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Tissue-Specific Orchestration of
Gilthead Sea Bream Resilience to
Hypoxia and High Stocking Density
Juan Antonio Martos-Sitcha*†, Paula Simó-Mirabet, Verónica de las Heras†,
Josep Àlvar Calduch-Giner and Jaume Pérez-Sánchez*

Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain

Two different O2 levels (normoxia: 75–85% O2 saturation; moderate hypoxia: 42–43%
O2 saturation) and stocking densities (LD: 9.5, and HD: 19 kg/m3) were assessed on
gilthead sea bream (Sparus aurata) in a 3-week feeding trial. Reduced O2 availability
had a negative impact on feed intake and growth rates, which was exacerbated
by HD despite of the improvement in feed efficiency. Blood physiological hallmarks
disclosed the enhancement in O2-carrying capacity in fish maintained under moderate
hypoxia. This feature was related to a hypo-metabolic state to cope with a chronic
and widespread environmental O2 reduction, which was accompanied by a differential
regulation of circulating cortisol and growth hormone levels. Customized PCR-arrays
were used for the simultaneous gene expression profiling of 34–44 selected stress and
metabolic markers in liver, white skeletal muscle, heart, and blood cells. The number
of differentially expressed genes ranged between 22 and 19 in liver, heart, and white
skeletal muscle to 5 in total blood cells. Partial Least-Squares Discriminant Analysis
(PLS-DA) explained [R2Y(cum)] and predicted [Q2Y(cum)] up to 95 and 65% of total
variance, respectively. The first component (R2Y = 0.2889) gathered fish on the basis
of O2 availability, and liver and cardiac genes on the category of energy sensing and
oxidative metabolism (cs, hif-1α, pgc1α, pgc1β, sirts 1-2-4-5-6-7), antioxidant defense
and tissue repair (prdx5, sod2, mortalin, gpx4, gr, grp-170, and prdx3) and oxidative
phosphorylation (nd2, nd5, and coxi) highly contributed to this separation. The second
component (R2Y = 0.2927) differentiated normoxic fish at different stocking densities,
and the white muscle clearly promoted this separation by a high over-representation of
genes related to GH/IGF system (ghr-i, igfbp6b, igfbp5b, insr, igfbp3, and igf-i). The third
component (R2Y = 0.2542) discriminated the effect of stocking density in fish exposed
to moderate hypoxia by means of hepatic fatty acid desaturases (fads2, scd1a, and
scd1b) and muscle markers of fatty acid oxidation (cpt1a). All these findings disclose
the different contribution of analyzed tissues (liver ≥ heart > muscle > blood) and
specific genes to the hypoxic- and crowding stress-mediated responses. This study
will contribute to better explain and understand the different stress resilience of farmed
fish across individuals and species.

Keywords: hematology, hypometabolism, hypoxia, limiting oxygen saturation, Sparus aurata, stocking density,
tissue-specific transcriptomics
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INTRODUCTION

Several attempts have been made over the course of last
years to monitor the ecological and physiological impacts
of a reduced O2 availability in aquatic environments (Ekau
et al., 2010; Richards, 2011; Zhu et al., 2013; Deutsch
et al., 2015). The magnitude and orchestration of adaptive
responses from a physiological point of view, including blood
hematology and metabolic regulation, reflects the duration
and intensity of hypoxic stimuli in different marine species
(Martos-Sitcha et al., 2017; Cadiz et al., 2018), being defined
the limiting O2 saturation (LOS) as the threshold level where
regulatory mechanisms are no longer sufficient to maintain
O2 consumption without compromising any physiological
function (Remen et al., 2015, 2016). To minimize hypoxia
impact, fish reduce feed intake and reorganize its metabolism
to limit the tissue O2 demand (Hopkins and Powell, 2001;
Bermejo-Nogales et al., 2014b). This allows to preserve aerobic
metabolism by means of a restricted mitochondrial respiration
and a shift in substrate preferences, as it has been reported
in humans and rodents during the metabolic adaption of
skeletal muscle to high altitude hypoxia (Murray, 2009). Other
adaptive responses include changes in the production and
scavenging of reactive oxygen species (ROS) (Lushchak and
Bagnyukova, 2006; Bermejo-Nogales et al., 2014a), gill surface
functionality (Nilsson, 2007) and hemoglobin (Hb)-O2 binding
characteristics (Jensen and Weber, 1982; Nikinmaa, 2001).
In most aquaculture scenarios, these adaptive features are
commonly associated to increases in temperature and high
stocking rearing densities (Person-Le Ruyet et al., 2008; Vikeså
et al., 2017), which in turn can compromise water quality
resulting in impaired fish growth and immunity (Pickering,
1993; Van Weerd and Komen, 1998; Montero et al., 1999;
Ashley, 2007). Indeed, Arctic charr (Salvelinus alpinus) or
meager (Argyrosomus regius) kept at high stocking densities
evidenced a better growth performance than fish reared
at low densities as long as water quality was preserved
(Jørgensen et al., 1993; Millán-Cubillo et al., 2016). The impact
of crowding stress can also be minimized when O2 levels
are not below LOS (Ruer et al., 1987; Araújo-Luna et al.,
2018). Unraveling the combined effects of hypoxia and high
rearing density are, thereby, crucial to warrant welfare during
intensive fish farming.

Progress toward a more sustainable and environmentally
friendly aquaculture requires important investments in both
conventional and new methodologies for a less invasive
and more refined phenotyping of individual farmed fish.
Main achievements so far include the use of acoustic
telemetry or stand-alone biosensors for the non-disturbing
monitoring of feeding behavior or metabolic capabilities
(Føre et al., 2017; Martos-Sitcha et al., 2019). In addition to
that, major progress has been done with the advent of wide-
holistic omics based on functional genomics, proteomics,
metabolomics and metagenomics as powerful toolsets for the
development of a highly technified aquaculture in different
fish species (Yáñez et al., 2015; Martin and Król, 2017;
Martínez-Porchas and Vargas-Albores, 2017; Alfaro and

Young, 2018; Rodrigues et al., 2018). Such approaches are
increasingly used in gilthead sea bream (Sparus aurata), a
highly and economically important cultured fish species in
the Mediterranean area. Thus, a first draft genome based
on genetic-linkage maps (Pauletto et al., 2018) and other
current genome initiatives will contribute to have major
progress in selective breeding and epigenetic research in
gilthead sea bream. Also, in this species, important research
efforts have been conducted to define a reference pattern for
skin/intestine mucus proteome (Estensoro et al., 2016; Pérez-
Sánchez et al., 2017), gut microbiota (Piazzon et al., 2017),
or serum metabolome (Gil-Solsona et al., 2019). Moreover,
the use of high-density microarrays (Calduch-Giner et al.,
2010, 2012, 2014), pathway-focused PCR-arrays (Benedito-
Palos et al., 2014, 2016; Bermejo-Nogales et al., 2014b, 2015;
Pérez-Sánchez et al., 2015; Magnoni et al., 2017; Martos-Sitcha
et al., 2017) and more recently NGS (Piazzon et al., 2019)
have contributed to define tissue-specific gene expression
patterns in response to nutritional, environmental and parasite
challenges. Likewise, the synchronization of the molecular
clock of sea bream larvae, involving more than 2,500 genes
with a clear circadian rhythmicity, has been proposed as
certification of juvenile quality later in life (Yúfera et al.,
2017). In the present study, we aim to go further on the
definition of criteria of fish welfare and quality, regarding
in depth the effect of two different initial stocking densities
(9.5 kg/m3, 19 kg/m3) and O2 saturation levels (85%, 42–43%
O2 saturation) in a 3-week trial with fast growing juveniles
of gilthead sea bream. The analyzed parameters included the
gene expression pattern of a set of growth and metabolic
markers of liver, skeletal muscle, heart and blood cells in
combination with data on growth performance, as well as
blood hematology and biochemistry. The working hypothesis
is that each tissue contributes differentially to the homeostatic
load achievement, helping the generated knowledge to better
exploit the plasticity and resilience of gilthead sea bream under
stressful conditions.

