0.05, ∗P <0.05, ∗∗P < 0.01, ∗∗∗P < 0.001,
∗∗∗∗P < 0.0001).

absence of metabolic syndrome. We find that individuals having
metabolic syndrome in Non-DM and in Pre-DM group have
a significantly higher (P < 0.05) level of sTNFRII, sICAM-
1, and TIMP-1 (Figures 4D–F). No significant difference was
observed in the Healthy group which may be due to low number

of individuals having metabolic syndrome in this group. We
further divided the five components of metabolic syndrome
(abdominal obesity, high Fasting blood glucose, high blood
pressure, increased triglyceride, and decrease in HDL cholesterol
concentration) and in most cases the accumulation of these
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FIGURE 4 | Correlation and association of inflammatory markers with insulin resistance and metabolic syndrome. Inflammatory molecules correlate with an increase
in the level of insulin resistance. The green dot indicates Healthy, black circles indicate Non-DM and red dots indicate Pre DM individuals, r indicates Spearman’s rho
(A–C). Individuals having metabolic syndrome have a higher level of inflammatory biomarkers (D–F). P-values were calculated using non-parametric Mann–Whitney
U-test for comparing between two groups and spearman correlation test was used to correlate inflammatory molecule with insulin resistance (ns P > 0.05,
∗P <0.05, ∗∗P < 0.01, ∗∗∗P < 0.001).

components associated with a higher level of sTNFRII, sICAM-1
and TIMP-1 (Table 3).

Metformin Reduces Inflammation and
Mortality in DM Patients Compared to
Other Monotherapies
The recent interest in metformin as a potential drug to
reduce the prevalence of age-related diseases led us to test
whether DM patients benefit from the suggested pleiotropic
effects of metformin. Metformin monotherapy and glipizide
are the two most commonly prescribed monotherapies in our
cohort, accounting for 40.4% (57/141) and 8.5% (12/141),
respectively, while 25.5% (36/141) of DM patients were
under combined metformin and glipizide therapy (Figure 5A).
Elderly DM individuals taking metformin monotherapy showed
significantly (P < 0.05) lower level of sTNFRII, TNFα and
of sTNFRI when compared to elderly individuals under
glipizide monotherapy and all other monotherapies (Figure 5).
Likewise, other molecules including C-peptide, resistin, and
C-cystatin also showed significantly lower levels (P < 0.05) in
diabetes individuals taking metformin monotherapy compared
to those that are under Glipizide monotherapy (Supplementary
Figure 3). As uncontrolled blood glucose is associated with
inflammation we have looked for the level of blood glucose

between metformin and other monotherapies and confirmed that
individuals under metformin monotherapy have significantly
lower (P < 0.05) level of fasting blood glucose and HOMA2-
IRC−Peptide (Figures 5B,C). We validate the effect of metformin
monotherapy over glipizide monotherapy by taking individuals
that took the combination of both medications. Diabetes patients
taking the combination of metformin and glipizide treatment
show a similar trend as those under metformin monotherapy
(Figures 5B–D) indicating the anti-inflammatory effects of
metformin consumption in elderly DM individuals.

Five-year follow-up mortality data suggest a trend for DM
to be associated with higher mortality risks: DM individuals
(7.6%) as compared to Healthy (3.3%), Non-DM (4.3%), and
pre-DM (6.2%) individuals (Table 4). As our cohort is not
powered enough to conclude significantly on this we analyzed the
mortality within the DM group. Despite an even smaller number
of individuals included in the analysis, the proportion of death
that occurred in DM individuals taking metformin monotherapy
was 2.4% whereas the proportion of death in DM individuals
taking non-metformin monotherapy was 19% [OR = 9.4, CI
(1.32–117.4), P-value 0.041]. There was no significant difference
in the age between the two diabetes treatment groups (Table 4).
There was a significant difference (P < 0.05) when we compared
the age of healthy individuals with diabetes patients taking
metformin or other treatments (Table 4). We did not find
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TABLE 3 | Inflammatory profile in components of metabolic syndrome.

Cytokines No MSC (n = 14) 1MSC (n = 29) 2MSC (n = 20) 3MSC (n = 10) 4MSC (n = 6) 5MSC χ2 P-value

sICAM-1 (µg/mL) 0.079 0.078 0.101 0.086 0.105 – 8.41 0.08

Healthy sTNFRII (ng/mL) 1.375 1.252 1.483 1.141 1.378 – 3.75 0.44

TIMP-1 (µg/mL) 0.235 0.226 0.24 0.212 0.243 – 5.60 0.23

Cytokines No MSC (n = 11) 1MSC (n = 42) 2MSC (n = 58) 3MSC (n = 91) 4MSC (n = 93) 5MS χ2 P-value

sICAM-1 (µg/mL) 0.082 0.074 0.082 0.094 0.091 – 9.99 0.04

Non-DM sTNFRII (ng/mL) 1.2 1.3 1.3 1.4 1.6 – 14.83 0.01

TIMP-1 (µg/mL) 0.22 0.23 0.23 0.24 0.25 – 10.44 0.03

Cytokines No MSC 1MSC (n = 2) 2MSC (n = 14) 3MSC (n = 19) 4MSC (n = 14) 5MSC (n = 20) χ2 P-value

sICAM-1 (µg/mL) – 0.104 0.095 0.126 0.133 0.107 4 0.41

Pre DM sTNFRII (µg/mL) – 0.79 1.28 1.37 1.45 1.72 13 0.01

TIMP-1 (µg/mL) – 0.19 0.24 0.24 0.25 0.27 11 0.026

MSC (Metabolic Syndrome Component) indicated on the table are Abdominal obesity, High Fasting blood glucose, High Blood pressure, Increased triglyceride, and
decrease in high-density lipoprotein cholesterol concentration.

