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The aim of this study was to assess the sensitivity of accelerometer-derived metrics for 
monitoring fatigue during an intermittent exercise protocol. Fifteen university students 
were enrolled in the study (age 20 ± 1 years). A submaximal intermitted recovery test 
(Sub-IRT) with a duration of 6 min and 30 s (drill 1) was performed. In order to increase 
the participants’ fatigue, after that, a repeated sprint protocol (1×6 maximal 20 m sprints) 
was performed. Following that, participants repeated the Sub-IRT (drill 2) to evaluate the 
external and internal training load (TL) variations related to fatigue. Apex 10 Hz global 
navigation satellite system (GNSS) units were used to collect the variables total distance 
(TD), high metabolic distance (HMD), relative velocity (RV), average metabolic power (MP), 
heart rate maximal (HRmax) and mean (HRmean), muscular (RPEmus) and respiratory 
rating of perceived exertion (RPEres), dynamic stress load (DSL), and fatigue index (FI). 
A Bayesian statistical approach was used. A likelihood difference (between drill 1 and 
drill 2) was found for the following parameters: TD (BF10 = 0.33, moderate per H0), HMD 
(BF10 = 1.3, anecdotal ), RV (BF10 = 0.29, moderate per H0), MP (BF10 = 1.3, anecdotal ), 
accelerations (BF10 = 1.6, anecdotal ), FI (BF10 = 4.7, moderate), HRmax (BF10 = 2.2, 
anecdotal ), HRmean (BF10 = 4.3, moderate), RPEmus (BF10 = 11.6, strong), RPEres 
(BF10 = 3.1, moderate), DSL (BF10 = 5.7, moderate), and DSL•m−1 (BF10 = 4.3, moderate). 
In conclusion, this study reports that DSL, DSL•m−1, and FI can be valid metrics to monitor 
fatigue related to movement strategy during a standardized submaximal intermittent 
exercise protocol.

Keywords: training, soccer, team sports, GPS, football

INTRODUCTION

The quantification of training load (TL) is important for improving fitness adaptations and 
reducing the risk of injury in team sports (Rowell et  al., 2018). A common technology 
utilized to quantify external TL parameters is global navigation satellite system (GNSS) 
(Beato et  al., 2018a). A GNSS-embedded device can be  used to monitor several sport-specific 
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metrics during training sessions and matches, such as total 
distance covered (TD), high-speed running (HSR), and sprint 
running (Beato et  al., 2018b). This approach consists of 
evaluating the TL demands by segmenting locomotion into 
bands based on speed thresholds. Other external TL parameters 
generally recorded are power-related actions (e.g., accelerations, 
decelerations), which may offer indications related to the 
neuromuscular requirements of the sport (Vanrenterghem 
et  al., 2017). Moreover, considering the intermittent-activity 
profile of many team sports (e.g., soccer) (Coratella et  al., 
2016), heart rate (HR) should be  taken into consideration, 
and where possible integrated with external TL variables, to 
exhaustively describe a players’ TL demands (Akubat et  al., 
2014). However, considering the nature of team sports, were 
high-intensity mechanical actions are generally required 
(Zamparo et  al., 2015), recent research suggests that 
accelerometer-based TL variables should also be  integrated 
with other established internal and external TL variables 
(Akubat et  al., 2014).

Typically, GNSS-based athlete monitoring devices are  
also equipped with accelerometers capable of measuring  
linear accelerations in three axes (Barrett et  al., 2016; Beato 
et al., 2018a). The combination of linear accelerations, known 
as composite acceleration, has traditionally been utilized as 
an external TL variable to infer the mechanical stress 
accumulated by an athlete (Vanrenterghem et  al., 2017). The 
reliability of triaxial accelerometers has shown acceptable 
levels during running activities in team sports (Boyd et  al., 
2011). Moreover, the rationale related to the quantification 
and utilization of linear accelerations as an indicator of a 
player’s TL during intermittent activities has previously been 
reported (Barrett, 2017).

