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Injuries are a common occurrence in team sports and can have significant financial,
physical and psychological consequences for athletes and their sporting organizations.
As such, an abundance of research has attempted to identify factors associated
with the risk of injury, which is important when developing injury prevention and risk
mitigation strategies. There are a number of methods that can be used to identify
injury risk factors. However, difficulty in understanding the nuances between different
statistical approaches can lead to incorrect inferences and decisions being made from
data. Accordingly, this narrative review aims to (1) outline commonly implemented
methods for determining injury risk, (2) highlight the differences between association
and prediction as it relates to injury and (3) describe advances in statistical modeling and
the current evidence relating to predicting injuries in sport. Based on the points that are
discussed throughout this narrative review, both researchers and practitioners alike need
to carefully consider the different types of variables that are examined in relation to injury
risk and how the analyses pertaining to these different variables are interpreted. There
are a number of other important considerations when modeling the risk of injury, such as
the method of data transformation, model validation and performance assessment. With
these technical considerations in mind, researchers and practitioners should consider
shifting their perspective of injury etiology from one of reductionism to one of complexity.
Concurrently, research implementing reductionist approaches should be used to inform
and implement complex approaches to identifying injury risk. However, the ability to
capture large injury numbers is a current limitation of sports injury research and there
has been a call to make data available to researchers, so that analyses and results can
be replicated and verified. Collaborative efforts such as this will help prevent incorrect
inferences being made from spurious data and will assist in developing interventions
that are underpinned by sound scientific rationale. Such efforts will be a step in the right
direction of improving the ability to identify injury risk, which in turn will help improve risk
mitigation and ultimately the prevention of injuries.
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INTRODUCTION

Injuries are a common occurrence in team sports such as
Australian football (Australian Football League, 2017), soccer
(Ekstrand et al., 2011) and rugby (Fuller et al., 2013). The
incidence rates in these sports can impose a significant financial
burden on individual athletes and their sporting organizations
(Woods et al., 2002; Cumps et al., 2008; Hickey et al.,
2014). Additionally, injuries can impact team and individual
performances (Verrall et al., 2006; Hagglund et al., 2013;
Podlog et al., 2015; Drew et al., 2017), as well as physical
and psychological wellbeing (Rozen et al., 2007). Due to
these high injury rates and resulting costs, an abundance of
research has attempted to identify factors that may increase
or decrease athletes’ risk of injury (Orchard, 2001; Hoskins
and Pollard, 2003; Arnason et al., 2004; Gabbett, 2005; Opar
et al., 2012; Freckleton and Pizzari, 2013), which is important
when developing prevention and risk mitigation strategies (van
Mechelen et al., 1992; Bahr and Holme, 2003; Arnason et al.,
2004). There are a number of methods that can be used to
identify factors that are associated with injury risk (Bahr and
Holme, 2003; McCall et al., 2017). However, there is a level of
confusion that can result from practitioners misinterpreting the
different statistics that are often reported (McCall et al., 2017).
For example, a lack of understanding in relation to direct and
indirect association (discussed in section “Association Versus
Prediction” of this narrative review) may result in practitioners
concluding that a factor associated with injury risk can be used
to predict (and ultimately prevent) injury (McCall et al., 2017;
Smoliga and Zavorsky, 2017; Stovitz et al., 2019). In turn, this
may lead to incorrect inferences being made from spurious data
(Smoliga and Zavorsky, 2017). For this reason, it is important
to understand the differences and nuances between association
and prediction when interpreting research and making inferences
from data (Shmueli, 2010; McCall et al., 2017).

In the context of injuries, association can help us understand
why an injury occurs (Altman and Krzywinski, 2015; McCall
et al., 2017). Studies exploring association can identify whether
a relationship exists between a certain factor and the risk of
injury and can provide information about injury risk at a
group level (Altman and Krzywinski, 2015; McCall et al., 2017).
However, as previously highlighted it is important to understand
that associations can occur as a result of indirect, intermediate
variables, as well as complete luck (Smoliga and Zavorsky,
2017; Stovitz et al., 2019). Such distinctions are critical when
interpreting and making decisions from data (McCall et al., 2017;
Smoliga and Zavorsky, 2017). Prediction, in the current context,
is the ability to identify injury risk, as a whole, and predict
outcomes at an individual level (Shmueli, 2010). A factor that
is highly associated with the risk of injury cannot necessarily
be used to predict injury at the individual level (Shmueli, 2010;
McCall et al., 2017). For example, statistically derived cut points
for screening tests, discussed later in this narrative review, may
provide information in regards to the risk of injury at a group
level (i.e., athletes above or below the cut point), but will most
likely perform poorly if used to identify individual athletes that
will sustain an injury (Bahr, 2016). This poor performance is

likely due to the complex nature of injury etiology. Injuries
occur as a result of complex and non-linear interactions between
multiple factors (Bittencourt et al., 2016) and it is unlikely that a
single, isolated factor is capable of providing enough information
to predict injuries at the individual level (Bahr, 2016).

There is also always a level of uncertainty when it comes
to injuries. Acute injuries occur following an inciting event
and this event may be extrinsic, such as contact with another
player, or intrinsic, such as jumping or changing directions
(Meeuwisse et al., 2007). Due to the highly unpredictable nature
of team sports, the ability to predict the occurrence of an inciting
event (e.g., contact with another player) and subsequently an
injury, is highly unlikely. As such, the ultimate goal of predictive
modeling in sports injury prevention, should not be to predict
the occurrence of an injury. Instead, the aim should be to identify
injury risk at an individual level and to implement interventions
to mitigate the level of risk (Meeuwisse et al., 2007). The ability to
mitigate injury risk, however, depends on identifying factors that
are associated with injury risk and understanding the methods
that can be employed to do so. A better understanding of the
different approaches that can be implemented when modeling the
risk of sports injuries may improve the ability to identify injury
risk. In turn, this may lead to a better understanding as to why
they occur and ultimately help improve risk mitigation and injury
prevention strategies. Accordingly, the aims of this narrative
review are to 1) outline commonly implemented methods for
determining injury risk, 2) highlight the differences between
association and prediction as it relates to injury and 3) describe
advances in statistical modeling and the current evidence relating
to predicting injuries in sport.

DETERMINING FACTORS THAT ARE
ASSOCIATED WITH INJURY RISK

Methods that are used to determine injury risk factors typically
involve classifying athletes as sustaining an injury or remaining
injury free, based on the presence or absence of a variable
of interest (or injury risk factor). This is referred to as
binary classification. There are four possible outcomes in
binary classification:

• True positive (TP) = the variable of interest was present and
the athlete was injured.
• False positive (FP) = the variable of interest was present but

the athlete avoided injury.
• True negative (TN) = the variable of interest was absent and

the athlete avoided injury.
• False negative (FN) = the variable of interest was absent but

the athlete was injured.