FIGURE 5 | Metformin decrease TNFα associated Systemic Inflammatory molecules. (A) Venn diagram [made using online free software (Bioinformatics and
Evolutionary Genomics, 2017)] indicates the combination of drug used for a total of 140 diabetes patients (1 patient take a combination of gliclazide and diabetin is
not included in the Venn diagram). Comparison of DM patients with different treatments for fasting blood glucose (B), HOMA2-IRC−peptide (C), sTNFRII (D), sICAM-1
(E), TIMP-1 (F), TNFα (G), and sTNFRI (H). P-values were calculated using non-parametric Kruskal–Wallis test and Mann–Whitney U-test was used for comparing
more than two groups and between two groups, respectively (ns P > 0.05, ∗P < 0.05, ∗∗P < 0.01,∗∗∗P < 0.001,∗∗∗∗P < 0.0001). Acar, acarbose; Glip, glipizide;
Gl, glibenclamide; Ins, Insulin; Tol, tolbutamide; Met, metformin.
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TABLE 4 | Five-years follow up survival data.

Diabetes treatment Age (year) x (SD) Alive n (%) Dead n (%) OR 95% CI P-value

Metformin (n = 41) 68 (7) 40 (97.6) 1 (2.4) 9.4 (1.32–117.4) 0.041

Non Met drugs (n = 21) 70 (7.4) 17 (81) 4 (19)

Metformin (n = 41) 68 (7) 40 (97.6) 1 (2.4) 1.37 (0.17–16.5) 0.9

Healthy (n = 151) 63 (5.8) 146 (96.7) 5 (3.3)

Metformin (n = 41) 68 (7) 40 (97.6) 1 (2.4) 1.8 (0.29–19.5) 0.9

Non-DM (n = 370) 69 (7.8) 354 (95.7) 16 (4.3)

Metformin (n = 41) 68 (7) 40 (97.6) 1 (2.4) 2.6 (0.37–31.7) 0.662

Pre DM (n = 81) 68 (7.8) 76 (93.8) 5 (6.2)

Non-MET Drugs (n = 21) 70 (7.4) 17 (81) 4 (19) 0.14 (0.04 – 0.52) 0.014

Healthy (n = 151) 63 (5.8) 146 (96.7) 5 (3.3)

Non-MET Drugs (n = 21) 70 (7.4) 17 (81) 4 (19) 0.19 (0.06–0.57) 0.017

Non DM (n = 370) 69 (7.8) 354 (95.7) 16 (4.3)

Non-MET Drugs (n = 21) 70 (7.4) 17 (81) 4 (19) 0.28 (0.07–1) 0.083

Pre DM (n = 81) 68 (7.8) 76 (93.8) 5 (6.2)

a significant difference in mortality rate between metformin
monotherapy with Healthy, Non-DM, and Pre-DM individuals
but there was a significant difference (P < 0.05) when we compare
the Healthy and Non-DM groups with diabetes patients taking
non-metformin monotherapy (Table 4). This suggests metformin
to lower the mortality risk of DM individuals to the level of
individuals without confirmed diabetes.

DISCUSSION

Inflammation and metabolism are parts of the seven pillars of
aging, however, identifying how deregulation in metabolism may
alter the inflammatory process remains one of the important
questions to be answered in the field (Kennedy et al., 2014).
In the present study by including healthy young individuals as
control we showed that what is considered as healthy aging
(absence of apparent comorbidity) and especially unhealthy
aging are accompanied by an increased level of circulating pro-
inflammatory molecules (Catania et al., 1997; Bruunsgaard et al.,
1999). We further stratified the old cohort into four groups
(Healthy, Non-DM, Pre-DM, and DM) and showed that the
presence of comorbidities itself were associated with an even
higher burden of inflammation (Butcher et al., 2014).

The main inflammatory biomarkers shown to increase with
age TIMP1, sTNFRII and sICAM1 are even present at a higher
level in diabetes patients. The role of the sTNFRI/II is not
fully understood but is known to block TNFα by forming
a complex and competing with membrane TNFRs (Van Zee
et al., 1992). Thus, the level of the soluble receptors indicate
the level or degree of activation of the TNF pathway (Diez-
Ruiz et al., 1995) and imbalance between the soluble receptors
and TNFα may result in different clinical outcomes (Aderka,
1996). Similarly to ours, previous studies have reported an
increase in the level of sTNFRll in diabetes patients compared
to controls (Plomgaard et al., 2007) and being predictive
of the most important complications of diabetes including
nephropathies (Sharma et al., 2015; Carlsson et al., 2016) and

heart failures (Ping et al., 2017). sICAM-1 represent a circulating
form of ICAM-1 (CD54) that bind to lymphocyte function-
associated antigen (LFA-1) and was associated with different
pathological conditions (Witkowska and Borawska, 2004). The
presence of sICAM-1 in most of the significant comparisons we
performed suggests that inflammation in diabetes is also linked
to some form of endothelial dysfunction. TIMP-1 is a broad
spectrum natural inhibitor of different matrix metalloproteinases
(MMPs) including MMP-9 which are involved in modulating
the extracellular matrix (Brew and Nagase, 2010). A previous
study has shown that levels of TIMP-1 increase with age and also
increases the risk of heart disease (Sundstrom et al., 2004). TNFα

induces the release of sICAM-1 in a MMP-9 dependent manner
(Tsai et al., 2014). These interactions between TNFα, sICAM,
MMPs and TIMP-1 could explain our findings concerning
the concomitant increased level of these molecules in elderly
individuals as well in individuals with diabetes. Furthermore, we
have also observed a strong correlation between levels of TIMP1,
sTNFRl, sTNFRll, TNFa and sICAM1 in elderly individuals
compared to young individuals.