MATERIALS AND METHODS

Animal Care
Gilthead sea bream juveniles of Atlantic origin (Ferme Marine
du Douhet, Bordeaux, France) were reared from early life
stages in the indoor experimental facilities of Institute of
Aquaculture Torre de la Sal (IATS-CSIC, Spain) under
natural photoperiod and temperature conditions (40◦5′N;
0◦10′E). Sea water was pumped ashore (open system)
and filtered through a 10-µm filter. The O2 content of
water effluents in standard conditions was always higher
than 85% saturation, and unionized ammonia remained
below 0.02 mg/L.

Experimental Set-Up and Sampling
Juvenile fish (initial body weight 34.08 ± 0.31 g) were randomly
distributed in 12 90 L tanks coupled to a recirculation system
equipped with physical and biological filters, and programmable
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temperature and O2 devices (Supplementary Figure 1). Water
temperature was daily monitored and maintained at 25−27◦C.
Fish were arbitrarily allocated to constitute two different
initial stocking densities (six tanks per condition) fed once
daily to visual satiety with a commercial diet (EFICO Forte
824, BioMar, Palencia, Spain): LD (low density, 25 fish/tank,
9.5 kg/m3) and HD (high density, 50 fish/tank, 19 kg/m3).
Fish were allowed to acclimate to these conditions for 12 days
before any manipulation. Fish behavior during acclimation was
assessed by routine camera monitoring, and also by visual
observation regarding to normal feeding performance. After
the acclimation period, the water parameters of three tanks of
each initial stocking density were kept unchanged, constituting
the normoxic (>5.5 ppm O2; >85% O2 saturation) groups of
each experimental condition (LDN, low density normoxia; HDN,
high density normoxia). Fish maintained in the remaining six
tanks experienced a gradual decrease in the water O2 level
until reaching 3.0 ppm (42–43% O2 saturation), constituting
the hypoxic groups of each experimental condition (LDH, low
density hypoxia; HDH, high density hypoxia). The normal
range of variation in O2 levels was marked by a rapid drop
(3.8–4 ppm normoxic groups; 2.3 ppm hypoxic groups) 15–
30 min after feeding, with a rapid restoration of reference values
in less than 1 h by the automatic entrance of clean water
from the main reservoir tank. This system allowed maintaining
unionized ammonia below toxic levels (<0.50 mg/L) in both
HDN and HDH groups.

After 22 days under these experimental conditions and
following overnight fasting (>20 h after last meal), 12 fish
(4 per tank) per experimental condition (LDN, LDH, HDN,
and HDH) were anesthetized with 3-aminobenzoic acid ethyl
ester (100 mg/L), weighed and blood was taken from caudal
vessels with EDTA-treated syringes (less than 5 min for all the
fish sampled for each tank). All lethal samples were collected
between 10.00 am and 12.00 am to reduce the biologic variability
due to circadian rhythms and postprandial-mediated effects,
since temperatures used in the present experimental approach
(25−27◦C) ensured that digestion processes have been completed
(Gómez-Requeni et al., 2003). One blood aliquot (25 µL)
was directly collected into a microtube containing 500 µL
of stabilizing lysis solution (REAL total RNA spin blood kit,
Durviz, Valencia, Spain) and stored at −80◦C until total RNA
extraction. Other aliquots were processed for haematocrit (Ht),
Hb, and red blood cells (RBC) counting. The remaining blood
was centrifuged at 3,000 × g for 20 min at 4◦C, and plasma
samples were frozen and stored at −20◦C until biochemical and
hormonal analyses were performed. Prior to tissue collection, fish
were killed by cervical section. Liver and viscera were weighed,
and representative biopsies of liver, dorsal skeletal muscle, and
complete hearts were immediately snap-frozen in liquid nitrogen
and stored at−80◦C until extraction of total RNA.

Blood Biochemistry and Hormonal
Parameters
Measures of Ht were conducted using heparinized capillary
tubes centrifuged at 1,500 × g for 30 min in a Sigma 1-14

centrifuge (Sigma, Germany). Hb was assessed using a Hemocue
Hb 201+ (Hemocue, Sweden). Counts of RBC were made in
a Neubauer chamber, using an isotonic solution (1% NaCl).
Plasma glucose was analyzed using the glucose oxidase method
(Thermo Electron, Louisville, CO, United States). Lactate was
measured in deproteinized samples (perchloric acid 8%) by an
enzymatic method based on the use of lactate oxidase and
peroxidase (SPINREACT S.A., Girona, Spain). Total antioxidant
capacity in plasma samples was measured with a commercial
kit (Cayman Chemical, Ann Arbor, MI, United States) adapted
to 96-well microplates. This assay relies on the ability of
antioxidants in the samples to inhibit the oxidation of ABTS [2,2′-
azino-di-(3-ethylbenzthiazoline sulphonate)] to ABTS radical
cation by metmyoglobin, a derivatized form of myoglobin. The
capacity of the sample to prevent ABTS oxidation is compared
with that of Trolox (water-soluble tocopherol analog) and is
quantified as mM Trolox equivalents. Plasma cortisol levels were
analyzed using an EIA kit (Kit RE52061m IBL, International
GmbH, Germany). The limit of detection of the assay was
3.01 ng/mL with intra- and inter-assay coefficients of variation
lower than 3 and 5%, respectively. Plasma growth hormone
(Gh) was determined by a homologous gilthead sea bream
RIA as reported elsewhere (Martínez-Barberá et al., 1995). The
sensitivity and midrange (ED50) of the assay where 0.15 and
1.8 ng/mL, respectively. Plasma insulin-like growth factors (Igf)
were extracted by acid–ethanol cryoprecipitation (Shimizu et al.,
2000), and the concentration of Igf-I was measured by means of a
generic fish Igf-I RIA validated for Mediterranean perciform fish
(Vega-Rubín de Celis et al., 2004). The sensitivity and midrange
of the assay were 0.05 and 0.7–0.8 ng/mL, respectively.

Gene Expression Analysis
Total RNA from liver, white muscle and heart was extracted
using a MagMax-96 total RNA isolation kit (Life Technologies,
Carlsbad, CA, United States), whereas total RNA from total blood
cells was extracted using the REAL total RNA spin blood kit
including a DNase step. The RNA yield in all tissues was >3.5 µg,
with absorbance measures (A260/280) of 1.9–2.1. Synthesis of
cDNA was performed with the High-Capacity cDNA Archive
Kit (Applied Biosystems, Foster City, CA, United States) using
random decamers and 500 ng of total RNA in a final volume
of 100 µL. Reverse transcription (RT) reactions were incubated
10 min at 25◦C and 2 h at 37◦C. Negative control reactions
were run without RT.