These outcomes can be expressed in a contingency table
(Figure 1). For the purpose of explaining methodologies that can
be used to determine factors associated with injury risk, a mock
dataset has been outlined in Figure 2. Given previous injury is
commonly associated with the risk of future injury (among a
multitude of other factors) (Hägglund et al., 2006), this mock
dataset consists of the number of previously injured athletes and

Frontiers in Physiology | www.frontiersin.org 2 July 2019 | Volume 10 | Article 829

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00829 July 5, 2019 Time: 15:16 # 3

Ruddy et al. Modeling the Risk of Sports Injuries

FIGURE 1 | A contingency table which can be used to express the outcomes of binary classification.

FIGURE 2 | A contingency table expressing the outcomes of a mock dataset. The frequency distribution of athletes that have or have not sustained a previous injury
is displayed against the frequency distribution of athletes that did or did not sustain a prospective injury.
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the number of prospectively injured athletes. This dataset will be
used as an example throughout section “Determining Factors that
Are Associated With Injury Risk” of this narrative review and
should be referred to alongside Figure 1. The readers should note
that the calculations throughout section “Determining Factors
that Are Associated With Injury Risk” can be replicated with
other dichotomous risk factors.

Relative Risks and Odds Ratios
Relative risks and odds ratios are commonly used in medical
literature to describe the association between a variable of interest
and an outcome. Before understanding relative risks and odds
ratios, it is important to understand the difference between
probability (used to calculate relative risks) and odds (used to
calculate odds ratios). Probability is the likelihood of an injury
occurring, with zero indicating no chance of an injury occurring
and one indicating an injury will certainly occur (Grimes and
Schulz, 2008). An advantage of probability is that it can be
expressed as a percentage which is easily understood. Using
the data in Figure 2, the probability of an injury occurring is
calculated as:

Probability =
TP + FN

TP + FP + FN + TN

30+ 10
30+ 20+ 10+ 140

= 0.20

A probability of 20% suggests that one in five athletes were likely
to sustain an injury. Odds, however, is a ratio of the likelihood of
an injury occurring compared to the likelihood of an injury not
occurring, and is therefore calculated differently to probability
(Grimes and Schulz, 2008). Odds can range between zero and
infinity and is calculated as:

Odds =
TP + FN
FP + TN

30+ 10
20+ 140

= 0.25

Odds of 0.25 actually indicates a ratio of 1:4, which means that for
every one athlete that sustains an injury, four athletes will remain
uninjured. This may be misinterpreted as equaling a probability
of 25%. However, a probability of 20% and odds of 0.25 ultimately
indicate the same likelihood.

Relative risk, in the current example, is the ratio of the
probability of injury occurring in the previously injured group
compared to the probability of injury occurring in the previously
uninjured group (Schmidt and Kohlmann, 2008). The relative
risk is calculated as:

Relative risk =
TP ÷ (TP + FP)

FN ÷ (FN + TN)

30÷ (30+ 20)

10÷ (10+ 140)
= 9.0

Using the current data (Figure 2), the relative risk is 9. This
means that athletes with a previous injury had a 9-fold higher

chance of sustaining a future injury than athletes without a
previous injury. A relative risk of 1.0 would suggest that the
probability of future injury was the same for both athletes with
or without a previous injury and that previous injury is not
associated with the risk of future injury. A relative risk of 0.5
would indicate that the previously injured athletes had half the
chance of sustaining a future injury when compared to the
previously uninjured athletes.

In the current example, the odds ratio is the ratio between
the odds of injury occurring in the previously injured group
compared to odds of injury occurring in the previously uninjured
group (Schechtman, 2002). The odds ratio is calculated as:

Odds ratio =
TP ÷ FN
FP ÷ TN

30÷ 10
20÷ 140

= 21.0

Using the data in Figure 2, the odds ratio is 21. This means that
the odds of the previously injured athletes sustaining an injury
in the current sample were 21 times higher than the odds of the
previously uninjured athletes sustaining an injury. Since relative
risks and odds ratios primarily consider the frequencies of a risk
factor and the rate of injury, respectively, the difference between
these two statistics is dependent on the relative frequencies of
each of these elements. While these differences may be subtle,
they can also be misleading. In the current example, the same
data can be presented as a relative risk of 9 or an odds ratio
of 21, which may suggest a greater increase in the level of risk.
These two metrics, however, are not equivalent and should not
be interpreted as such. Compared to relative risks, odds ratios
are more sensitive to higher initial incidences of the outcome
(Schmidt and Kohlmann, 2008). For example, if the initial injury
incidence was 30% as opposed to 20% (e.g., TP = 40, FP = 10,
FN = 20 and TN = 130), the odds ratio would be 4 times
greater than the relative risk, as opposed to 2 times greater
when using the data from Figure 2. Given injury incidences
can be variable in prospective cohort studies (Bahr and Holme,
2003), calculating the relative risk of injury (as opposed to the
odds ratio) is suggested to be the more appropriate method
(Schmidt and Kohlmann, 2008).

Sensitivity and Specificity
Sensitivity and specificity are measures of the performance of a
binary classification test (Akobeng, 2007a). Sensitivity, referred
to as the true positive rate, measures the proportion of injured
athletes that were correctly classified as being injured, while
specificity, referred to as the true negative rate, measures the
proportion of uninjured athletes correctly classified as such
(Akobeng, 2007a). Using the data in Figure 2, sensitivity is
calculated as:

Sensitivity =
TP

TP + FN

30
30+ 10

= 0.750
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Specificity is calculated as:

Specificity =
TN

TN + FP

140
140+ 20

= 0.875

The sensitivity indicates that injury history was able to correctly
classify 75% of the prospectively injured athletes, while the
specificity indicates that 88% of the uninjured athletes were
correctly classified. Sensitivity and specificity are often calculated
alongside the relative risk and odds ratio to give an indication
of how well a variable classified the injured and uninjured
athletes at a group level (Akobeng, 2007a). However, in the
context of attempting to predict future injuries, sensitivity and
specificity are meaningless, as these metrics can only be calculated
retrospectively. In order to calculate the sensitivity and specificity
of a test, a practitioner needs to know which athletes were injured
and uninjured and the purpose of a test for predicting future
injuries is to determine this (Whiteley, 2016). Simply put, if
we knew who was going to sustain an injury and who wasn’t,
we wouldn’t need to apply the test to find out. Accordingly,
sensitivity and specificity (along with relative risks and odds
ratios) provide no information regarding the predictive ability of
a test (or an injury risk factor).