As most these molecules are part of the TNFα system it
could indicate the formation of a strong pro-inflammatory
network at an older age. As diabetes was also associated with
TNF family upregulation it is likely that different sources of
dysregulation may lead to ultimately modulate the TNF pathway.
One study has shown an increased level of TNFα, sTNFRl,
and sTNFRll associated with frailty and decrease in mobility
in elderly women (Langmann et al., 2017). A similar finding
was observed in elderly individuals with dementia where an
increased level of TNFα molecule was positively correlated
with sTNFRII, IL-6, and C-Reactive Protein (Bruunsgaard
et al., 1999; Maggio et al., 2006; Rea et al., 2018). We even
demonstrate the co-existence of this pro-TNF inflammatory state
in individuals with metabolic syndrome and insulin resistance.
Taken together with other studies this collectively suggests
the shedding of TNFR and ICAM in some of the major
comorbidities and syndrome of older adults (Fernandez-Real
et al., 2002; Winkler et al., 2002). Moreover, an increased
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sICAM-1 activity was shown to correlate with an increased
activity of sTNFRII and TNFα (Straczkowski et al., 2002). We
also showed that individuals with metabolic syndrome have
a higher level of TIMP1 and similar results were reported
elsewhere (Papazoglou et al., 2010; Hopps et al., 2013). These
data suggest the importance to consider the presence or
absence of metabolic syndrome when interpreting data relating
to inflammaging.

The United Kingdom Prospective Diabetes Study has shown
obese diabetes patients under metformin monotherapy to
have a lower rate of all-cause mortality as well as diabetes-
related mortality when compared to those treated with other
monotherapy or undergoing conventional treatment (UK
Prospective Diabetes Study Group, 1998). Similarly, newly
diagnosed diabetes patients that take metformin monotherapy
or in combination with sulfonylurea show a reduced mortality
rate due to all-causes as well as cardiovascular associated death
compared to diabetes patients under sulfonylurea treatment
(Johnson et al., 2002). In line with previous reports, another
important finding of our study is the low level of mortality
rate in individuals taking metformin monotherapy compared to
other diabetes treatment. It is of note that the study population
consisted of elderly individuals exhibiting other comorbidities.
Still, metformin in diabetes elderly individuals show significant
effect in this pilot study. This can be partly explained by
the observed effect of metformin in lowering inflammation.
In this context, previous studies have shown an association
between all-cause mortality and baseline sTNFRI levels (Luna
et al., 2013) and increased level of both sTNFRI and sTNFRII
predict the risk of mortality due to chronic kidney disease and
cardiovascular events (Neirynck et al., 2015; Carlsson et al.,
2016; Gohda et al., 2017). TIMP1 was also shown to be a
good predictor of all-cause mortality in a 10 year follow up
study (LaRocca et al., 2017). Altogether, this provides more
supporting data for the potential repurposing of metformin
to reducing the burden of age-related diseases. This could be
achieved by targeting inflammation as one of the pleiotropic
effects of metformin.

Some factors influencing inflammation and the concept of
inflammaging have not been tested in this study. One typical
example could be the presence of persistent chronic infection
such as cytomegalovirus which alters immune cell homeostasis
and inflammation (Fulop et al., 2013). Another limitation of our
study is the sample size of DM individuals taking the various
treatments. Additionally, our cohort was separated in young and
elderly individuals while evidence show the role of biological
age in driving the organism to differential clinical trajectories
(Belsky et al., 2015). Biological age is often related to physical
functions and basic clinical/biological markers of physiological
functions and in our study we have stratified individuals based
on diabetes but also comorbidities. We observed that the
heterogeneity in inflammatory marker levels could be reduced
by such stratification. The pro-inflammatory phenotype was
more pronounced in DM individuals under other therapy than
metformin. Inflammation was incremental in the following
sequence: Young → Healthy elderly → Non-DM = DM with
metformin → Pre-DM → DM without metformin. Studies

are required to validate the impact of metformin on mortality
and identify the mechanisms behind this effect. We propose
inflammation as one the processes regulated by metformin
through a better control of glucose.

In summary, our study showed the importance of stratification
by clinical phenotypes to understand the contribution and role
of inflammation in old age. The further stratification by
drug usage suggests metformin to be a potential mean of
intervention for achieving healthspan by decreasing the
inflammatory burden associated with the various age-related
pathological conditions. As metformin was not able to restore
inflammatory molecules to the level found in young individuals,
it is suggested that age-related inflammation, i.e., inflammaging,
cannot be targeted by the pathways linked to metformin
consumption. It is also plausible that the aging organism
sustains the low-grade inflammation, despite metformin or
other drugs, as it may have beneficial effects. While chronic
inflammation in pathological conditions has been shown to
be often detrimental to the individual, more efforts should
made to investigate whether inflammaging, as an adaptation
to avoid maladaptation of other systems. Understanding
the pleiotropic effects of other drugs widely used in the
elderly population could help better understand and target
inflammation, this applies to cholesterol lowering drugs and
anti-hypertension drugs. The same applies to promising
compounds and associated pathways with an anti-aging
potential such as rapamycin (mTOR) and nicotinamide
riboside (Sirtuins).