The 96-well PCR-array layout was designed for the
simultaneous profiling of a panel of 43 (liver), 44 (white
muscle and total blood cells) or 34 (heart) genes, including
markers of GH/IGF system (13), lipid metabolism (10), energy
sensing and oxidative metabolism (12), antioxidant defense and
tissue repair (10), muscle growth and cell differentiation (8),
respiration uncoupling (3), xenobiotic metabolism (2), nuclear
receptors (3), transmembrane translocation (8), mitochondrial
dynamics and apoptosis (5), as well as OXPHOS (22) (Table 1).
qPCR reactions were performed using an iCycler IQ Real-time
Detection System (Bio-Rad, Hercules, CA, United States).
Diluted RT reactions were conveniently used for qPCR assays
in a 25 µL volume in combination with a SYBR Green Master
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Mix (Bio-Rad, Hercules, CA, United States) and specific primers
at a final concentration of 0.9 µM (Supplementary Table 1).
The program used for PCR amplification included an initial
denaturation step at 95◦C for 3 min, followed by 40 cycles of
denaturation for 15 s at 95◦C and annealing/extension for 60 s
at 60◦C. All the pipetting operations were made by means of an
EpMotion 5070 Liquid Handling Robot (Eppendorf, Hamburg,
Germany) to improve data reproducibility. The efficiency of
PCRs (>92%) was checked, and the specificity of reactions
was verified by analysis of melting curves (ramping rates of
0.5◦C/10 s over a temperature range of 55–95◦C) and linearity
of serial dilutions of RT reactions (>0.99). Fluorescence data
acquired during the extension phase were normalized by the
delta-delta CT method (Livak and Schmittgen, 2001) using actb
in the liver, white muscle and heart, or cox4a in total blood cells,
as the housekeeping gene due to its stability among different
experimental conditions (average CT varied less than 0.5 in
each tissue). For multi-gene analysis, data on gene expression
were in reference to the expression level of cs in the liver, igfr2
in the white muscle, gcr in the heart, and tim8a in total blood
cells of LDN fish, for which a value of 1 was arbitrarily assigned
(Supplementary Tables 2–5, respectively).

This manuscript follows the ZFIN Zebrafish Nomenclature
Guidelines for gene and protein names and symbols1.

Statistical Analysis
Data on growth performance, blood biochemistry, and gene
expression were analyzed by two-way analysis of variance
(ANOVA) with O2 levels (normoxia and moderate hypoxia) and
stocking conditions (low and high stocking densities) as main
factors. These analyses were followed by the SNK post hoc test for
comparisons among different groups. The significance level was
set at P < 0.05. Analyses were performed using SigmaPlot v13
(Systat Software Inc., San Jose, CA, United States). Unsupervised
multivariate analysis principal component analysis (PCA) was
first performed on data as an unbiased method to observe
trends within conditions at different experimental groups, using
EZinfo v3.0 (Umetrics, Umeå, Sweden). To achieve the maximum
separation among experimental groups, Partial Least-Squares
Discriminant Analysis (PLS-DA) was sequentially applied with
joint data from liver, heart and white muscle, excluding the
results from total blood cells due to its low contribution to the
total variance. The quality of the PLS-DA model was evaluated
by R2Y(cum) and Q2Y(cum) parameters, which indicated the
fitness and prediction ability, respectively. Additionally, 200
random permutation tests to avoid over-fitting of the supervised
model were carried out by SIMCA-P+ v15.0 (Umetrics). Cross-
validation analysis of variance (CV-ANOVA) was applied (p-
value = 0.037). The contribution of differential genes along
liver, white muscle and heart tissues was assessed by means of
Variable Importance in Projection (VIP) measurements. A VIP
score > 1.1 was considered to be an adequate threshold to
determine discriminant variables in the PLS-DA model (Wold
et al., 2001; Li et al., 2012; Kieffer et al., 2016).

1https://wiki.zfin.org/display/general/ZFIN+Zebrafish+Nomenclature+
Conventions

RESULTS

Growth Performance
Data on feed intake, growth and somatic indexes (hepatosomatic
index, HSI; viscerosomatic index, VSI) are shown in Table 2.
Fish reared under moderate hypoxia evidenced lower feed intake,
which resulted in reduced weight gain and SGR. This also affected
liver and viscera weight as well as HSI. This general impairment
of feed intake and growth was further evidenced in fish kept at the
highest density, though FE was improved in moderate hypoxia
and more especially in fish kept at HD (HDH group).

Blood Analysis
Data on blood hematology and biochemistry are shown in
Table 3. The results show a significant effect of O2 level, with a
generalized increase in Hb, Ht, RBC content, MCH, cortisol and
Gh plasma levels, as well as a widespread decrease in MCHC,
MCV and plasma lactate levels. Overall this feature was more
pronounced in fish maintained under LD conditions. In contrast,
the rearing density effect was mostly evidenced in plasma cortisol
levels, which showed a pronounced rise in HD fish that was
exacerbated by hypoxic conditions. Noticeably, significant O2
level and rearing density interactions were found for cortisol, but
also for Ht, MCHC, MCH, and TAA.

Gene Expression Profiling
All genes selected for PCR-arrays were found at detectable levels
in the four tissues analyzed. Results of gene expression profiling
in hepatic selected genes are presented in Supplementary
Table 2. Among them, 22 out of 43 genes were affected by
at least one of the experimental factors or by its interaction
(i.e., the combined effect of confinement stress and hypoxia
exposure leading to expression changes that could not be
attributed to a single parameter), being 11 differentially expressed
(DE) in response to O2 level. Relative expression of markers
from GH/IGF system (ghr-i), oxidative metabolism (nd2),
and antioxidant defense and tissue repair (gpx4, prdx5) was
significantly down-regulated by moderate hypoxia in LDH and
HDH groups. In addition, several genes of lipid metabolism
(elovl1, fads2, and scd1b) were up-regulated in the LD group,
whereas markers of oxidative metabolism (nd5), and antioxidant
defense and tissue repair (gr, sod2, and grp-75) were down-
regulated in fish kept at HD conditions. Stocking density also
affected 11 genes related with the GH/IGF system (ghr-i, ghr-ii,
and igf-i), lipid metabolism (elovl6, fads2, scd1a, scd1b, and lpl),
oxidative metabolism (ucp1, pgc1α) and antioxidant defense and
tissue repair (grp-75). A statistically significant interaction of O2
levels and rearing density was found for igf-ii, fads2, scd1a, scd1b,
pgc1ß, gr, prdx3, and grp-170 genes.

In white skeletal muscle, 20 out of 44 DE genes were affected
at least by one of the experimental condition or by their
interaction (Supplementary Table 3). Markers of the GH/IGF
system were mostly affected by stocking density (ghr-i, igf-
ii, igfbp3, igfbp5b, igfbp6b, insr, and igfr1) rather than by O2
levels (igfr2). Moderate hypoxia up-regulated myod2 expression
as the sole effect on genes related to muscle growth and cell
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TABLE 1 | Genes included in the liver (L), white muscle (M), heart (H), and total blood cells (B) pathway-focused PCR arrays.