Pre-test and Post-test Probabilities
The previously discussed methods can be used to identify the
influence a variable has on the risk of injury, but only in one
group relative to another. They do not take into account the
base rate of injury. Bayes’ theorem can be used to explain the
likelihood of an event occurring given the baseline probability of
that event occurring as well as the introduction of new evidence
(the presence or absence of the variable of interest) (Akobeng,
2007b). Pre-test and post-test probabilities (sometimes referred
to as prior and posterior probabilities) are a simple application
of Bayes’ theorem and can be used to determine the influence a
variable has on the probability of injury relative to the base rate
of injury and not another group (Akobeng, 2007b). Using the
current example of previous injury as a risk factor and the data
from Figure 2, the pre-test probability is calculated as previously
outlined (see section “Relative risks and odds ratios”):

Pre-test probability =
TP + FN

TP + FP + FN + TN

30+ 10
30+ 20+ 10+ 140

= 0.20

The next step requires us to transition from probability to odds.
The pre-test odds can be calculated using the previously outlined
equation (see section “Relative risks and odds ratios”), or can be
calculated using the pre-test probability:

Pre-test odds =
Pre-test probability

1− pre-test probability

0.2
1− 0.2

= 0.25

The post-test odds and subsequently the post-test probability
can be calculated using likelihood ratios (Ruddy et al., 2016;
Whiteley, 2016). The likelihood ratio indicates the magnitude
of the effect that injury history has on the odds of sustaining a
future injury (Akobeng, 2007b; Whiteley, 2016). The likelihood
ratio for athletes with a previous injury (referred to as the positive
likelihood ratio) is calculated as:

Positive likelihood ratio =
Sensitivity

1− specificity

0.75
1− 0.875

= 6.0

The positive likelihood ratio indicates that having a previous
injury increased the odds of sustaining a future injury 6-fold (see
section “Sensitivity and specificity” for sensitivity and specificity
calculations). The negative likelihood ratio can also be calculated
for athletes without a history of injury, but this is typically less
relevant for practitioners that are interested in the impact a
variable has on injury risk. The post-test odds of sustaining a
future injury is simply the pre-test odds multiplied by our positive
likelihood ratio:

Post-test odds = Pre-test odds × positive likelihood ratio

0.25× 6 = 1.50

Following this, the post-test odds can be used to transition back to
probability and to calculate the post-test probability of sustaining
a future injury:

Post-test probability =
Post-test odds

Post-test odds+ 1

1.5
1.5+ 1

= 0.60

Before considering injury history, the probability of injury for
the 200 athletes was 20%, or a 2 in 10 chance. After taking into
account injury history (or the ‘new evidence’), the probability
of injury for the previously injured athletes increased to 60%,
or a 6 in 10 chance. A concise summary of these steps and the
calculations involved can be found in Table 1.

Continuous Variables
Up to this point, previous injury has been used as an example
to explain methodologies that can be used to determine the
association between a factor and the risk of injury. However,
in the current example, injury history is a binary categorical
variable. This means there are only two possible options:
previously injured or previously uninjured. Such data can be
easily expressed in a contingency table (Figure 1). Factors
associated with an increase or decrease in the risk of injury,
however, are often continuous in nature and not binary
(Akobeng, 2007c). Continuous variables, such as anthropometric
characteristics, running distances or muscular strength, are
measured and can result in any value within a feasible range. In
order to express these data in a contingency table and implement
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TABLE 1 | A summary of the steps involved in calculating the post-test probability of an injury occurring given a history of injury.

Step Statistic Value Calculation Description

1. Pre-test Odds (as a decimal) 0.25 TP+FN
FP+TN The decimal odds of sustaining a future injury

for all athletes, prior to accounting for previous
injury. This can also be calculated using the
pre-test probability (see section “Pre-test and
Post-test Probabilities”).

Odds (as a ratio) 1:4 As above, calculated as a fraction The likelihood of a future injury occurring (1)
compared to the likelihood of a future injury not
occurring (4) for all athletes.

Probability 20% TP+FN
TP+FP+FN+TN × 100 The percentage of athletes likely to sustain a

future injury (prior to accounting for previous
injury).

Explanation 2 in 10 chance − This can simplified to a 1 in 5 chance.

2. Likelihood ratio Positive likelihood ratio 6 Sensitivity
1−specificity The magnitude by which having a previous

injury increases the odds of sustaining a future
injury. This is calculated using sensitivity and
specificity (see section “Sensitivity and
Specificity”).

3. Post-test Odds (as a decimal) 1.5 Pre-test odds × positive likelihood ratio The decimal odds of athletes with a previous
injury sustaining a future injury.

Odds (as a ratio) 6:4 As above, calculated as a fraction The likelihood of a future injury occurring (6)
compared to the likelihood of a future injury not
occurring (4) for athletes with a previous injury.

Probability 60% Post-test odds
Post-test odds+1 × 100 The percentage of previously injured athletes

likely to sustain a future injury. This is calculated
using the post-test odds.

Explanation 6 in 10 chance − This can be simplified to a 3 in 5 chance.

The derived values have been calculated using the example and mock dataset illustrated in Figure 2. For a detailed outline of the steps involved, see section “Pre-test
and Post-test Probabilities.” TP, true positive; TN, true negative; FP, false positive; FN, false negative.

the previously discussed methods, a cut point must be selected
and athletes must be classified as being either above or below
the cut point. This cut point may be chosen arbitrarily, or
it may depend on the distribution of the data (i.e., above or
below the mean). Alternatively, a more pertinent option is to
select the cut point which maximizes sensitivity and specificity
(Akobeng, 2007c). This can be done using a receiver operating
characteristic (ROC) curve.

The ROC curve was first developed during the Second World
War and was used to analyze the classification accuracy of radar
operators in distinguishing a signal from noise in radar detection
(Streiner and Cairney, 2007). When the sensitivity of the radar
was increased, true signals were better detected. However, this
also increased the amount of noise picked up and the likelihood
of this being misinterpreted as a true signal, the consequence
of which often meant death (Streiner and Cairney, 2007). The
ROC curve was implemented to maximize the amount of true
signals detected while minimizing the amount of noise picked up
(Streiner and Cairney, 2007).