ETHICS STATEMENT

The study was approved by the National University of Singapore
Institutional Review Board, and all participants provided written
informed consent.

AUTHOR CONTRIBUTIONS

AT contributed to the conceptualization of the study, analyzed
the data, interpreted the data, and wrote the manuscript. KS,
EM, CX, JC, CT, and WH measured and organized the Luminex
data. OC set-up and helped with the Luminex experiments.
SH supervised the study. EC measured the Fructosamine. TF
gave intellectual advice on the analysis, interpretation of the
data, and contributed to writing the manuscript. TN and MN
coordinated and collected the data from the SLAS-2 cohort.
AL conceptualized the study, supported the data analysis,
supervised the study, interpreted the data, and contributed to
writing the manuscript.

FUNDING

This study was supported by the A∗STAR Joint Council Office
(Grant #1434M00115). This study was performed with the
support of SIgN Immunomonitoring Platform (BMRC IAF
311006 grant and BMRC transition funds #H16/99/b0/011).

Frontiers in Physiology | www.frontiersin.org 12 May 2019 | Volume 10 | Article 572

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00572 May 20, 2019 Time: 17:6 # 13

Tizazu et al. Metformin Monotherapy Regulates Inflammatory Status

ACKNOWLEDGMENTS

AT is very grateful to A∗STAR-SINGA (Singapore International
Graduate Award) Ph.D. scholarship in collaboration with the
National University of Singapore.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphys.
2019.00572/full#supplementary-material

REFERENCES
Aderka, D. (1996). The potential biological and clinical significance of the soluble

tumor necrosis factor receptors. Cytokine Growth Factor Rev. 7, 231–240.
doi: 10.1016/s1359-6101(96)00026-3

Anisimov, V. N., Berstein, L. M., Popovich, I. G., Zabezhinski, M. A., Egormin,
P. A., Piskunova, T. S., et al. (2011). If started early in life, metformin treatment
increases life span and postpones tumors in female SHR mice. Aging 3, 148–157.
doi: 10.18632/aging.100273

Bailey, C. J. (2017). Metformin: historical overview. Diabetologia 60, 1566–1576.
doi: 10.1007/s00125-017-4318-z

Baker, J. R., Zyzak, D. V., Thorpe, S. R., and Baynes, J. W. (1993). Mechanism
of fructosamine assay: evidence against role of superoxide as intermediate in
nitroblue tetrazolium reduction. Clin. Chem. 39, 2460–2465.

Belsky, D. W., Caspi, A., Houts, R., Cohen, H. J., Corcoran, D. L., Danese, A., et al.
(2015). Quantification of biological aging in young adults. Proc. Natl. Acad. Sci.
U.S.A. 112, E4104–E4110. doi: 10.1073/pnas.1506264112

Bioinformatics and Evolutionary Genomics (2017). Calculate and Draw Custom
Venn Diagrams. Available at: http://bioinformatics.psb.ugent.be/webtools/
Venn/

Brew, K., and Nagase, H. (2010). The tissue inhibitors of metalloproteinases
(TIMPs): an ancient family with structural and functional diversity. Biochim.
Biophys. Acta 1803, 55–71. doi: 10.1016/j.bbamcr.2010.01.003 doi: 10.1016/j.
bbamcr.2010.01.003

Bruunsgaard, H., Andersen-Ranberg, K., Jeune, B., Pedersen, A. N., Skinhoj, P.,
and Pedersen, B. K. (1999). A high plasma concentration of TNF-alpha is
associated with dementia in centenarians. J. Gerontol. A Biol. Sci. Med. Sci. 54,
M357–M364.

Butcher, M. J., Hallinger, D., Garcia, E., Machida, Y., Chakrabarti, S., Nadler,
J., et al. (2014). Association of proinflammatory cytokines and islet resident
leucocytes with islet dysfunction in type 2 diabetes. Diabetologia 57, 491–501.
doi: 10.1007/s00125-013-3116-5

Cabreiro, F., Au, C., Leung, K. Y., Vergara-Irigaray, N., Cocheme, H. M., Noori, T.,
et al. (2013). Metformin retards aging in C. elegans by altering microbial folate
and methionine metabolism. Cell 153, 228–239. doi: 10.1016/j.cell.2013.02.035

Cameron, A. R., Morrison, V. L., Levin, D., Mohan, M., Forteath, C., Beall, C., et al.
(2016). Anti-inflammatory effects of metformin irrespective of diabetes status.
Circ. Res. 119, 652–665. doi: 10.1161/CIRCRESAHA.116.308445

Carlsson, A. C., Ostgren, C. J., Nystrom, F. H., Lanne, T., Jennersjo, P., Larsson,
A., et al. (2016). Association of soluble tumor necrosis factor receptors 1 and 2
with nephropathy, cardiovascular events, and total mortality in type 2 diabetes.
Cardiovasc. Diabetol. 15:40. doi: 10.1186/s12933-016-0359-8

Catania, A., Airaghi, L., Motta, P., Manfredi, M. G., Annoni, G., Pettenati, C., et al.
(1997). Cytokine antagonists in aged subjects and their relation with cellular
immunity. J. Gerontol. A Biol. Sci. Med. Sci. 52, B93–B97.