Gene name/category Symbol Gene name/category Symbol

GH/IGF system Lipid metabolism

Growth hormone receptor I ghr-i LMH Elongation of very long chain fatty acids 1 elovl1 L

Growth hormone receptor II ghr-ii LMH Elongation of very long chain fatty acids 4 elovl4 L

Insulin-like growth factor-I igf-i LMH Elongation of very long chain fatty acids 5 elovl5 L

Insulin-like growth factor-II igf-ii LMH Elongation of very long chain fatty acids 6 elovl6 L

Insulin-like growth factor binding protein 1a igfbp1a L Fatty acid desaturase 2 fads2 L

Insulin-like growth factor binding protein 2b igfbp2b L Stearoyl-CoA desaturase 1a scd1a L

Insulin-like growth factor binding protein 3 igfbp3 M Stearoyl-CoA desaturase 1b scd1b L

Insulin-like growth factor binding protein 4 igfbp4 L Lipoprotein lipase lpl L

Insulin-like growth factor binding protein 5b igfbp5b M Peroxisome proliferator-activated receptor α pparα L

Insulin-like growth factor binding protein 6b igfbp6b M Peroxisomeproliferator-activated receptor γ pparγ L

Insulin receptor insr M

Insulin-like growth factor receptor I igfr1 M Antioxidant defense and tissue repair

Insulin-like growth factor receptor II igfr2 M Catalase cat LMH

Glutathione peroxidase 4 gpx4 LMH

Energy sensing and oxidative metabolism Glutathione reductase gr LMH

Sirtuin 1 sirt1 LMH Peroxiredoxin 3 prdx3 LMHB

Sirtuin 2 sirt2 LMH Peroxiredoxin 5 prdx5 LMHB

Sirtuin 3 sirt3 LMH Superoxide dismutase [Mn] Mn-sod/sod2 LMHB

Sirtuin 4 sirt4 LMH Glucose-regulated protein, 170 kDa grp-170 LMH

Sirtuin 5 sirt5 LMH Glucose-regulated protein, 94 kDa grp-94 LMH

Sirtuin 6 sirt6 LMH 70 kDa heat shock protein, mitochondrial mthsp70/grp-75/mortalin LMH

Sirtuin 7 sirt7 LMH Glutathione S-transferase 3 gst3 B

Carnitine palmitoyltransferase 1A cpt1a LMHB

Citrate synthase cs LMHB Muscle growth and cell differentiation

Proliferator-activated receptor gamma coactivator 1 alpha pgc1α LMH Myoblast determination protein 1 myod1 M

Proliferator-activated receptor gamma coactivator 1 beta pgc1β LMHB Myogenic factor MYOD2 myod2 M

Hypoxia inducible factor-1 alpha hif-1α LMH Myogenic factor 5 myf5 M

Myogenic factor 6 myf6/mrf4/ herculin M

Respiration uncoupling Myostatin/Growth differentiation factor 8 mstn/gdf-8 M

Uncoupling protein 1 ucp1 L Myocyte-specific enhancer factor 2A mef2a M

Uncoupling protein 2 ucp2 BH Myocyte-specific enhancer factor 2C mef2c M

Uncoupling protein 3 ucp3 M Follistatin fst M

Xenobiotic metabolism Nuclear receptors

Aryl hydrocarbon receptor 1 ahr1 H Glucocorticoid receptor gcr H

Cytochrome P450 1A1 cyp1a1 H Estrogen receptor alpha er-α H

Nuclear respiratory factor 1 nrf1 B

Outer and Inner transmembrane translocation (TOM and TIM complex)

Mitochondrial import receptor subunit Tom70 tom70 B Mitochondrial dynamics and apoptosis

Mitochondrial import receptor subunit Tom34 tom34 B Mitofusin 2 mfn2 B

Mitochondrial import receptor subunit Tom22 tom22 B Mitochondrial fission factor homolog B miffb B

Mitochondrial import inner membrane translocase subunit 44 tim44 B Mitochondrial Rho GTPase 1 miro1a B

Mitochondrial import inner membrane translocase subunit 23 tim23 B Mitochondrial Rho GTPase 2 miro2 B

Mitochondrial import inner membrane translocase subunit Tim8A tim8a B Apoptosis-related protein 1 aifm1 B

Mitochondrial import inner membrane translocase subunit Tim10 tim10 B

Mitochondrial import inner membrane translocase subunit Tim9 tim9 B OXPHOS (Complex IV)

Cytochrome c oxidase subunit I coxi LMHB

Cytochrome c oxidase subunit II coxii LMHB

(Continued)
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TABLE 1 | Continued

Gene name/category Symbol Gene name/category Symbol

OXPHOS (Complex I) Cytochrome c oxidase subunit III coxiii B

NADH-ubiquinone oxidoreductase chain 2 nd2 LMHB Cytochrome c oxidase subunit 4 isoform 1 cox4a B

NADH-ubiquinone oxidoreductase chain 5 nd5 LMHB Cytochrome c oxidase subunit 5A, mitochondrial-like isoform 2 cox5a2 B

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1 ndufa1 B Cytochrome c oxidase subunit 6A isoform 2 cox6a2 B

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 3 ndufa3 B Cytochrome c oxidase subunit 6C1 cox6c1 B

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4 ndufa4 B Cytochrome c oxidase subunit 7B cox7b B

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7 ndufa7 B Cytochrome c oxidase subunit 8B cox8b B

NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 5 ndufb5 B SCO1 protein homolog, mitochondrial sco1 B

NADH dehydrogenase iron-sulfur protein 2 ndufs2 B Surfeit locus protein 1 surf1 B

NADH dehydrogenase iron-sulfur protein 7 ndufs7 B Cytochrome c oxidase assembly protein COX15 homolog cox15 B

NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, assembly
factor 2

ndufaf2 B

differentiation. In contrast, many genes related to energy sensing,
oxidative metabolism, and antioxidant defense and tissue repair
were down-regulated by low O2 levels (sirt1, ucp3, hif-1α,
prdx5, and sod2) or up-regulated in HD conditions (sirt4, sirt7,
coxi, hif-1α, and gpx4). Additionally, a significant interaction
between O2 levels and rearing density is reported for cpt1a
and grp-170.

In heart, changes in O2 saturation and stocking density
triggered significant differences in 19 out of 34 genes presented
in the array (Supplementary Table 4). Up to 13 genes, including
markers of the GH/IGF system (ghr-i), energy sensing and
oxidative metabolism (sirt1, sirt5, sirt6, sirt7, cs, nd5, pgc1α,
pgc1ß, and hif-1α) and antioxidant defense and tissue repair
(cat, prdx5, and sod2) were down-regulated under moderate
hypoxia, especially in HD conditions. The xenobiotic metabolism
marker cyp1a1 was up-regulated by hypoxia in both LD and HD.
Stocking density also down-regulated the expression of several
genes involved in energy sensing and oxidative metabolism (sirt3,
sirt5, cs, and nd2) as well as antioxidant defense and tissue repair
(gr, prdx3, prdx5, grp-170, and grp-75), preferentially under low
O2 levels.