More recently, ROC curves have been used in the medical
sphere for the evaluation of diagnostic tests (Streiner and
Cairney, 2007). In the current context of sports injuries, however,
a ROC curve can be used to illustrate how well a continuous
variable performs as a binary classifier (i.e., injured or uninjured)
(Akobeng, 2007c). A ROC curve can be created by plotting
the true positive rate (sensitivity) against the false positive rate
(1 – specificity) at every conceivable cut point for a continuous

variable (Figure 3). The false positive rate, which is the inverse
of specificity, is the proportion of athletes incorrectly classified
as prospectively injured. The perfect cut point for a continuous
variable would result in 100% sensitivity and 100% specificity
(that is, all injured and uninjured athletes correctly classified
as such). However, as illustrated in Figure 3, an increase in
sensitivity will typically result in an increase in 1 – specificity
(or a decrease in specificity) (Akobeng, 2007c). The cut point
which results in sensitivity closest to 1 and 1 – specificity
closest to 0 (top left-hand corner of the graph illustrated in
Figure 3), will be the cut point which maximizes the number of
correct classifications while minimizing the number of incorrect
classifications (Akobeng, 2007c). This can be determined as
the cut point which yields the closest value to 1 given the
following formula:

Sensitvity−
(
1− specificity

)
An optimal cut point, however, is highly specific to the spread
of the data from which it is derived. While it can provide
information about a variable and its application to a specific
cohort, in reality, a statistically derived cut point has little clinical
relevance. A more important use of a ROC curve is the ability to
calculate the area under the ROC curve, commonly referred to as
simply area under the curve (AUC). The higher the sensitivity
and the lower the 1 – specificity at every point on a ROC
curve, the greater the AUC will be. Illustrated in Figure 3 as
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FIGURE 3 | An example of a receiver operating characteristic curve, which can be used to illustrate how well a continuous variable performs as a binary classifier.
The true positive rate (sensitivity) is plotted against the false positive rate (1 – specificity) at every conceivable cut point for a continuous variable. The gray shaded
area indicates the area under the curve.

the gray shaded area, AUC is an overall measure of how well
a continuous variable (not a specific cut point for that variable)
can distinguish between the prospectively injured and uninjured
athletes (Akobeng, 2007c). For example, if we operate under the
assumption that greater running distances increase the risk of
injury, then we would assume that the injured athletes should
have run further than the uninjured athletes. The AUC is equal to
the proportion of cases in which this assumption proves to be true
(Akobeng, 2007c). An AUC of 0.5 (illustrated as the area below
the 45 degree line in Figure 3) indicates classification no better
than random chance, whereas 1.0 indicates perfect classification.
An AUC of less than 0.5 suggests that the assumption regarding
the direction of our continuous variable is incorrect. In the
previous example, a value less than 0.5 would indicate that lesser
running distances, not greater, increase the risk of future injury.
There are no formal guidelines, however, as to interpreting which
values indicate good or poor performance.

ASSOCIATION VERSUS PREDICTION

The methodologies discussed up to this point are appropriate
for investigating the association between a variable and the risk
of injury. It can be assumed that two variables are associated
when one variable provides information about the other (Altman
and Krzywinski, 2015; Stovitz et al., 2019). Studies investigating
association are important due to their ability to identify injury

risk factors and provide important information regarding the
etiology of injuries (Bahr and Holme, 2003). Research of this
nature can help us understand why an injury occurs, either
directly or indirectly (McCall et al., 2017). If one variable causes
a specific outcome in another variable, then the two variables
are associated and direct causation can be inferred (Altman and
Krzywinski, 2015; Stovitz et al., 2019). However, two variables can
still be associated even in the absence of direct causation (Altman
and Krzywinski, 2015; Stovitz et al., 2019). Indirect causation
occurs when one variable influences the outcome of another
variable via an intermediate variable (Altman and Krzywinski,
2015; Stovitz et al., 2019). Two associated variables may simply
have a common cause or even a common consequence, rather
than a direct link (Altman and Krzywinski, 2015; Stovitz et al.,
2019). For example, we might observe a strong association
between going to bed with our shoes still on and waking up with
a headache the following morning. However, simply ensuring
we remove our shoes before we go to bed won’t prevent a
headache the following morning. Both of these events are much
more likely mediated by the amount of alcohol consumed before
going to bed. From a sports injury perspective (adapted from
Stovitz et al., 2019), we might observe an increase in the risk
of sustaining an injury with an increase in the number of goals
scored from penalties during a soccer match. However, reducing
the amount of goals scored from penalties by recruiting a world-
class goalkeeper likely won’t reduce the risk of injury. Injury risk,
as well as the number of goals scored from penalties, will instead
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be directly associated with the number of dangerous tackles for
which the referee calls a penalty (Stovitz et al., 2019). There is
also the possibility that the correlation between two variables is
simply the product of luck and not a meaningful relationship.
This occurrence is referred to as a type I error. A type I error
occurs when an effect is inferred, when no effect exists in reality.
A type II error, however, occurs when no effect is inferred, when
in reality there is an effect. In regards to type I errors, one study
has observed that National Football League teams with animals
depicted in their logos were at a reduced risk of concussion
compared to teams without animal logos (Smoliga and Zavorsky,
2017). Based on these data, it is suggested (satirically) that teams
should consider changing their logos in order to reduce the risk
of concussion (Smoliga and Zavorsky, 2017).

Difficulties in understanding the nuances of association versus
prediction may result in practitioners concluding that a factor
associated with injury risk can be used to predict (and ultimately
prevent) injury (McCall et al., 2017). In turn, this may lead
to incorrect inferences being made from spurious data. In the
context of injuries, association can help us identify individual
pieces to the overall puzzle of why injuries occur, but only at a
theoretical (i.e., group) level. Prediction, however, is the ability
to apply the theoretical framework (or the overall puzzle) at
an individual level and make predictions from known values to
unknown outcomes (Shmueli, 2010). A practical example of the
discrepancies between association and prediction, is hamstring
strain injury (HSI) risk in elite Australian footballers. A group
of 186 elite Australian footballers, competing in the 2013 AFL
season, had their eccentric hamstring strength measured at the
start of pre-season via a field testing device (Opar et al., 2015).
Athletes below 256 N of eccentric hamstring strength were found
to be at an increased risk of HSI throughout the season, relative
to the athletes above this cut point (Opar et al., 2015). This
cut point produced the highest sensitivity and specificity (0.63
and 0.65 respectively) and resulted in a relative risk of 2.7 (95%
confidence interval = 1.3–5.5) (Opar et al., 2015). Additionally,
significant interactions between eccentric hamstring strength,
age and previous HSI data were observed, with the authors
concluding that these factors examined collectively can better
assist in assessing an individual’s risk of HSI (Opar et al., 2015).
It may be tempting to conclude that 256 N as a cut point
for eccentric hamstring strength offers some predictive ability
when it comes to HSIs in elite Australian footballers. However,
this cut point was determined retrospectively from the data it
was applied to and as a result, is closely fit to the data from
which it was derived. Therefore, the cut point may appear to
display some level of predictive capacity within that particular
cohort. In reality, however, inferences regarding the predictive
ability of the cut point cannot be made without applying it to
another cohort from which it was not a derivative of (Bahr, 2016).
These methodologies (i.e., reductionist methodologies) are useful
in establishing a link between certain factors and the risk of
injury, but they cannot be used to predict injury (Bahr, 2016).
A more recent study replicated the same data collection methods
two years following the original investigation (2015 AFL season)
(Ruddy et al., 2017). This study used the dataset from the 2013
season, to build a model with the aim of predicting HSI outcomes