Chiang, P. P., Lamoureux, E. L., Cheung, C. Y., Sabanayagam, C., Wong, W., Tai,
E. S., et al. (2011). Racial differences in the prevalence of diabetes but not
diabetic retinopathy in a multi-ethnic Asian population. Invest. Ophthalmol.
Vis. Sci. 52, 7586–7592. doi: 10.1167/iovs.11-7698

De Haes, W., Frooninckx, L., Van Assche, R., Smolders, A., Depuydt, G., Billen,
J., et al. (2014). Metformin promotes lifespan through mitohormesis via the
peroxiredoxin PRDX-2. Proc. Natl. Acad. Sci. U.S.A. 111, E2501–E2509. doi:
10.1073/pnas.1321776111

Diabetes Prevention Program Research Group (2015). HbA1c as a predictor of
diabetes and as an outcome in the diabetes prevention program: a randomized
clinical trial. Diabetes Care 38, 51–58. doi: 10.2337/dc14-0886

Diabetes Trials Unit (2017). HOMA2 Calculator Available at: http://www.dtu.ox.
ac.uk/homacalculator

Diez-Ruiz, A., Tilz, G. P., Zangerle, R., Baier-Bitterlich, G., Wachter, H., and Fuchs,
D. (1995). Soluble receptors for tumour necrosis factor in clinical laboratory
diagnosis. Eur. J. Haematol. 54, 1–8. doi: 10.1111/j.1600-0609.1995.tb01618.x

Feinstein, R., Kanety, H., Papa, M. Z., Lunenfeld, B., and Karasik, A.
(1993). Tumor necrosis factor-alpha suppresses insulin-induced tyrosine
phosphorylation of insulin receptor and its substrates. J. Biol. Chem. 268,
26055–26058.

Fernandez-Real, J. M., Lainez, B., Vendrell, J., Rigla, M., Castro, A., Penarroja,
G., et al. (2002). Shedding of TNF-alpha receptors, blood pressure, and insulin
sensitivity in type 2 diabetes mellitus. Am. J. Physiol. Endocrinol. Metab. 282,
E952–E959.

Franceschi, C., Capri, M., Monti, D., Giunta, S., Olivieri, F., Sevini, F., et al. (2007).
Inflammaging and anti-inflammaging: a systemic perspective on aging and
longevity emerged from studies in humans. Mech. Ageing Dev. 128, 92–105.
doi: 10.1016/j.mad.2006.11.016

Fulop, T., Larbi, A., and Pawelec, G. (2013). Human T cell aging and the impact
of persistent viral infections. Front. Immunol. 4:271. doi: 10.3389/fimmu.2013.
00271

Gohda, T., Maruyama, S., Kamei, N., Yamaguchi, S., Shibata, T., Murakoshi, M.,
et al. (2017). Circulating TNF receptors 1 and 2 predict mortality in patients
with end-stage renal disease undergoing dialysis. Sci. Rep. 7:43520. doi: 10.1038/
srep43520

Goldberg, E. L., and Dixit, V. D. (2015). Drivers of age-related inflammation and
strategies for healthspan extension. Immunol. Rev. 265, 63–74. doi: 10.1111/imr.
12295

Grundy, S. M., Cleeman, J. I., Daniels, S. R., Donato, K. A., Eckel, R. H., Franklin,
B. A., et al. (2005). Diagnosis and management of the metabolic syndrome: an
american heart association/national heart, lung, and blood institute scientific
statement. Circulation 112, 2735–2752. doi: 10.1161/circulationaha.105.16
9404

Guo, M., Mi, J., Jiang, Q. M., Xu, J. M., Tang, Y. Y., Tian, G., et al. (2014). Metformin
may produce antidepressant effects through improvement of cognitive function
among depressed patients with diabetes mellitus. Clin. Exp. Pharmacol. Physiol.
41, 650–656. doi: 10.1111/1440-1681.12265

Hopps, E., Lo Presti, R., Montana, M., Noto, D., Averna, M. R., and Caimi,
G. (2013). Gelatinases and their tissue inhibitors in a group of subjects
with metabolic syndrome. J. Investig. Med. 61, 978–983. doi: 10.2310/JIM.
0b013e318294e9da

Hotamisligil, G. S., Shargill, N. S., and Spiegelman, B. M. (1993). Adipose
expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin
resistance. Science 259, 87–91. doi: 10.1126/science.7678183

Hyun, B., Shin, S., Lee, A., Lee, S., Song, Y., Ha, N. J., et al. (2013). Metformin
down-regulates TNF-alpha secretion via suppression of scavenger receptors in
macrophages. Immune Netw. 13, 123–132. doi: 10.4110/in.2013.13.4.123

Johnson, J. A., Majumdar, S. R., Simpson, S. H., and Toth, E. L. (2002). Decreased
mortality associated with the use of metformin compared with sulfonylurea
monotherapy in type 2 diabetes. Diabetes Care 25, 2244–2248. doi: 10.2337/
diacare.25.12.2244