In total blood cells, only 5 out of 44 genes were DE mainly
by the interaction among different experimental conditions
(Supplementary Table 5), being responsive to the stress challenge
enzyme subunits of Complex I (ndufaf2) and Complex IV (coxi,
coxii, cox6a2, and cox15) of the mitochondrial respiratory chain.

In order to assess the differential contribution of the DE
genes in the physiological response to moderate hypoxia and
rearing density, the tissue (liver, white skeletal muscle, and
heart) gene expression dataset was analyzed by PLS-DA. The
discriminant model was based on six components, which
explained [R2Y(cum)] 95% and predicted [Q2Y(cum)] 65%
of total variance (Figure 1A). The validity of the PLS-DA
model was validated using a permutation test (Supplementary
Figure 2). The first three components showed cumulative
values for R2Y and Q2Y of 0.836 and 0.493, respectively.
A clear separation between normoxic (LDN, HDN) and hypoxic
(LDH, HDH) groups was observed along the first component

(R2Y = 0.2889) (Figures 1B,C). Component 2 (R2Y = 0.2927)
clearly separated LDN and HDN normoxic groups (Figure 1B),
whereas component 3 (R2Y = 0.2542) discriminated LDH and
HDH hypoxic groups (Figure 1C).

Genes with a contribution to VIP > 1.1 in component 1 were
a total of 39, with a main contribution of heart (19) and liver
(14) genes involved in energy sensing and oxidative metabolism
(14), antioxidant defense and tissue repair (12) and OXPHOS
(Figure 2). When the second component was also considered,
a total of 44 genes presented VIP values > 1.1 (Figure 3), and
11 out of the 21 new genes (highlighted in yellow) were from
white skeletal muscle. Energy sensing and oxidative metabolism
(12), antioxidant defense and tissue repair (11), GH/IGF system
(11) and OXPHOS (6) were the main categories. Considering the
VIP values from the three main components (Figure 4), most of
the genes due to component three contribution (highlighted in
purple) were related to lipid metabolism.

DISCUSSION

Hypoxia in aquatic habitats is a common disturbance that
is predicted to occur in the future more extensively, more
frequently and for longer periods of time (Intergovernmental
Panel on Climate Change, 2014), becoming a major aquaculture
stressor around the world. This is especially true in the
case of intensive fish farming, and unraveling the adaptive
hypoxic responses helps to better understand the nature of
metabolic disturbances after short- and long-term exposures to
challenging O2 levels. Blood physiological landmarks remain
mostly unaltered in juveniles of gilthead sea bream exposed over
24 h to moderate hypoxia (40% O2 saturation), whereas changes
in Ht and circulating levels of Hb, glucose and lactate are reported
few hours after acute hypoxia (20% O2 saturation) (Martos-Sitcha
et al., 2017). In the same study, gene expression profiling of total
blood cells evidenced a consistent transcriptional response after
strong hypoxic challenges, which serve to ensure a reduced but
more efficient aerobic ATP production during severe hypoxia.
Herein, the combined effects of moderate hypoxia (42–43%
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TABLE 2 | Effects of rearing density and dissolved oxygen level on gilthead sea bream growth performance on a 21-days feeding trial.

LD HD P-value

Normoxia Hypoxia Normoxia Hypoxia [O2] Density Interaction

Initial body weight (g) 34.54 ± 1.11 34.22 ± 0.27 34.32 ± 0.34 33.25 ± 0.45 n.s. n.s. n.s.

Final body weight (g) 56.04 ± 1.89 51.65 ± 0.71 54.02 ± 0.50 48.54 ± 1.05∗∗ 0.003 n.s. n.s.

Feed intake (g DM/fish) 23.78 ± 1.63 18.52 ± 0.7∗ 24.57 ± 1.06 17.54 ± 0.47∗∗ < 0.001 n.s. n.s.

Weight gain (%)1 62.21 ± 0.31 50.94 ± 1.34∗∗ 57.43 ± 1.42 45.97 ± 1.31∗∗ < 0.001 0.003 n.s.

SGR (%)2 2.30 ± 0.01 1.96 ± 0.04∗∗ 2.16 ± 0.04 1.80 ± 0.04∗∗ < 0.001 0.004 n.s.

FE (%)3 0.91 ± 0.03 0.94 ± 0.02 0.80 ± 0.02 0.87 ± 0.01∗ 0.039 0.003 n.s.

Liver weight (g) 0.94 ± 0.07 0.67 ± 0.03∗∗ 0.90 ± 0.06 0.63 ± 0.03∗∗∗ < 0.001 n.s. n.s.

Viscera weight (g) 4.41 ± 0.28 3.84 ± 0.18 4.42 ± 0.19 3.68 ± 0.10∗∗ 0.002 n.s. n.s.

HSI (%)4 1.64 ± 0.07 1.33 ± 0.06∗∗ 1.58 ± 0.07 1.25 ± 0.06∗∗ < 0.001 n.s. n.s.

VSI (%)5 7.78 ± 0.29 7.65 ± 0.25 7.87 ± 0.24 7.38 ± 0.22 n.s. n.s. n.s.

Values on body weight, feed intake, growth, and feed efficiency are the mean ± SEM of triplicate tanks. Values on tissue biometric indexes are the mean ± SEM of 12 fish
(4 fish per replicate tank). P-values are the result of two-way analysis of variance. Non-significance (P > 0.05) is stated by “n.s.”. Asterisks in each row indicate significant
differences with oxygen level for a given rearing density (SNK test, P < 0.05). 1Weight gain (%) = (100 × body weigh increase)/initial body weight. 2Specific growth
rate = 100 × (ln final body weight – ln initial body weight)/days. 3Feed efficiency = wet weight gain/dry feed intake. 4Hepatosomatic index = (100 × liver weight)/fish
weight. 5Viscerosomatix index = (100 × viscera weight)/fish weight.

TABLE 3 | Effects of rearing density and dissolved oxygen level on blood hematology and plasma levels of metabolites, hormones, and total antioxidant capacity.

LD HD P-value

Normoxia Hypoxia Normoxia Hypoxia [O2] Density Interaction

Hemoglobin (g/dl) 7.18 ± 0.24 7.73 ± 0.21 7.38 ± 0.14 7.77 ± 0.26 0.041 n.s. n.s.

Haematocrit (%) 22.18 ± 1.10 32.91 ± 1.65∗∗∗ 28.27 ± 1.77 29.90 ± 1.39 < 0.001 n.s. 0.004

RBC× 10−6 (cells/µl)1 2.45 ± 0.07 2.74 ± 0.07∗∗ 2.38 ± 0.06 2.82 ± 0.08∗∗∗ < 0.001 n.s. n.s.

MCHC (pg/10 µm3)2 34.07 ± 1.12 24.00 ± 1.18∗∗∗ 26.62 ± 1.73 26.46 ± 1.10 < 0.001 n.s. < 0.001

MCH (pg/cell)3 89.79 ± 4.21 116.6 ± 4.46∗∗ 116.5 ± 8.28 109.5 ± 7.21 n.s. n.s. 0.010

MCV (µm3)4 29.50 ± 1.02 28.33 ± 0.76 31.36 ± 0.93 27.73 ± 0.96∗ 0.014 n.s. n.s.