during the 2015 season (Ruddy et al., 2017). To investigate the
predictive ability of age, previous HSI and eccentric hamstring
strength data, this study employed a machine learning approach
(i.e., a complex approach), which will be discussed later in this
narrative review. It was concluded, however, that despite these
risk factors showing an association with the risk of HSI, these
data could not be used to predict the occurrence of HSI with any
consistency (Ruddy et al., 2017). Other research has highlighted
the need for data to be shared and for studies to be replicated,
so that results can be verified and casual effects, rather than
coincidental effects, can be established (Nuzzo, 2015; Smoliga and
Zavorsky, 2017; van Dyk et al., 2017).

Reductionist Versus Complex
Approaches
It has long been suggested that a univariable approach (that
is, investigating a single variable’s impact on injury risk) may
be too simplistic and that in order to better understand the
etiology of injuries, the collective contribution of multiple factors
to injury risk must be examined (a multivariable approach)
(Bahr and Holme, 2003; Quatman et al., 2009; Mendiguchia
et al., 2012; Nielsen et al., 2016). A similar study to those
aforementioned, investigating HSI risk in elite soccer players,
employed a multivariable approach to identify HSI risk (Timmins
et al., 2016). Biceps femoris fascicle length, eccentric hamstring
strength, injury history and age were all examined in concert to
determine the collective impact of these variables on HSI risk
(Timmins et al., 2016). Despite implementing a multivariable
approach, this study found that these variables only accounted for
approximately 30% of the risk associated with HSI (Nagelkerke
R2 coefficient = 0.31) (Timmins et al., 2016). It is becoming widely
accepted that injuries occur as a result of complex and non-linear
interactions amongst multiple variables and that conventional
approaches, even multivariable ones, are unlikely to capture
the dynamic and multiplex nature of injuries (Quatman et al.,
2009; Bittencourt et al., 2016; Ruddy et al., 2016). Therefore,
it has been proposed that researchers and practitioners alike
need to shift their perspective of injury etiology from one
of reductionism to one of complexity (Quatman et al., 2009;
Mendiguchia et al., 2012; Bittencourt et al., 2016).

The previously discussed statistical approaches are
reductionist in nature. Reductionism assumes that all the
parts of a system (in this case, injury etiology) can be broken
down and examined individually and then summed together to
represent the system as a whole (Quatman et al., 2009). Quatman
et al. (2009) describe it as examining the individual pieces of a
bike and assuming you understand how all the pieces fit together
to operate as a whole system. If you have never seen a bike
before, your interpretation of how all the pieces fit together to
create the bike and how the bike then operates may be wildly
inaccurate (Quatman et al., 2009). Even when implementing a
multivariable approach, conventional methods are still limited
by the assumption that a system is equal to the sum of its parts
(Mendiguchia et al., 2012). A reductionist approach is useful
as it allows us to identify and focus on the individual parts of a
system (in this case, injury risk factors) even if it fails to capture
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the complex, non-linear interactions which occur amongst the
individual parts to form the whole system (Bittencourt et al.,
2016). Studies employing reductionist approaches can be used,
however, to inform and implement complex approaches in future
research (Bittencourt et al., 2016). Simply put, the relevance of a
variable should be determined via reductionist (or conventional)
approaches, prior to being used to predict specific outcomes.

Bittencourt et al. (2016) propose a complex, albeit theoretical,
model for injury etiology. This model has been adapted and
graphically represented in Figure 4. At the beginning of the
model, we have what has been coined as the web of determinants
(Philippe and Mansi, 1998; Bittencourt et al., 2016). The web
is made up of individual factors, some of which contribute to
the risk of injury to greater extents (as indicated by the size
of the circles and their borders). All these factors interact with
other factors to differing degrees to form the risk profile. This
risk profile is an individual athlete’s level of predisposed injury
risk. An athlete must be exposed to the risk of injury, however,
and this exposure occurs during training or competition. If an
athlete is not exposed to the risk of injury, the likelihood of
an injury occurring is near zero. During an athlete’s exposure,
an inciting event may occur and this can result in an injury.
The other outcome is no injury. How much an athlete trains
or competes and what they do during these sessions (i.e., their
level of exposure) will feed back into the web and revise their
subsequent and resulting risk profile. The outcome (injury or no
injury) will also influence their future risk profiles. This model,
however, is theoretical and a complex approach can be difficult
to implement in a practical setting (Meeuwisse et al., 2007;

Bittencourt et al., 2016). It has been suggested, however, that
machine learning may be an appropriate option when applying
this complex model to the real world (Quatman et al., 2009;
Bittencourt et al., 2016).