Kennedy, B. K., Berger, S. L., Brunet, A., Campisi, J., Cuervo, A. M., Epel, E. S.,
et al. (2014). Geroscience: linking aging to chronic disease. Cell 159, 709–713.
doi: 10.1016/j.cell.2014.10.039

Kooy, A., de Jager, J., Lehert, P., Bets, D., Wulffele, M. G., Donker, A. J., et al.
(2009). Long-term effects of metformin on metabolism and microvascular and
macrovascular disease in patients with type 2 diabetes mellitus. Arch. Intern.
Med. 169, 616–625. doi: 10.1001/archinternmed.2009.20

Langmann, G. A., Perera, S., Ferchak, M. A., Nace, D. A., Resnick, N. M., and
Greenspan, S. L. (2017). Inflammatory markers and frailty in long-term care
residents. J. Am. Geriatr. Soc. 65, 1777–1783. doi: 10.1111/jgs.14876

Frontiers in Physiology | www.frontiersin.org 13 May 2019 | Volume 10 | Article 572

https://www.frontiersin.org/articles/10.3389/fphys.2019.00572/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2019.00572/full#supplementary-material
https://doi.org/10.1016/s1359-6101(96)00026-3
https://doi.org/10.18632/aging.100273
https://doi.org/10.1007/s00125-017-4318-z
https://doi.org/10.1073/pnas.1506264112
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://doi.org/10.1016/j.bbamcr.2010.01.003
https://doi.org/10.1016/j.bbamcr.2010.01.003
https://doi.org/10.1016/j.bbamcr.2010.01.003
https://doi.org/10.1007/s00125-013-3116-5
https://doi.org/10.1016/j.cell.2013.02.035
https://doi.org/10.1161/CIRCRESAHA.116.308445
https://doi.org/10.1186/s12933-016-0359-8
https://doi.org/10.1167/iovs.11-7698
https://doi.org/10.1073/pnas.1321776111
https://doi.org/10.1073/pnas.1321776111
https://doi.org/10.2337/dc14-0886
http://www.dtu.ox.ac.uk/homacalculator
http://www.dtu.ox.ac.uk/homacalculator
https://doi.org/10.1111/j.1600-0609.1995.tb01618.x
https://doi.org/10.1016/j.mad.2006.11.016
https://doi.org/10.3389/fimmu.2013.00271
https://doi.org/10.3389/fimmu.2013.00271
https://doi.org/10.1038/srep43520
https://doi.org/10.1038/srep43520
https://doi.org/10.1111/imr.12295
https://doi.org/10.1111/imr.12295
https://doi.org/10.1161/circulationaha.105.169404
https://doi.org/10.1161/circulationaha.105.169404
https://doi.org/10.1111/1440-1681.12265
https://doi.org/10.2310/JIM.0b013e318294e9da
https://doi.org/10.2310/JIM.0b013e318294e9da
https://doi.org/10.1126/science.7678183
https://doi.org/10.4110/in.2013.13.4.123
https://doi.org/10.2337/diacare.25.12.2244
https://doi.org/10.2337/diacare.25.12.2244
https://doi.org/10.1016/j.cell.2014.10.039
https://doi.org/10.1001/archinternmed.2009.20
https://doi.org/10.1111/jgs.14876
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00572 May 20, 2019 Time: 17:6 # 14

Tizazu et al. Metformin Monotherapy Regulates Inflammatory Status

Lara, J., Cooper, R., Nissan, J., Ginty, A. T., Khaw, K. T., Deary, I. J., et al.
(2015). A proposed panel of biomarkers of healthy ageing. BMC Med. 13:222.
doi: 10.1186/s12916-015-0470-9

LaRocca, G., Aspelund, T., Greve, A. M., Eiriksdottir, G., Acharya, T., Thorgeirsson,
G., et al. (2017). Fibrosis as measured by the biomarker, tissue inhibitor
metalloproteinase-1, predicts mortality in age gene environment susceptibility-
reykjavik (AGES-Reykjavik) Study. Eur. Heart J. 38, 3423–3430. doi: 10.1093/
eurheartj/ehx510

Lu, Y., Tan, C. T., Nyunt, M. S., Mok, E. W., Camous, X., Kared, H., et al. (2016).
Inflammatory and immune markers associated with physical frailty syndrome:
findings from Singapore longitudinal aging studies. Oncotarget 7, 28783–28795.
doi: 10.18632/oncotarget.8939

Luna, J. M., Moon, Y., Liu, K., Spitalnik, S., Paik, M., Sacco, R., et al. (2013). Tumour
necrosis factor receptor 1 and mortality in a multi-ethnic cohort: the Northern
manhattan study. Age Ageing 42, 385–390. doi: 10.1093/ageing/afs175

Maggio, M., Guralnik, J. M., Longo, D. L., and Ferrucci, L. (2006). Interleukin-6 in
aging and chronic disease: a magnificent pathway. J. Gerontol. A Biol. Sci. Med.
Sci. 61, 575–584. doi: 10.1093/gerona/61.6.575

Martin-Montalvo, A., Mercken, E. M., Mitchell, S. J., Palacios, H. H., Mote,
P. L., Scheibye-Knudsen, M., et al. (2013). Metformin improves healthspan and
lifespan in mice. Nat. Commun. 4:2192. doi: 10.1038/ncomms3192

Michaud, M., Balardy, L., Moulis, G., Gaudin, C., Peyrot, C., Vellas, B., et al. (2013).
Proinflammatory cytokines, aging, and age-related diseases. J. Am. Med. Dir.
Assoc. 14, 877–882. doi: 10.1016/j.jamda.2013.05.009

National Institutes of Health (2002). Third report of the national cholesterol
education program (NCEP) expert panel on detection, evaluation, and
treatment of high blood cholesterol in adults (Adult Treatment Panel III) final
report. Circulation 106, 3143–3421.