The composite derivatives of acceleration have been 
previously utilized to assess a player’s fatigue in team sports 
(Barrett et  al., 2016). Fatigue has been assessed in several 
ways that require specific technologies (e.g., biodex) and 
individualized testing (e.g., isometric muscle contractions) 
but many team sports clubs have a limited amount of time 
for such assessments (Rowell et  al., 2018). Metrics derived 
from accelerometer sensor technology during a standardized 
submaximal sport-specific intermittent test may detect the 
presence of fatigue offering the opportunity to test multiple 
players in an applied environment. This approach may offer 
further indications that could help sport scientists to 
understand the players’ performances over a given training 
period (Beato et  al., 2018a). The rationale for this approach 
is supported by the reliability of the internal and external 
TL demands of a standardized test previously reported (Barrett 
et  al., 2016). Physical variations related to transient and 
residual fatigue may be  of interest in professional and elite 
levels of sport, where small differences can have a meaningful 
impact on performance outcomes and managerial strategies 
(Barrett et  al., 2016; Rowell et  al., 2018).

To date, information related to other accelerometer-based 
training load metrics used to monitor fatigue during 
intermittent exercises is limited; therefore, new evidence 
related to transient/residual fatigue monitoring using alternative 

algorithms may be  very important for the management of 
players’ training loads, recovery strategies, workload 
implementations, and subsequent training periodization 
(Thorpe et  al., 2015; Beato et  al., 2017a). Therefore, the aim 
of this study was to assess several novel accelerometer-based 
metrics’ sensitivity to detect player’s fatigue recorded using 
Apex 10  Hz GNSS (STATSports, Northern Ireland) units 
during an intermittent standardized exercise protocol. The 
authors’ hypothesis is that the accelerometer-derived metrics 
will provide a sensitive method to assess player’s fatigue.

MATERIALS AND METHODS

Participants and Research Design
Fifteen physically active university male students were enrolled 
(age 20  ±  1  years, weight 73.2  ±  6.3  kg, height 1.77  ±  0.07  m) 
in this study. Inclusive criteria for participation were the absence 
of any injury or illness by completing the Physical activity 
readiness questionnaire (PARQ), and regular participation in 
physical activity (minimum two sessions per week). Participants 
were asked to maintain their habitual consumption and avoid 
alcohol 24  h prior to exercise. Consumption of ergogenic aids 
was not allowed during the protocol. The experimental protocol 
was conducted in accordance with the Declaration of Helsinki. 
The Institutional Ethics Board of the University of Suffolk 
(Ipswich, UK) approved the experimental protocol. Written 
informed consent was obtained from all participants prior to 
participation in this study.

Experimental Protocol and Data Analysis
Apex 10  Hz GNSS (STATSports, Northern Ireland) units were 
used to collect data on a synthetic outdoor pitch, in the absence 
of high and large buildings in the surrounding area to enhance 
satellite reception (Williams and Morgan, 2009). Apex units 
connected to a number of satellites ranging from 18 to 21 
throughout the duration of the experimental protocol; the 
horizontal dilution of precision was 0.4  ±  0. The participants 
were instructed to remain in a standing position before the 
beginning of the experimental trials. The start time for each 
trial was determined by the increase above zero on the velocity 
trace. Participants did a familiarization trial before the beginning 
of the experimental procedure. Participants completed a 
standardized warm-up of 5  min; following that, a submaximal 
intermitted recovery test (Sub-IRT) with a duration of 6  min 
and 30  s (drill 1) was performed (Bangsbo et  al., 2008). In 
order to increase the participants’ fatigue, after drill 1, a repeated 
sprint protocol (one set of six maximal 20-m sprints with 
20  s of rest between repetitions) was required (Collins et  al., 
2018). Following the end of this protocol, participants repeated 
the Sub-IRT (drill 2) to evaluate the external and internal TL 
variations related to fatigue. For such purposes, internal TL 
variables should be different between drill 1 vs. drill 2 (confirming 
an accumulation in fatigue), while external TL variables should 
not be  different (confirming the validity of the protocol). The 
rationale to use a Sub-IRT to monitoring post-match fatigue 
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in team sports (in an ecological context) has been recently 
reported (Carling et  al., 2018).

