

Identification of a PEST Sequence in Vertebrate K_{IR}2.1 That Modifies Rectification

Muge Qile, Yuan Ji, Marien J. C. Houtman, Marlieke Veldhuis, Fee Romunde, Bart Kok and Marcel A. G. van der Heyden*

Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands

 K_{IR} 2.1 potassium channels, producing inward rectifier potassium current (I_{K1}), are important for final action potential repolarization and a stable resting membrane potential in excitable cells like cardiomyocytes. Abnormal K_{IB}2.1 function, either decreased or increased, associates with diseases such as Andersen-Tawil syndrome, long and short QT syndromes. K_{IB}2.1 ion channel protein trafficking and subcellular anchoring depends on intrinsic specific short amino acid sequences. We hypothesized that combining an evolutionary based sequence comparison and bioinformatics will identify new functional domains within the C-terminus of the KIB2.1 protein, which function could be determined by mutation analysis. We determined PEST domain signatures, rich in proline (P), glutamic acid (E), serine (S), and threonine (T), within K_{IR}2.1 sequences using the "epestfind" webtool. WT and $\Delta PEST K_{IB}2.1$ channels were expressed in HEK293T and COS-7 cells. Patch-clamp electrophysiology measurements were performed in the inside-out mode on excised membrane patches and the whole cell mode using AxonPatch 200B amplifiers. KIB2.1 protein expression levels were determined by western blot analysis. Immunofluorescence microscopy was used to determine K_{IR}2.1 subcellular localization. An evolutionary conserved PEST domain was identified in the C-terminus of the KIB2.1 channel protein displaying positive PEST scores in vertebrates ranging from fish to human. No similar PEST domain was detected in K_{IR}2.2, K_{IR}2.3, and KIR2.6 proteins. Deletion of the PEST domain in California kingsnake and human $K_{IB}2.1$ proteins ($\Delta PEST$), did not affect plasma membrane localization. Co-expression of WT and $\Delta PEST K_{IB}2.1$ proteins resulted in heterotetrameric channel formation. Deletion of the PEST domain did not increase protein stability in cycloheximide assays [T1/2 from 2.64 h (WT) to 1.67 h (Δ PEST), n.s.]. WT and Δ PEST channels, either from human or snake, produced typical I_{K1} , however, human $\Delta PEST$ channels displayed stronger intrinsic rectification. The current observations suggest that the PEST sequence of K_{IR}2.1 is not associated with rapid protein degradation, and has a role in the rectification behavior of I_{K1} channels.

Keywords: K_{IR}2.1, inward rectifier, PEST domain, vertebrates, patch clamp, potassium, channel

Abbreviations: Δ PEST, K_{IR}2.1 protein lacking the complete PEST domain; CHX, cycloheximide; CQ, chloroquine; PEI, polyethylenimine; SPM, spermine; SUMO, small ubiquitin like modifier.

OPEN ACCESS

Edited by:

J. David Spafford, University of Waterloo, Canada

Reviewed by:

John Cuppoletti, University of Cincinnati, United States Richard Barrett-Jolley, University of Liverpool, United Kingdom

*Correspondence:

Marcel A. G. van der Heyden m.a.g.vanderheyden@umcutrecht.nl

Specialty section:

This article was submitted to Membrane Physiology and Membrane Biophysics, a section of the journal Frontiers in Physiology

Received: 26 April 2019 **Accepted:** 20 June 2019 **Published:** 05 July 2019

Citation:

Qile M, Ji Y, Houtman MJC, Veldhuis M, Romunde F, Kok B and van der Heyden MAG (2019) Identification of a PEST Sequence in Vertebrate K_{IR}2.1 That Modifies Rectification. Front. Physiol. 10:863. doi: 10.3389/fphys.2019.00863

INTRODUCTION

Since its cloning in the early 1990s (Kubo et al., 1993), many domains of the K_{IR}2.1 primary protein sequence, encoded by KCNJ2, have been attributed to biological function and molecular structure, but not all. K_{IR}2.1 expression is found in a variety of excitable and non-excitable cells, like skeletal, smooth and cardiac muscle cells, neuronal cells, juxtaglomerular, and endothelial cells (De Boer et al., 2010). The resulting inward rectifying potassium current (I_{K1}) is characterized by a larger inward than outward current from equal negative and positive deflections from the potassium equilibrium potential. This property allows for action potential formation in excitable cells, while providing a stable resting membrane potential in between action potentials (Van der Heyden and Jespersen, 2016). KIR2.1 carried potassium inward rectifying channels are tetramers of four KIR2.1 subunits. Other KIR2.x isoforms may form homotetramers also, and some can combine with K_{IR}2.1 to form heterotetramers with slightly altered conductive characteristics compared to their respective homotetramers (e.g., Preisig-Müller et al., 2002). Mutations in the K_{IR}2.1 gene associate with Andersen-Tawil Syndrome and congenital atrial fibrillation in patients. Therefore, more understanding of the functions of different protein domains might provide new avenues for therapeutic approaches.