Glucose (mg/dl) 54.39 ± 1.58 52.17 ± 2.44 58.04 ± 1.78 52.73 ± 2.79 n.s. n.s. n.s.

Lactate (mg/dl) 16.30 ± 2.78 4.81 ± 1.41∗∗ 10.22 ± 3.06 4.99 ± 0.84 0.001 n.s. n.s.

TAA (mM Trolox)5 1.34 ± 0.04 1.45 ± 0.04 1.48 ± 0.03 1.43 ± 0.03 n.s. n.s. 0.026

Cortisol (ng/ml) 23.40 ± 5.67 21.08 ± 5.32 35.69 ± 11.15 79.25 ± 9.05∗∗ 0.036 < 0.001 0.027

Growth hormone (ng/ml) 2.34 ± 0.83 6.71 ± 1.17∗ 5.39 ± 1.29 8.33 ± 4.20 n.s. n.s. n.s.

Insulin-like growth factor-I (ng/ml) 46.06 ± 4.76 46.59 ± 4.77 45.78 ± 2.27 41.03 ± 6.29 n.s. n.s. n.s.

Values are the mean ± SEM of 10–12 fish (4 fish per replicate tank). Non-significance (P > 0.05) is stated by “n.s.”. P-values are the result of two-way analysis of variance.
Asterisks in each row indicate significant differences with oxygen level for a given rearing density (SNK test, P < 0.05). 1Red blood cells 2Mean corpuscular hemoglobin
concentration. 3Mean corpuscular hemoglobin. 4Mean corpuscular volume. 5Total antioxidant activity.

O2 saturation) and rearing density (initial density 19 kg/m3,
leading up to 30 kg/m3 at the end of experiment) in a 3-week
trial highlighted reduced growth and a different contribution
of target tissues to the homeostatic load in challenged fish. As
discussed below, the ultimate mechanisms for this adaptive stress
response remain far to be established, though probably they
have a major impact in mitochondrial respiration uncoupling,
which varies across life, tissues, individuals and species (Rolfe and
Brand, 1996; Hulbert et al., 2002, 2006). Indeed, improved energy
efficiency and reduced mitochondrial respiration uncoupling
becomes a priority with low food availability (Auer et al.,
2015), and the expression of mitochondrial uncoupling proteins
(UCP2/UCP3) is differentially regulated by feed restriction
in glycolytic (white skeletal muscle) and highly oxidative
(heart and skeletal red muscle) tissues of gilthead sea bream
(Bermejo-Nogales et al., 2014a).

Growth impairments due to long-term hypoxia exposure have
been noticed in a wide-range of farmed fish, including turbot
(Scophthalmus maximus), European sea bass (Dicentrarchus
labrax), and Atlantic salmon (Salmo salar) (Pichavant et al., 2001;
Remen et al., 2016; Cadiz et al., 2017; Vikeså et al., 2017). As
reported herein in gilthead sea bream, a primary response is the
inhibition of feed intake which would favor a hypo-metabolic
state with a reduced ROS production and risk of oxidative
stress. This is supported by lowered plasma levels of lactate,
which would reflect in hypoxic fish, and in a lower extent in
HDN, a low basal metabolism rather than a shift of aerobic to
anaerobic metabolism. This metabolic re-adjustment has also
been reported in gilthead sea bream juveniles facing multiple
sensorial stressors in a model of chronic stress that mimic daily
aquaculture operations (Bermejo-Nogales et al., 2014b). Thus,
according with the oxystatic theory (Dam and Pauly, 1995;
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FIGURE 1 | (A) Graphical representation of the goodness-of-fit of the PLS-DA model. (B) Two-dimensional PLS-DA score plot representing the distribution of the
samples between the first two components in the model. (C) Two-dimensional PLS-DA score plot representing the distribution of the samples between the first and
third components in the model. R2(cum), explained variance; Q2(cum), predicted variance; LDN, low density normoxia; LDH, low density hypoxia; HDN, high density
normoxia; HDH, high density hypoxia.
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FIGURE 2 | (A) Graphical representation of the variable importance (VIP) scores after component 1. (B) Ranking list of genes showing VIP score values above 1.1
and their relative gene expression. Liv, liver; WM, white muscle. Values on relative expression are the mean ± SEM of eight fish (2–3 fish per replicate tank). P-values
are the result of two-way analysis of variance. Asterisks in each row indicate significant differences with oxygen level for a given rearing density (SNK test, P < 0.05).

Saravanan et al., 2012), fish finely adjust feed intake and basal
metabolism to available O2, prioritizing feed efficiency at the
expenses of maximum growth under restricted mitochondrial
respiration. As a prove of this, the best FE and hormonal

signatures for fast and efficient growth generally occurs before
the achievement of maximum growth at the greater ration size
(Brett, 1979; Pérez-Sánchez et al., 1995), pointing out a high
metabolic plasticity in this euryhaline, eurytherm and euryoxic
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FIGURE 3 | (A) Graphical representation of the variable importance (VIP) scores after component 2. (B) Ranking list of genes showing VIP score values above 1.1
and their relative gene expression. Cells shaded in blue highlight genes detected as VIP after component 1; cells shaded in yellow highlight genes detected as VIP
after component 2. For further details, see legend on Figure 2.
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FIGURE 4 | (A) Graphical representation of the variable importance (VIP) scores after component 3. (B) Ranking list of genes showing VIP score values above 1.1
and their relative gene expression. Cells shaded in blue highlight genes detected as VIP after component 1; cells shaded in yellow highlight genes detected as VIP
after component 2; and cells shaded in purple highlight genes detected as VIP after component 3. For further details, see legend on Figure 2.

fish species due to a permissive regulation of feed intake which
allows to cope an efficient energy metabolism at slow growth
rates. This also applies at the cellular level, where the maximum
ATP yield per molecule of O2 (P/O ratio) is highly dependent on

ration size, as evidenced the increased P/O ratio of king penguins
during periods of food shortage (Monternier et al., 2014) or liver
mitochondria of brown trout (Salmo trutta) starved for 2 weeks
(Salin et al., 2016).
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Most of the hypoxia-mediated effects are accompanied by an
enhanced O2-carrying capacity denoted by a swelling, formation
and/or release of new erythrocytes together with plasma volume
reduction (Gallaugher and Farrell, 1998). A set of different
mechanisms operate this complex response in fish. It must be
considered that fish RBC are nucleated and have the ability to
produce Hb during most of their life span (Speckner et al., 1989).
As a general response to stress, erythrocytes from fish spleen
reservoirs can be released into the blood (Pearson and Stevens,
1991). In the other hand, the affinity of fish Hb to O2 can
be modulated by allosteric regulation (variations in phosphate
levels) (Val, 2000). This ability to increase blood O2 affinity as
a response to hypoxia is present even in fish living in well-
oxygenated environments, as it is the case of the Antarctic fish
bald rockcod (Pathogenia borchgrevinki) (Wells et al., 1989),
a finding that highlights the general phenotypic plasticity of
fish. Hypoxia studies on rainbow trout (Oncorhynchus mykiss)
showed an initial increase in Hb concentration mediated by
the release of spleen erythrocytes, but under persistent hypoxia
conditions the increase of the O2-carrying capacity arose from
synthesis of new erythrocytes (Lai et al., 2006). These results
suggest a complex and dynamic adaptation of fish to hypoxic
conditions, a feature that could be species-specific. From our
hematological data in the present work, hypoxia induced a slight
increase of Hb content at both rearing densities, although the
most evident and significant effects were the increase of the
measured Ht, RBC count and corpuscular concentrations of
Hb, which were secondly affected by rearing density. A similar
enhancement of O2-carrying capacity by means of Ht increase
was observed not only in previous short-term acute hypoxia
challenges in gilthead sea bream (Magnoni et al., 2017; Martos-
Sitcha et al., 2017), but also in eels and rainbow trout (Wood
and Johansen, 1972; Soivio et al., 1980). Conversely, changes
in HSI, reflecting the amount of lipid and glycogen depots, are
more informative of feed intake rather that hypoxic condition,
though it is difficult to disclose the main factor. At the hormonal
level, this is also inferred from the measurements of circulating
levels of cortisol and Gh, which are well-known regulators
of metabolic rates by their involvement on mitochondria
function (see Mommsen et al., 1999; Bergan-Roller and Sheridan,
2018 for review).