The Apex units were turned on 15 min before the beginning 
of the test, while the subjects were familiarized with the 
equipment as well as the protocol procedures. Apex units 
present the following characteristics: dimension 30  mm  
(wide) x 80  mm (high), weight 48  g, and 100  Hz triaxial 
accelerometer. Prior to the experiments, Apex unit models were 
placed on the back of the participant, midway between the 
scapula. The Apex 10  Hz is a multi-GNSS augmented unit; 
the validity and reliability of this unit has previously been 
reported (Beato et  al., 2018a). GNSS data recorded by the 
units were downloaded and further analyzed by the STATSports 
Software (Apex version 2.0.2.4).

The external load variables considered in this study were: 
TD measured in meters, HSR that is the distance covered 
over 14.4 km h−1 (Gaudino et al., 2013), number of accelerations 
performed (>2  m  s−2) (Beato et  al., 2017b), and relative 
velocity (RV) calculated as the ratio between TD and the 
total time of the drill. Average metabolic power (MP) and 
high-intensity metabolic distance over 20 W.kg−1 (HMD) were 
estimated using the rationale reported in the following paper 
(Osgnach et  al., 2010).

DSL is captured by a 100-Hz triaxial accelerometer measuring 
linear accelerations in the three movement axes (XYZ). 
Acceleration values were then aggregated over the defined 
period to obtain a measure of dynamic stress load using the 
following equation:

DSL IMPACT SF
i

n

i
k=

=
å

1

·

where k is a weighting factor and SF a scaling factor. An 
IMPACT is defined as the maximum composite acceleration 
value of every 10 accelerometer points measured, if the maximum 
value is greater than 2G. Fatigue index (FI) is the ratio between 
a player’s instantaneous speed, measured by the GNSS sensor, 
and the linear acceleration values. Raw sensors’ readings are 
converted to a common scale by using a convex weighting 
function, similar to DSL. Therefore, FI is as follows:

FI = DSL Speed/i i i
K

where K is a weighting factor. Reliability of accelerometer data 
has previously been reported (Barrett, 2017).

Participants’ internal TL was quantified using maximum 
HR (HRmax), which was recorded during each drill, while 
mean HR (HRmean) was the average HR recorded during 
each drill. HR was recorded during drills using Polar T31 
belts (Polar, Oulu, Finland) (Beato et  al., 2017b). At the end 
of each drill, the rating of perceived exertion (RPE) was 
recorded (RPE, Borg’s CR100-scale) (Impellizzeri et  al., 2004). 
Players were asked individually to provide an RPE score in 
an attempt to prevent the influence of interaction with other 
participants’ scores. This occurred immediately after the end 
of each drill. RPE was quantified for both respiratory (RPEres) 
and muscular (RPEmus) effort (Jaspers et  al., 2017).  

RPE construct validity in team sport was previously reported 
(Impellizzeri et  al., 2004).

Statistical Analyses
Statistical analyses were performed using JASP (Amsterdam, 
Netherland) software version 0.9.1. Data are presented as 
mean  ±  SD. The reliability between drill 1 and drill 2 was 
assessed using the typical error of measurement and expressed 
as percentage of the coefficient of variation (CV) (Atkinson 
and Nevill, 1998; Beato et  al., 2017b). A CV(%) of less than 
10% was used as a cut-off value for test–retest reliability for 
the following variables: TD, HMD, MP, RV, and accelerations 
(Atkinson and Nevill, 1998). The sample size power was calculated 
by G-power (tails  =  2, a err prob. = 0.05, power  =  0.8), 
participants  =  15, estimated power  =  0.82 (Wang et  al., 2005). 
External TL variables were analyzed with a “noninformative” 
prior hypothesis (Cauchy, 0.707). A Bayesian statistical approach 
to provide probabilistic statements was used in this study; 
therefore, traditional inferential statistics were not reported 
(Sainani, 2018). A paired t-test was used to evaluate the difference 
between conditions (drill 1 vs. drill 2) on TL variables. Estimates 
of median standardized effect size (ES) and 95% credible interval 
(CI) were calculated (Ly et  al., 2016). ES was interpreted by 
Cohen as trivial  <  0.2, small 0.2–0.6, moderate 0.6–1.2, large 
1.2–2.0, and very large  >  2.0 (Cohen et  al., 1990). Evidence 
for the alternative hypothesis (H1) was set as BF10  >  3 and 
evidence for null hypothesis (H0) was set as BF10  <  1/3. BF10 
was reported to indicate the strength of the evidence for each 
analysis. The BF10 was interpreted using the following evidence 
categories: 1  <  BF10  <  3  =  anecdotal evidence for H1; 
BF10  ≥  3  =  moderate; BF10  ≥  10  =  strong; BF10  ≥  30  =  very 
strong; BF10  ≥  100  =  extreme (Lee and Wagenmakers, 2013).