Neirynck, N., Glorieux, G., Schepers, E., Verbeke, F., and Vanholder, R. (2015).
Soluble tumor necrosis factor receptor 1 and 2 predict outcomes in advanced
chronic kidney disease: a prospective cohort study. PLoS One 10:e0122073.
doi: 10.1371/journal.pone.0122073

Ng, T. P., Broekman, B. F., Niti, M., Gwee, X., and Kua, E. H. (2009). Determinants
of successful aging using a multidimensional definition among Chinese elderly
in Singapore. Am. J. Geriatr. Psychiatry 17, 407–416. doi: 10.1097/JGP.
0b013e31819a808e

Ng, T. P., Feng, L., Yap, K. B., Lee, T. S., Tan, C. H., and Winblad, B. (2014). Long-
term metformin usage and cognitive function among older adults with diabetes.
J. Alzheimers Dis. 41, 61–68. doi: 10.3233/JAD-131901

Nguyen, Q. M., Xu, J. H., Chen, W., Srinivasan, S. R., and Berenson, G. S. (2012).
Correlates of age onset of type 2 diabetes among relatively young black and
white adults in a community: the Bogalusa heart study. Diabetes Care 35,
1341–1346. doi: 10.2337/dc11-1818

Papazoglou, D., Papatheodorou, K., Papanas, N., Papadopoulos, T., Gioka, T.,
Kabouromiti, G., et al. (2010). Matrix metalloproteinase-1 and tissue inhibitor
of metalloproteinases-1 levels in severely obese patients: what is the effect of
weight loss? Exp. Clin. Endocrinol. Diabetes 118, 730–734. doi: 10.1055/s-0030-
1249671

Pawelec, G., Goldeck, D., and Derhovanessian, E. (2014). Inflammation, ageing and
chronic disease. Curr. Opin. Immunol. 29, 23–28. doi: 10.1016/j.coi.2014.03.007

Ping, Z., Aiqun, M., Jiwu, L., and Liang, S. (2017). TNF receptor 1/2 predict
heart failure risk in type 2 diabetes mellitus patients. Int. Heart J. 58, 245–249.
doi: 10.1536/ihj.16-236

Plomgaard, P., Nielsen, A. R., Fischer, C. P., Mortensen, O. H., Broholm, C.,
Penkowa, M., et al. (2007). Associations between insulin resistance and TNF-
alpha in plasma, skeletal muscle and adipose tissue in humans with and without
type 2 diabetes. Diabetologia 50, 2562–2571. doi: 10.1007/s00125-007-0834-6

Rea, I. M., Gibson, D. S., McGilligan, V., McNerlan, S. E., Alexander, H. D., and
Ross, O. A. (2018). Age and age-related diseases: role of inflammation triggers
and cytokines. Front. Immunol. 9:586. doi: 10.3389/fimmu.2018.00586

Sharma, S., Purohit, S., Sharma, A., Hopkins, D., Steed, L., Bode, B., et al. (2015).
Elevated serum levels of soluble TNF receptors and adhesion molecules are
associated with diabetic retinopathy in patients with type-1 diabetes. Mediat.
Inflamm. 2015:279393. doi: 10.1155/2015/279393

Straczkowski, M., Lewczuk, P., Dzienis-Straczkowska, S., Kowalska, I., Stepien,
A., and Kinalska, I. (2002). Elevated soluble intercellular adhesion molecule-
1 levels in obesity: relationship to insulin resistance and tumor necrosis

factor-alpha system activity. Metabolism 51, 75–78. doi: 10.1053/meta.2002.
28095

Sundstrom, J., Evans, J. C., Benjamin, E. J., Levy, D., Larson, M. G., Sawyer, D. B.,
et al. (2004). Relations of plasma total TIMP-1 levels to cardiovascular risk
factors and echocardiographic measures: the Framingham heart study. Eur.
Heart J. 25, 1509–1516. doi: 10.1016/j.ehj.2004.05.029

Taylor, R. (2012). Insulin resistance and type 2 diabetes. Diabetes 61, 778–779.
doi: 10.2337/db12-0073

Tsai, C. L., Chen, W. C., Hsieh, H. L., Chi, P. L., Hsiao, L. D., and Yang, C. M. (2014).
TNF-alpha induces matrix metalloproteinase-9-dependent soluble intercellular
adhesion molecule-1 release via TRAF2-mediated MAPKs and NF-kappaB
activation in osteoblast-like MC3T3-E1 cells. J. Biomed. Sci. 21, 12. doi: 10.1186/
1423-0127-21-12

UK Prospective Diabetes Study Group (1998). Effect of intensive blood-
glucose control with metformin on complications in overweight patients
with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study
(UKPDS) Group. Lancet 352, 854–865. doi: 10.1016/s0140-6736(98)0
7037-8

Valencia, W. M., Palacio, A., Tamariz, L., and Florez, H. (2017). Metformin and
ageing: improving ageing outcomes beyond glycaemic control. Diabetologia 60,
1630–1638. doi: 10.1007/s00125-017-4349-5