Machine Learning
Machine learning is a field of computer science which involves
building algorithms to learn from data and make predictions
without being programmed what to look for or where to look
for it. Machine learning techniques can be either supervised or
unsupervised. Unsupervised learning is the process by which
predictions are made on a dataset with no corresponding
outcome variable (Kotsiantis, 2007). However, in prospective
injury studies, the outcome variable (injury or no injury) is
typically known. Therefore, supervised learning is more relevant
to injury research. Supervised learning is the process by which a
dataset with a known outcome variable, referred to as training
data, is used to identify patterns and predict the same, yet
withheld, outcome variable of an independent dataset, referred to
as testing data (Figure 5; Han and Kamber, 2006). The training
data is used to build the model whereas the testing data is used
to measure the predictive performance of the model on unseen
data, or data that was not used to build the model. A greater
amount of training data will better allow the machine learning
algorithm to learn from the data and identify complex and non-
linear patterns, if such patterns exist. A dataset, however, can be
split into training and testing data a number of different ways.
For example, if the dataset consists of multiple seasons, all prior
seasons can be used as training data to predict the outcomes of

FIGURE 4 | A complex systems approach for modeling the risk of injury, adapted from Bittencourt et al. (2016). The web of determinants represents the individual
risk factors as a collective, with the size of the circle indicating that variable’s level of influence. These variables interact with each other to differing degrees to result in
a risk profile. An athlete is then exposed to the risk of injury during training/competition. During an athlete’s exposure to the risk of injury, an inciting event may occur
and this can result in an injury. The other outcome is no injury. How much an athlete trains or competes and what they do during these sessions (i.e., their level of
exposure) will feed back into the web and revise their subsequent and resulting risk profile. The outcome (injury or no injury), will also influence their future risk profiles.
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FIGURE 5 | A typical supervised learning modeling approach. A dataset with
a known outcome variable (i.e., injured or uninjured), referred to as training
data, is used to identify patterns and predict the withheld outcome variable of
an independent dataset, referred to as testing data. The performance of the
model can then be assessed by comparing the predicted outcomes against
the withheld outcome variable of the testing data.

the most current season. Alternatively, the data can be randomly
sampled and a certain proportion can be allocated as training
data, with the remaining data used as testing data. There is no
consensus as to how much data should be used as training data.
However, one study suggests that using anywhere between 40
and 80% as training data will likely result in optimal predictive
performance (Dobbin and Simon, 2011).

There are a number of different types of algorithms that
can be used to build predictive models (Kotsiantis, 2007). Each
algorithm has different underlying mathematical functions, as
well as a unique set of parameters that can be controlled to
determine how the algorithm interacts with and learns from
data (Kotsiantis, 2007). Some algorithms are more robust and
are less influenced by small nuances in data, whereas others are
more complex and sensitive. Different types of algorithms are
suited to different types of data, but it is typically good practice
to implement a number of different algorithms and compare
performances (Kotsiantis, 2007). It is beyond the scope of this
narrative review to explain the different mathematical functions
of the algorithms. However, readers are directed to additional
sources for further information (Kotsiantis, 2007). Below are a
list of commonly implemented algorithms for binary (i.e., yes or
no) prediction:

• Naïve Bayes
• Logistic regression

• Decision tree
• Random forest
• K-nearest neighbors
• Generalized estimating equation
• Support vector machine
• Neural network

When using different algorithms to build a predictive model,
the goal is to select a combination of parameters that optimize
an algorithm’s ability to perform on the testing data (Bergstra
and Bengio, 2012). Finding the optimal parameter combination
will typically involve applying all potential combinations to the
data and comparing the performance of each (Bergstra and
Bengio, 2012). One potential issue that should be considered
when selecting the optimal parameter combination is overfitting.
Overfitting occurs when the combination of parameters selected
are fit too closely to the training data from which they
are ultimately derived (Kotsiantis, 2007). This reduces the
generalisability of a model and its ability to perform on unseen
testing data (Kotsiantis, 2007). One solution to over-fitting is
cross-validation (Bergstra and Bengio, 2012). A common type
of cross-validation, known as k-fold cross-validation, splits the
training data into k equal subsets. One of the subsets is withheld
and the remaining subsets are used to search for the optimal
parameter combination. The selected parameter combination is
then validated using the withheld subset. This process is repeated
k-fold, with each subset being withheld once as the validation
subset. The parameter combination that performs the best, on
average, across each fold is then selected for the final model.

There are a number of other important considerations when
implementing a machine learning approach. When using a
variety of continuous variables as predictors, machine learning
algorithms can be sensitive to the vastly different scales and
magnitudes of the different variables (Han and Kamber, 2006).
For example, 2 m could be considered large for an athlete
in terms of stature, but nothing at all in terms of running
distance. Therefore, it is important to consider transforming all
continuous data prior to modeling them. The simplest method of
data transformation is normalization (Han and Kamber, 2006).
Normalization is the process of scaling values so that they lie
within a specific range, typically one to zero. Data are normalized
using the following equation:

x1
=

x−min
max−min

Where x equals the original value, min equals the minimum value
in the sample, max equals the maximum value in the sample and
x1 equals the normalized value.

Normalization, however, can result in a loss of information,
particularly when it comes to outliers (Han and Kamber, 2006).
Therefore, particularly in machine learning, standardization is a
more appropriate option. Standardization involves transforming
data so that the mean is equal to zero and the standard
deviation is equal to one. A standard score is more commonly
known as a z-score. Standard scores are calculated using the
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following equation:

z1
=

z − z̄
s

Where z equals the original value, z̄ equals the sample mean,
s equals the sample standard deviation and z1 equals the
standardized value.

Another machine learning challenge is class imbalance
(Japkowicz and Stephen, 2002). Class imbalance is highly specific
to predictive modeling of injuries. Although injury rates in
sports such as Australian football, soccer and rugby may be
considered high (Orchard et al., 2013), the number of uninjured
athletes will likely always outweigh the number of injured
athletes. In the case of a class imbalance, a predictive model
can achieve high accuracy by always predicting the over-
represented class (in this case, uninjured) (Chawla et al., 2002).
However, the high accuracy would only be reflective of the
underlying class distribution. A common method of dealing
with imbalanced classes is resampling. Resampling can involve
both over-sampling and under-sampling. Under-sampling is
the process of randomly removing a proportion of the over-
represented class, whereas over-sampling is the process of
randomly copying and adding a proportion of the under-
represented class. An alternative solution is synthetic minority
over-sampling technique (SMOTE), which is a combination of
both over- and under-sampling (Chawla et al., 2002). Rather than
copy already existing data points from the under-represented
class, SMOTE synthetically creates new data points which have
similar features to that class (Chawla et al., 2002). Implementing
techniques such as cross-validation and SMOTE may improve
the predictive performance of a model. However, the method
of evaluating predictive performance (see section “Evaluating
Predictive Performance”) also needs to be considered carefully.

Evaluating Predictive Performance
When predicting whether an athlete will sustain an injury or
remain uninjured, the predicted outcomes versus the actual
outcomes can be expressed in a contingency table, similar to
Figure 2. Rather than tabulating the number of prospective
injuries versus the presence/absence of the variable of interest,
the number of predicted injuries can be referenced against the
number of actual injuries. In the case of prediction:

• True positive (TP) = the athlete was predicted as injured
and was injured.
• False positive (FP) = the athlete was predicted as injured

but avoided injury.
• False negative (FN) = the athlete was predicted as uninjured

but was injured.
• True negative (TN) = the athlete was predicted as uninjured

and avoided injury.