RESULTS

Apex 10  Hz GNSS data recorded during drill 1 and drill 2 
and reliability are reported in Table 1.

Bayesian analysis related to differences between drill  
1 vs. drill 2 reported the following strength of the evidence: 
TD (BF10 = 0.33, moderate per H0), HMD (BF10 = 1.3, anecdotal), 
RV (BF10  =  0.29, moderate per H0), MP (BF10  =  1.3, anecdotal), 
accelerations (BF10  =  1.6, anecdotal), HRmax (BF10  =  2.2, 
anecdotal), HRmean (BF10 = 4.3, moderate), RPEmus (BF10 = 11.6, 
strong), RPEres (BF10 = 3.1, moderate), DSL (BF10 = 5.7, moderate), 
DSL•m−1 (BF10  =  4.3, moderate), and FI (BF10  =  4.7, moderate).

Estimates of median standardized ES and 95% CI between 
drill 1 vs. drill 2 for the parameters HRmax, HRmean, RPEmus, 
RPEres, DSL, DSL•m−1, and FI are reported in Table 2.

DISCUSSION

The aim of this study was to assess the sensitivity of novel 
accelerometer-based metrics (e.g., DSL) at detecting player’s 
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fatigue recorded using 10  Hz GNSS units, with an embedded 
accelerometer, during an intermittent submaximal standardized 
exercise protocol. This study is the first to report that DSL, 
DSL•m−1, and FI can be  valid metrics for monitoring fatigue-
related modifications to movement strategies during a standardized 
submaximal intermittent exercise protocol. Therefore, DSL, 
DSL•m−1, and FI could be  utilized by sport practitioners as 
valid metrics for the management of fatigue (post-match and 
post-training fatigue) and TL monitoring in sports.

The main findings of this research were that the external 
TL variables (e.g., TD, RV, MP) did not change between drill 
1 vs. drill 2 (Table 1), while internal TL demands increased 
in drill 2 vs. drill 1, which support the validity of the protocol 
(Table 1 and Table 2). Subsequently, accelerometer-based metrics 
(e.g., DSL, DSL•m−1, and FI) increased in drill 2 vs. drill 1, 
demonstrating sensitivity when monitoring physical variations 
related to fatigue. These results may have great applicability in 
professional team sports, where such player’s fatigue variations 

may have an impact on fitness adaptations and injury risk 
reduction (Barrett et al., 2016; Vanrenterghem et al., 2017; Rowell 
et  al., 2018). The validity of accelerometer measurements as a 
metric used in team sports to accurately and objectively quantify 
players’ TL has previously been reported and the results of the 
current study support such findings (Barrett et al., 2016; Barrett, 
2017; Beato et  al., 2017a; Rowell et  al., 2018). Moreover, DSL 
showed better correlation with internal TL variables than TD, 
MP, and high-intensity running (Casamichana et al., 2013; Sparks 
et  al., 2017). These results suggest that DSL may be  an effective 
metric to take into consideration in team sports and should 
be  integrated with more traditional internal and external TL 
variables. Moreover, considering that many players do not wear 
HR monitors during official games, DSL monitored using GNSS-
embedded accelerometers may be  a valid indicator of fatigue 
as has been recently reported (Sparks et  al., 2017). DSL may 
be particularly important in an ecological context because these 
metrics are not affected by external temperature, players’ mental 

TABLE 2 | Summary of baseline and post data following (drill 1 vs. drill 2) Bayesian t-test (n = 15). Data reported as standardized ES with 95% credible interval 
(n = 15).