Valenzuela, J. F., Monterola, C., Tong, J. C., Ng, T. P., and Larbi, A. (2017). Health
and disease phenotyping in old age using a cluster network analysis. Sci. Rep.
7:15608. doi: 10.1038/s41598-017-15753-3

Van Zee, K. J., Kohno, T., Fischer, E., Rock, C. S., Moldawer, L. L., and Lowry, S. F.
(1992). Tumor necrosis factor soluble receptors circulate during experimental
and clinical inflammation and can protect against excessive tumor necrosis
factor alpha in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 89, 4845–4849.
doi: 10.1073/pnas.89.11.4845

Vlassopoulos, A., Lean, M. E., and Combet, E. (2013). Role of oxidative stress in
physiological albumin glycation: a neglected interaction. Free Radic. Biol. Med.
60, 318–324. doi: 10.1016/j.freeradbiomed.2013.03.010

Winkler, G., Cseh, K., Baranyi, E., Melczer, Z., Speer, G., Hajos, P., et al.
(2002). Tumor necrosis factor system in insulin resistance in gestational
diabetes. Diabetes Res. Clin. Pract. 56, 93–99. doi: 10.1016/s0168-8227(01)
00355-2

Witkowska, A. M., and Borawska, M. H. (2004). Soluble intercellular adhesion
molecule-1 (sICAM-1): an overview. Eur. Cytokine Netw. 15, 91–98.

World Health Organization [WHO] (2011). Global Health and Aging. Available
at: http://www.who.int/ageing/publications/global_health (accessed October
2011).

World Health Organization [WHO] (2015). Ageing and Health, Fact Sheet No 404.
Available at: http://www.who.int/mediacentre/factsheets/fs404/en/ (accessed
February 5, 2018).

World Health Organization [WHO] (2016). Global Report on Diabetes. Geneva:
World Health Organization.

Zhang, H., Yang, Z., Zhang, W., Niu, Y., Li, X., Qin, L., et al. (2017). White blood
cell subtypes and risk of type 2 diabetes. J. Diabetes Complications 31, 31–37.
doi: 10.1016/j.jdiacomp.2016.10.029

Conflict of Interest Statement: AT, OC, KS, EM, CX, JC, CT, WH, SH, and AL
were employed by A∗STAR.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

The handling Editor is currently co-organizing a Research Topic with one of the
authors, AL, and confirms the absence of any other collaboration.

Copyright © 2019 Tizazu, Nyunt, Cexus, Suku, Mok, Xian, Chong, Tan, How,
Hubert, Combet, Fulop, Ng and Larbi. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 14 May 2019 | Volume 10 | Article 572

https://doi.org/10.1186/s12916-015-0470-9
https://doi.org/10.1093/eurheartj/ehx510
https://doi.org/10.1093/eurheartj/ehx510
https://doi.org/10.18632/oncotarget.8939
https://doi.org/10.1093/ageing/afs175
https://doi.org/10.1093/gerona/61.6.575
https://doi.org/10.1038/ncomms3192
https://doi.org/10.1016/j.jamda.2013.05.009
https://doi.org/10.1371/journal.pone.0122073
https://doi.org/10.1097/JGP.0b013e31819a808e
https://doi.org/10.1097/JGP.0b013e31819a808e
https://doi.org/10.3233/JAD-131901
https://doi.org/10.2337/dc11-1818
https://doi.org/10.1055/s-0030-1249671
https://doi.org/10.1055/s-0030-1249671
https://doi.org/10.1016/j.coi.2014.03.007
https://doi.org/10.1536/ihj.16-236
https://doi.org/10.1007/s00125-007-0834-6
https://doi.org/10.3389/fimmu.2018.00586
https://doi.org/10.1155/2015/279393
https://doi.org/10.1053/meta.2002.28095
https://doi.org/10.1053/meta.2002.28095
https://doi.org/10.1016/j.ehj.2004.05.029
https://doi.org/10.2337/db12-0073
https://doi.org/10.1186/1423-0127-21-12
https://doi.org/10.1186/1423-0127-21-12
https://doi.org/10.1016/s0140-6736(98)07037-8
https://doi.org/10.1016/s0140-6736(98)07037-8
https://doi.org/10.1007/s00125-017-4349-5
https://doi.org/10.1038/s41598-017-15753-3
https://doi.org/10.1073/pnas.89.11.4845
https://doi.org/10.1016/j.freeradbiomed.2013.03.010
https://doi.org/10.1016/s0168-8227(01)00355-2
https://doi.org/10.1016/s0168-8227(01)00355-2
http://www.who.int/ageing/publications/global_health
http://www.who.int/mediacentre/factsheets/fs404/en/
https://doi.org/10.1016/j.jdiacomp.2016.10.029
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

	Metformin Monotherapy Downregulates Diabetes-Associated Inflammatory Status and Impactson Mortality
	Introduction
	Materials and Methods
	Study Subjects
	Operational Terms
	Exclusion Criteria
	Serology
	Fructosamine Measurement
	Hematological Profile and General Blood Profiling
	Statistical Analysis

	Results
	Socio-Demographic Characteristics and Clinical Determinants of DM
	Inflammation in Aging Occurs Independently of Diabetes
	Inflammation in DM and Metabolic Syndrome in Aged Individuals
	Metformin Reduces Inflammation and Mortality in DM Patients Compared to Other Monotherapies

	Discussion
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