Accuracy is the simplest metric that can be used to evaluate
the performance of a predictive model (Han and Kamber, 2006).
Accuracy is simply the percentage of correct predictions and,
using the data from Figure 6, is calculated as:

Accuracy =
TP + TN

TP + FP + FN + TN

30+ 140
30+ 20+ 10+ 140

= 0.85

Accuracy, however, is a poor indicator of performance when the
class distribution is not equal, as a predictive model can achieve
high accuracy by always predicting the over-represented class
(Chawla et al., 2002). Cohen’s kappa coefficient is an alternative
to accuracy that accounts for the base rate of expected accuracy
due to random chance. The first step when calculating Cohen’s
kappa coefficient is to calculate accuracy as above. The next step,
using the data from Figure 6, is to calculate the probability of a
true positive occurring by chance (P1):

P1
=

TP + FP
TP + FP + FN + TN

×
TP + FN

TP + FP + FN + TN

30+ 20
30+ 20+ 10+ 140

×
30+ 10

30+ 20+ 10+ 140
= 0.05

The next step is to calculate the probability of a true negative
occurring by chance (P2):

P2
=

FN + TN
TP + FP + FN + TN

×
FP + TN

TP + FP + FN + TN

10+ 140
30+ 20+ 10+ 140

×
20+ 140

30+ 20+ 10+ 140
= 0.60

The overall probability of a correct classification occurring by
chance (P3) is then calculated as:

P3
= P1

+ P2

0.05+ 0.60 = 0.65

Cohen’s kappa coefficient is then calculated as:

Cohen′s kappa coefficient =
Accuracy− P3

1− P3

0.85− 0.65
1− 0.65

= 0.57

Both accuracy and kappa, however, are calculated using only the
number of correct and incorrect predictions and do not account
for the predicted probability of injury. An athlete will be predicted
as injured if the model returns a probability of injury greater
than 50%. If Athlete A has a 49% probability of injury and
Athlete B has 1% probability of injury, both these athletes are
more likely to remain uninjured and will be predicted as such.
Accuracy and kappa do not account for the fact that Athlete A,
despite being predicted as uninjured, was still 48% more likely
to sustain an injury than Athlete B. An alternative method that
accounts for the magnitude of the probability rather than just
the binary prediction is AUC. As outlined previously (see section
“Continuous Variables”), a ROC curve can be constructed by
plotting the true positive rate against the false positive rate at
every conceivable cut point for a continuous variable. In this
case, however, the curve can be constructed by plotting the true
and false positive rates at every conceivable cut point for the
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estimated injury probabilities (0% to 100%). The AUC is equal to
the proportion of cases where a prospectively injured athlete had
a higher estimated probability of injury than an uninjured athlete
(Akobeng, 2007c).

PREDICTIVE MODELING AND ITS
LIMITATIONS IN SPORTS INJURY
RESEARCH

Machine learning has been used to predict outcomes in a variety
of fields for a number of years (Falk et al., 1998; Niska et al.,
2004; Farmer et al., 2012). Its use in sports related research,
however, is becoming increasingly popular. Machine learning
has been used to predict the outcomes of matches in baseball,
basketball and soccer (Joseph et al., 2006; Haghighat et al.,
2013; Zimmermann et al., 2013; Soto Valero, 2016), although
the application of these techniques in modeling the risk of
injuries in sport is limited. However, a growing number of studies
have attempted to predict injuries using previously established
risk factors (Ruddy et al., 2017; Carey et al., 2018). One study,
which was previously mentioned, attempted to predict HSI in
elite Australian footballers (Ruddy et al., 2017). Age, previous
HSI and eccentric hamstring strength data, collected across two
AFL seasons, were modeled using machine learning methods
in an effort to identify risk and predict HSI (Ruddy et al.,
2017). This study also collected additional data, which hasn’t
been strongly associated with HSI risk, to investigate whether
the inclusion of these variables would improve the predictive
performance of the models. When predicting HSIs that occurred
within the same season, a median AUC of 0.58 was observed
(Ruddy et al., 2017). When data from the 2013 AFL season
was used to predict HSIs that occurred during the 2015 AFL
season, the median AUC was 0.52 (Ruddy et al., 2017). It was
also noted that the inclusion of the additional variables did
not improve the performance of the models. The authors also
implemented SMOTE in an effort to combat the imbalanced
classes. No improvements in performance were observed across
all models built using SMOTE-sampled data (Ruddy et al., 2017).
This study concluded that eccentric hamstring strength, age
and previous HSI data cannot be used to identify Australian
footballers at an increased risk of HSI with any consistency
(Ruddy et al., 2017).

It is suggested that the lack of predictive performance may
be for a number of reasons. Firstly, data were only collected
at the beginning of pre-season and it is unknown whether
more frequent measures of the variables included in the models
would have improved performance. The methods implemented
in this study (Ruddy et al., 2017) assume that each athletes’ level
of eccentric hamstring strength remained constant throughout
the season (or up to the point of HSI). However, it has been
suggested that changes in strength are more likely to influence
the risk of injury than strength measured at one time point
alone (Meeuwisse et al., 2007). Accordingly, it has also been
suggested that researchers need to consider the risk factors
they are investigating and measure data during a time period
that is aetiologically relevant (i.e., looking backward from an

injury rather than forward from the beginning of a season)
(Meeuwisse et al., 2007). In reality, this approach is difficult to
implement, particularly in prospective cohort studies. However,
considering the different time courses over which risk factor data
are measured is an important consideration when modeling the
risk of injury. Additionally, a number of factors that have been
associated with the risk of HSI were not included in the models
and this is likely to have had a significant impact on the ability to
predict HSI occurrence (Ruddy et al., 2017). It was suggested that
the large variability in AUC seen with each iteration of the models
highlights the fragility of the dataset used, with small changes to
the randomly sampled training and testing data vastly influencing
the performance (Ruddy et al., 2017). As discussed previously,
a larger amount of training data will improve the ability of
the algorithms to identify patterns and make more meaningful
predictions. It is difficult to estimate the amount of data required
to achieve a more precise model. One study suggests that up
to 10 events (i.e., injuries) per variable are needed to observe
any meaningful predictive performance (Peduzzi et al., 1996).
However, the ability to capture large injury numbers is a current
limitation of sports medicine research (van Dyk et al., 2017). To
overcome this, there has been a call to make datasets from sports
injury studies available to other researchers, so that analyses and
results can be replicated and verified (Smoliga and Zavorsky,
2017; van Dyk et al., 2017). Collaborative efforts such as this will
help prevent incorrect inferences being made from spurious data
and will assist in developing interventions that are underpinned
by sound scientific rationale (Smoliga and Zavorsky, 2017; van
Dyk et al., 2017). Given the limitations of smaller datasets,
complex approaches are still likely to provide more informative
results than reductionist approaches (Bittencourt et al., 2016).
However, results pertaining to analyses of smaller datasets should
be interpreted cautiously.