Variables Standardized ES 95% CI BF10 Qualitative interpretation

HRmax (bpm) 0.78
moderate

−0.02; 1.71 2.19 Anecdotal

HRmean (bpm) 0.88
moderate

0.09; 1.88 4.26 Moderate

RPEmus (AU) 1.14
moderate

0.26; 2.03 11.59 Strong

RPEres (AU) 0.67
moderate

0.08; 1.47 3.13 Moderate

DSL (AU) 0.81
moderate

0.17; 1.64 5.71 Moderate

DSL•m−1 (AU) 0.74
moderate

0.10; 1.56 4.28 Moderate

FI (AU) 0.77
moderate

0.11; 1.56 4.75 Moderate

HR, heart rate; RPEmus, muscular rating of perceived exertion; RPEres, respiratory rating of perceived exertion; DSL, dynamic stress load; FI, fatigue index; BF10, Bayesian factor; 
ES, effect size; CI, credible intervals; AU, arbitrary units; bpm, beats per minute.

TABLE 1 | Descriptive data and reliability between drill 1 and drill 2 following fatiguing protocol (n = 15).Data are presented as mean ± SD.

Variables Drill 1 (SD) Drill 2 (SD) CV (CI 90%) CV% (CI 90%)

TD (m) 917 ± 21 919 ± 22 7 (5; 11) 0.8 (0.6; 0.3)
HMD (m) 378 ± 49 357 ± 40 25 (19; 38) 7.8 (5.7; 12.8)
RV (m•min−1) 139.8 ± 5.1 140.0 ± 5.5 2.3 (1.7; 3.6) 1.8 (1.3; 2.9)
MP (W•kg−1) 15.8 ± 1.0 15.4 ± 0.9 0.5 (0.4; 0.8) 3.9 (2.8; 6.2)
Accelerations (n°) 33 ± 3 31 ± 4 2.3 (1.8; 3.5) 8.5 (6.2; 13.9)
HRmax (bpm) 194 ± 5 197 ± 5 2.8 (2.1; 4.5) 1.5 (1.1; 2.3)
HRmean (bpm) 172 ± 10 177 ± 7 4.3 (3.2; 6.8) 2.5 (1.9; 4.1)
RPEmus (AU) 26.7 ± 12.2 39.2 ± 20.3 9.1 (6.7; 13.8) 38.7 (27.4; 68.4)
RPEres (AU) 55.1 ± 18.3 61.1 ± 21.2 7.1 (5.4; 11.7) 12.6 (9.1; 20.7)
DSL (AU) 35.1 ± 12.7 38.1 ± 11.0 2.9 (2.2; 4.4) 7.3 (5.4; 12.0)
DSL•m−1 (AU) 0.038 ± 0.014 0.041 ± 0.012 0.003 (0.002;0.005) 7.6 (5.7; 12.4)
FI (AU) 0.71 ± 0.25 0.76 ± 0.22 0.06 (0.04; 0.09) 6.9 (5.0; 11.2)

SD, standard deviation; CI, confidence intervals; CV, coefficient of variation; TD, total distance; HMD, high metabolic distance; RV, relative velocity; MP, average metabolic power; 
HR, heart rate; RPEmus, muscular rating of perceived exertion; RPEres, respiratory rating of perceived exertion; DSL, dynamic stress load; FI, fatigue index; m, meters; min, minutes; 
AU, arbitrary units; bpm, beats per minute.
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fatigue, and hydration status, while HR has shown to be affected 
by these factors (Greig et  al., 2006; Thorpe et  al., 2016).

A limitation related to this study is the sample utilized that 
is composed of physically active university male students. Therefore, 
the results reported in the current study should be  considered 
carefully when elite and professional football players are monitored 
since fatigue may be  associated with physical activity level and 
sport specificity. This is supported by previous evidence that 
showed a different energy cost between sporting populations 
during intermittent running exercises (Zamparo et  al., 2015).

In conclusion, accelerometer-based metrics like DSL and 
FI are sensitive for monitoring player’s fatigue during a 
submaximal intermittent exercise protocol. Future studies could 
replicate the current study involving elite and professional 
players to clarify if such metrics may be valid when monitoring 
fatigue in a sport-specific population.

PRACTICAL APPLICATIONS

DSL can be  used as an external TL metric with confidence 
when monitoring team sport athletes (e.g., during training 
sessions and matches). Practitioners may evaluate DSL, DSL.m−1, 
and FI by GNSS-embedded accelerometers during a Sub-IRT 
in order to monitor in a valid and quick way (throughout 
the season) athletes’ fatigue. This approach may offer further 
support to practitioners’ decision-making process.
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