In fact, cortisol is an established marker of crowding stress
in gilthead sea bream (Arends et al., 1999; Skrzynska et al.,
2018), as well as under other challenging conditions, and the
reduced feed intake as a consequence of the stress challenge
also enhanced the responsiveness of the hypothalamic-pituitary-
adrenal axis (Sangiao-Alvarellos et al., 2005). Thus, cortisol is
the main corticosteroid in teleost fish and its plasma levels can
increase dramatically during unfavorable situations activating
specific intracellular responses through glucocorticoid receptors
present in many fish organs, which in turn alleviate the
great energy demand in a systemic way by increasing blood
metabolite concentrations and redistributing the energy balance
in the organism (reviewed by Mosconi et al., 2006; Wendelaar
Bonga, 2011). In fish, high plasma cortisol levels modulate the
metabolism of carbohydrates by stimulating gluconeogenesis in
liver, and also increase the availability of substrates derived

from proteins and fats, although the role of cortisol in fish
lipid metabolism has not been clearly established (Vijayan et al.,
2010). All this agrees with the observation that the greater
circulating concentration of cortisol was achieved herein in
the HDH group, which also experienced a higher feed intake
inhibition. However, this system cannot be continuously refed,
and evidence in rodents points out toward a translocation of
cortisol into mitochondria mediated by glucocorticoid receptors
to reduce mitochondrial activity and the risk of oxidative stress
(Du et al., 2009), a mechanism that could be possibly extended
to other animal models including fish, although this fact has
still not been documented. Thus, in the absence of a cortisol
response, chronic cold-thermal stress up-regulates OXPHOS
in gilthead sea bream, whereas the cortisol rise in fish facing
multiple aquaculture sensorial stressors is accompanied by a
pronounced transcriptional repression of all the hepatic complex
units of the mitochondrial respiratory chain (Bermejo-Nogales
et al., 2014b). A similar response has been reported after
acute hypoxia exposure, though in this case the catalytic and
regulatory enzyme subunits of Complex IV (the last electron
acceptor of respiratory chain involved in the O2 reduction)
were up-regulated, maximizing the use of available O2 for
aerobic ATP generation (Martos-Sitcha et al., 2017). The aerobic
scope and gene expression profiling of mitochondria is also
highly regulated at the nutritional level by synthetic and natural
dietary oils (Pérez-Sánchez et al., 2013; Martos-Sitcha et al.,
2018), and the suppression of heptanoate effects upon exercise
endurance is viewed as a protective measure to counteract
disproportionate oxidative metabolic rates in fish fed fast energy-
delivery nutrients (short/medium chain fatty acids). In other
words, the interplay between stimulatory and inhibitory effects
must be envisaged as a response to the energy needs, even if
metabolic fuels were available. Accordingly, in the present study,
the increased circulating levels of Gh in hypoxic/crowded fish
will reflect a reduced feed intake and energy demand rather than
a minor capacity to combat oxidative stress, as it is generally
referenced in fish and other animal models overexpressing
GH (Brown-Borg et al., 1999; Brown-Borg and Rakoczy, 2000;
McKenzie et al., 2003; Almeida et al., 2013).

The gene expression profiling of key metabolic biomarkers
also contributes to better understand the search of allostatic
load in a challenging environment. Thus, the two-way ANOVA
revealed the different involvement of tissues and gene categories
into the stress-mediated responses. This observation is reinforced
by the use of multivariate analysis, which offers the possibility to
identify, at a high level of confidence, the most responsive tissues
and biomarkers for a given stress stimuli in a factorial stress
design. Using such approach, we are able to explain and to predict
a high percentage of total variance, being noteworthy that liver,
white skeletal muscle and heart remained responsive at long-
term to changing O2 and rearing density, whereas the expression
pattern of blood cells became mostly unaltered with the imposed
stress stimuli of medium intensity, in contrast with the previously
reported wide expression change of mitochondrial-related genes
in total blood cells in response to a more severe challenge
(Martos-Sitcha et al., 2017). For this reason, the transcriptomic
analysis of total blood cells during moderate hypoxia challenges
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was not included in our PLS-DA model to avoid the background
noise detected when introduced. In previous studies in gilthead
sea bream and other animal models, liver and cardiac muscle
are highly responsive to hypoxia (Everett et al., 2012; Hermes-
Lima et al., 2015; Magnoni et al., 2017), and genes of these
two tissues highly contributed herein to separate normoxic
and hypoxic fish along the first component of our PLS-DA
(R2Y = 0.2889). One of the most relevant genes participating
in this discriminant feature is the hif-1α, a well-documented
regulator of O2 homeostasis. This transcriptional factor acts at
a multi-regulatory level, managing the hypoxic responsiveness
of a vast array of transcribed proteins including antioxidant
enzymes (Nikinmaa and Rees, 2005; Lushchak and Bagnyukova,
2006). Concretely, herein, we show a clear down-regulation
of hif-1α that was coincident with the repressed expression of
other down-stream markers of antioxidant defense and tissue
repair (prdx5, sod2, mortalin, gpx4, gr, grp-170, and prdx3). This
intriguing result can be cautiously interpreted since Hif-1 is
mostly regulated at the post-translational level (Ke and Costa,
2006), though this finding should be understood as a steady-state
in which O2 availability is reduced but maintained high enough
to preserve aerobic metabolism at a relatively high level. This
fact is supported by a reduced expression of cs and associated
enzyme subunits of Complex I (nd2, nd5), used successfully
in several studies as markers of mitochondria abundance and
Krebs cycle activity (Larsen et al., 2012; Magnoni et al., 2017).
In addition to that, several sirts (sirt1, 2, 5, 6, and 7) of liver
or cardiac muscle were overall down-regulated in hypoxic fish,
especially in the case of HDH fish. These NAD+-dependent
deacetylases are energy sensors that act in gilthead sea bream
as a link between nutrition and energy metabolism in different
growth models with nutrients and genetic variables as source of
variation (Simó-Mirabet et al., 2017a,b, 2018). This was extended
herein to hypoxia/crowding stress, which indicates that most of
the envisaged adaptive responses should include changes in the
acetylation status of both nuclear histones, and cytoplasmic and
mitochondrial metabolic enzymes.