Similar research has also investigated whether training load
data could be used to predict non-contact injuries in a single
team of elite Australian footballers (Carey et al., 2018). A number
of variables were collected on a daily basis across three AFL
seasons. These variables included total running distance (m),
moderate-speed running distance (m between 18 and 24 km/h),
high-speed running distance (m above 24 km/h), PlayerLoad (an
accelerometer metric measured in arbitrary units) and ratings
of perceived exertion (Carey et al., 2018). Similar machine
learning techniques and algorithms were used to build predictive
models and a mean AUC of 0.65 was observed (Carey et al.,
2018). When the models were used to predict hamstring related
injuries only, the mean AUC was 0.72 (Carey et al., 2018).
However, the mechanisms of these injuries were unknown and
not necessarily acute HSIs and this is likely to have influenced
the results. The slight improvements in predictive performance,
albeit using different data, suggest that daily observations, as
opposed to observations from a single time point, may provide
greater insight in regards to the etiology of injuries. However,
the authors of this study also conclude that more variables and
more data are needed to see any meaningful improvements in
predictive capacity (Carey et al., 2018). Further research has also
investigated the relationship between training load data and the
risk of injury in elite Australian footballers (Colby et al., 2017).
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FIGURE 6 | A contingency table expressing the outcomes of a mock dataset. The frequency distribution of athletes predicted as sustaining an injury and athletes
predicted as remaining uninjured is displayed against the frequency distribution of athletes that were actually injured and uninjured.

This study, however, also included additional variables such as
subjective ratings of wellness, history of lower limb pain and
years of playing experience (Colby et al., 2017). Improvements in
performance were observed with the inclusion of the additional
variables, however the estimated injury probabilities were derived
using k-fold cross-validation, as opposed to a true testing/training
split as outlined in Figure 5. The results of this study do, however,
suggest that the inclusion of additional variables (given their
relevance) is an important step in the direction of developing a
more holistic understanding of injury etiology.

When implementing complex approaches to model the risk
of injury, the primary considerations for researchers (as well as
practitioners contributing to research) should be what data to
collect and when to collect them. It has been suggested that in
the medical sphere, researchers often use the data available to
them to shape research questions or areas of exploration (Harrell,
2015). Ideally, research questions and areas of exploration should
be developed and used to inform data collection practices and
methodologies (Harrell, 2015). Despite this sentiment, the biggest
limitation in implementing complex approaches when modeling
the risk of injury remains the amount of data that is required
for these methodologies to make meaningful inferences (Carey
et al., 2018). As previously discussed, complex approaches are
still likely to provide more informative results than reductionist
approaches, even in light of the limitations of small data
(Bittencourt et al., 2016). However, results should always be
interpreted cautiously. To overcome the limitations of small data,
researcher and practitioners need to consider sharing data and

engaging in collaborative efforts to replicate and validate sports
injury research (Smoliga and Zavorsky, 2017; van Dyk et al.,
2017). In spite of this, when modeling the risk of injury through
the application of machine learning, researchers should carefully
consider the technical aspects of any models implemented,
such as the method of data transformation, model validation,
performance assessment and the impact that class imbalances
may have on estimated injury probabilities (discussed in sections
“Machine Learning” and “Evaluating Predictive Performance” of
this narrative review).

PRACTICAL RECOMMENDATIONS AND
CONCLUSION

This narrative review aims to serve as a guide to help the reader
understand and implement commonly used methods when
modeling the risk of injury in team sports. There are a number of
methods that can be used to determine factors that are associated
with injury risk (McCall et al., 2017). However, it is important
to understand the distinction between association and prediction
when reading and interpreting the literature (McCall et al., 2017).
Studies investigating association are important due to their ability
to identify factors that impact the risk of injury (Bahr and Holme,
2003). Studies implementing reductionist approaches should be
used to inform and implement complex approaches in future
research (Bittencourt et al., 2016). However, caution should be
taken when developing complex approaches based on inferences
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made from studies investigating association. As outlined in
Section “Reductionist Versus Complex Approaches” of this
narrative review, the contribution of certain variables to the
etiology of injury (as determined from reductionist approaches)
may be drastically influenced by the multifaceted, non-linear
interactions that a complex approach introduces. The ability to
recognize these interactions, however, is the purpose and the
advantage of implementing a complex approach. A complex
approach will consider how all the pieces fit together to form
the overall puzzle. This puzzle can then be applied and used
to identify injury risk, as a whole, and predict outcomes at
an individual level through the application of methods such as
machine learning (Bittencourt et al., 2016). Although current
research has demonstrated a limited ability to identify risk and
predict injuries at the individual level (Ruddy et al., 2017; Carey
et al., 2018), the application of machine learning in sports injury
research is still in its infancy. However, there are a number of
important considerations, which have been discussed throughout
this narrative review, when implementing these approaches in
future research:

• The variables that are examined; research implementing
reductionist approaches to identifying injury risk factors
should be used to inform the inclusion/exclusion of relevant
variables when implementing complex approaches to
identifying injury risk.
• The types of variables; analyses pertaining to categorical

(e.g., binary) variables and continuous variables should be
interpreted appropriately.

• The amount of data; a larger amount of observations (i.e., time
points) and events (i.e., injuries) will improve the ability to
identify patterns (should any patterns exist) and make more
meaningful predictions.
• Modeling considerations; the method of data transformation

and model validation, as well as the impact that
class imbalances may have on a model, should be
considered carefully.
• The performance metric used; the performance metric

(whether it be predictive or associative) should be considered
and interpreted appropriately.
• Data replication and sharing; researchers and practitioners

should consider making datasets available to other researchers,
so that analyses and results can be replicated and verified.

With these considerations in mind, implementing complex
approaches and improving our ability to identify risk and
predict injuries may lead to a better understanding as to
why they happen (Quatman et al., 2009; Bittencourt et al.,
2016) and this in turn can help improve risk mitigation and
ultimately the prevention of injuries (Quatman et al., 2009;
Bittencourt et al., 2016).
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