The second component of our PLS-DA (R2Y = 0.2927)
differentiates normoxic fish held at different stocking densities.
In this case, the white skeletal muscle clearly promotes this
separation mainly by the expression pattern of genes related
to GH/IGF system (ghr-i, igfbp6b, igfbp5b, insr, igfbp3, igf-
i). Components of liver and muscle GH/IGF system are
differentially regulated by nutrients and seasonal environmental
cues (reviewed by Pérez-Sánchez et al., 2018), but herein this
observation becomes specially relevant for muscle ghr-i that
highly contributes to discriminate the detrimental growth effects
of crowding stress from those more related to hypoxia or water
quality. Likewise, genes of igfbp repertoire highly contribute
to this differentiation, though the discriminant role of Igfbp
counterparts (igfbp6b > igfpb5b > igfpb3) was mostly reduced
to skeletal muscle and Igfbp3/5/6 clade. Functional divergence
regarding the growth-inhibitory or growth-promoting action
of igfbps have been reported across species and physiological
context (Garcia de la Serrana and Macqueen, 2018), but herein
the overall depressed expression of the muscle Igfbp clade in
HD fish is consistent with inhibitory rather than stimulatory

growth-promoting effects, which also involves the regulation
of insulin and Igfbp receptors with important implications on
the final arrangements of carbohydrate, growth, and energy
metabolism (reviewed by Reindl and Sheridan, 2012; Vélez et al.,
2017). Indeed, fish are the first group in the vertebrate tree in
which there is evidence of distinct insulin and Igf receptors,
though certain cross-reactivity between ligand and receptors of
insulin and Ifgs occurs and the specific-mediated effects are
sometimes confounding. However, it is well-recognized that
insulin stimulates Hif-1, whereas intermittent hypoxia induces
insulin resistance in mice (Treins et al., 2002; Poulain et al.,
2017). Likewise, Igfbp1 knock-down alleviates the hypoxia-
induced growth retardation in zebrafish (Kajimura et al., 2005),
whereas the IGFBP4 expression is induced by hypoxia in U87
glioma cells (Minchenko et al., 2016). From our results it is
also conclusive that the muscle expression of igfr1 and igfr2 are
specially responsive to hypoxia, but importantly insr in gilthead
sea bream seems to be more receptive to crowding stress rather
than hypoxic stress stimuli, though it remains to be established
the functional relevance of this differential responsiveness to
environmental stressors.

Finally, the third component of our multivariate approach
(R2Y = 0.2542) discriminates the effect of stocking density in
fish exposed to moderate hypoxia, with a marked contribution
of hepatic fatty desaturases with 16 (fads2) or 19 (scd1a, scd1b)
activities due to its strong and specific induction in LDH fish.
A muscle marker of FA oxidation (cpt1a) was also consistently
up-regulated in this group, but this response was opposite to
that found in HDH group, which is indicative of the different
regulation of muscle lipid catabolism by hypoxia in fish stocked
at standard or high densities. Likewise, the major discriminant
capacity of other factors related to lipid metabolism (elovl6) was
achieved between normoxic fish held at LD and HD. Meanwhile,
other elongases (elovl5) with a well-recognized role in the control
of hepatic triglyceride storage did not take part of the group
separation in the present study, though elovl5 highly contributes
to differentiate two gilthead sea bream strains with differences
in growth performance and metabolic capacities (Simó-
Mirabet et al., 2018). Previous studies, in gilthead sea bream
(Benedito-Palos et al., 2013, 2014) and European sea bass
(Rimoldi et al., 2016) have also evidenced an important effect
of ration size on the hepatic and muscle regulation of most of
the lipid biomarkers assessed in the present study, but again it
is difficult to disclose what is the main factor (feed intake or
the imposed stress condition) due to the logistic limitations of
our experiment design that did not include pair-fed groups.
However, as a general rule, stressors enhance the demand
of specific nutrients and hypoxia in particular promote the
cellular uptake of extracellular unsaturated fatty acids in mice
cell lines (Ackerman et al., 2018). Moreover, in hypoxic stress,
cancer cells enhance lipid synthesis that is important for
membrane biosynthesis and energy storage for cell survival and
proliferation (Huang et al., 2014), being induced this hypoxia
lipogenic phenotype via dependent- and HIF1α-independent
pathways (Valli et al., 2015). All this together supports the
pronounced stimulation of fads2 and scd desaturases in our
stress model, which will promote the increase of the unsaturation
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index of structural lipids as previously reported during feed
restriction in gilthead sea bream (Benedito-Palos et al., 2013).
In agreement with this, hypoxia stress on HeLa cells leads
to significant changes in their membrane lipid profiles, and
polyunsaturated phospholipid species are becoming stronger
biomarkers for discriminating the effect of hypoxia treatment on
membrane fluidity and further membrane-dependent functions
(Yu et al., 2014).

A growing effort is devoted in fish to define a “stressome,”
or a catalog of genes expressed when an organism is challenged
with a given stress, particularly those that comprise a common
response to diverse stressful scenarios (as reviewed in Balasch
and Tort, 2019). Our work follows a similar approach in order to
determine not only the most consistent and reliable biomarkers
for welfare assessment, but also the most (or least) convenient
tissues for these analyses.

CONCLUDING REMARKS

The findings described herein evidence the re-adjustment of
several biological functions in a factorial model of chronic
stress, where most of the hypoxia-mediated effects on growth
performance and energy metabolism were exacerbated in
fish held at HD. The integrated data on blood hematology,
biochemistry and hormonal profiling highlights a hypo-
metabolic state with the enhancement of O2-carrying capacity,
being this metabolic feature accompanied by a reduction in
voluntary feed intake and a more efficient energy metabolism
at the expenses of slow growth rates. This notion was
supported at the transcriptional level by global changes of
tissue-gene expression profiles, which also evidenced tissue-
specific orchestration of stress response reflecting the nature
and intensity of stress stimuli, but also the different metabolic
capacities of targeted tissues. Thus, the number of DE in
response to a given stress stimuli varies across the targeted
tissues (liver ≥ heart > muscle > blood), but importantly PLS-
DA analysis also informs of the different tissue contribution
to the allostatic load. Thus, liver and heart mostly contribute
to cope with a global hypoxic response involving changes in
energy sensing and production as well as antioxidant defense
and tissue repair. In contrast, metabolic markers of skeletal
muscle with a high over-representation of GH/IGF system mostly
contribute to disclose the effects of rearing density not necessarily
mediated by low O2 levels. Likewise, lipid metabolism and
hepatic fatty acid desaturases are becoming strong biomarkers
of crowding stress in hypoxic fish, which reveals the complexity
and metabolic plasticity of gilthead sea bream to cope with stress
resilience under intensive fish farming. These results evidence the
potential of the identified biomarkers for a reliable assessment

of fish welfare, although for some tissues such as blood cells,
responsiveness is highly dependent on the intensity of the
challenge. Overall, this new knowledge will contribute to better
explain and understand the different stress resilience of farmed
fish across individuals and species.
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