Several discrete domains within the K_{IR}2.1 sequence have been associated with certain functions, like potassium selectivity [amino acid (aa) 144-146], Endoplasmic Reticulum (ER) export (aa 374-379; Ma et al., 2001; Stockklausner et al., 2001), Golgi export (aa 44-61 and 314-322; Hofherr et al., 2005; Ma et al., 2011), a PDZ binding domain (aa 425-427, Leonoudakis et al., 2004), a Caveolin3 binding motif (aa 81-88; Vaidyanathan et al., 2018). K_{IR}2.1 and K_{IR}2.2 crystal structure and homology modeling provided additional 3-dimensional information and showed a K_{IR}2.1 channel containing a transmembrane pore domain with a long intracellular pore extension formed by the so-called cytoplasmic pore domain (Pegan et al., 2005; Hansen et al., 2011; Lee et al., 2013). Furthermore, the structures provided compelling mechanistic insights into essential residues/domains involved in rectification (Tao et al., 2009). Three amino acids (D172, E224, and E299) in the pore regions are essential for rectification, i.e., reducing outward potassium flow upon depolarization. D172 is located in the transmembrane domain and is involved in so-called deep pore polyamine and Mg²⁺ binding, whereas E224 and E299 are located in the cytoplasmic pore domain and also bind polyamines and Mg^{2+} .

PEST domains are regions rich in proline (P), glutamic acid (E), aspartic acid (D), serine (S), and threonine (T) confined by two positively charged amino acids, lysine (K), arginine (R) or histidine (H). These domains were first identified in short living proteins and the PEST domain function was therefore deduced as protein instability domains (Rogers et al., 1986). Indeed, in many short living proteins, mutation of the PEST domain resulted in stabilization of the protein (Rechsteiner and Rogers, 1996). Furthermore, in a number of proteins PEST domains appeared to function as anchor site of E3 ubiquitin ligases (Xing et al., 2010; Meyer et al., 2011; Li et al., 2018) required for, but not limited to, ubiquitin dependent protein degradation. However, specific

deletion of PEST domains did not always increase protein half life (Nixon et al., 1995), PEST domains were found also in many longlived proteins and additional or alternative functions have been attributed to PEST domains, like intracellular sorting, binding of the SUMO conjugating protein Ubc9 or binding of the second plastoquinone electron acceptor (Nixon et al., 1995; Bies et al., 2002; Zhuang et al., 2012). Upon cloning and aligning of a large number of K_{IR}2.1 protein sequences (Houtman et al., 2014) we noticed an amino acid stretch that might fulfill the criteria of a PEST domain. We hypothesized that K_{IR}2.1 proteins contain a PEST domain in their C-terminus and set out to determine its biological function.

MATERIALS AND METHODS

PEST Domain Identification

Protein sequences were individually loaded in the EMBOSS program ePESTfind tool¹ using the standard settings.

Mutations

Human HsKIR2.1 A PEST was constructed by PCR amplification of a part of HsKCNJ2 (Jansen et al., 2008) from pGEM-Teasy using T7 forward and a specifically designed reverse primer (CAGTCATATCTCCGACTCTCGCCGTAAGGGCCTGGGCTC TAGAGGTACACTTGCCTGGTTGCTTGTGAGGGCAACTTC). The amplification product contained the entire human KCNJ2 open reading frame sequence with an in-frame deletion of the complete PEST sequence (KEEDDSENGVPE STSTDTPPDIDLH) and was cloned in pGEM-T-easy and subsequently subcloned into pcDNA4 (Life-Technologies). The similar procedure was followed for constructing California kingsnake $LgK_{IR}2.1\Delta PEST$ using LgKCNJ2 (Houtman et al., 2014) and the designed reverse primer (CAGAGTCATATTTCAGATTCTCGCCTTAAAGGTCTTGGT TCTAGGGGCACCCCTGCTTGGCTAAGATGGTCCATCTCT GGGCCCGCAAGGGCAACTTC) that resulted in deletion of the complete snake K_{IR}2.1 PEST sequence (KEEEDSDNGVPESTSTDTH).

Cell Culture

HEK293T and COS-7 cells were cultured in Dulbecco's Modified Eagles Medium (DMEM; Lonza, Breda, Netherlands) supplemented with 10% fetal calf serum (FCS; Sigma-Aldrich, Zwijndrecht, Netherlands), 2 mM L-glutamine (Lonza), and 50 U/mL penicillin and 50 mg/mL streptomycin (both Lonza) at 37°C with 5% CO₂. In time course experiments, cells for each time point were seeded on the same day, and drugs were added for the indicated time prior to harvest of all samples. For patch clamp electrophysiology, 3 days prior to measurements, HEK293T cells were grown on poly-L-lysine (Sigma-Aldrich) coated Ø 12 mm cover slips and transfected with human K_{IR}2.1 (WT or Δ PEST) using Lipofectamine 2000 (Invitrogen, Breda, Netherlands) according to the manufacturer's protocol.

¹http://emboss.bioinformatics.nl/cgi-bin/emboss/epestfind, assessed on April 6, 2018

Recordings were performed 24 h after transfection. In western blot experiments, HEK293T cells were grown on 60 mm tissue culture dishes and transfected using linear PEI as described earlier (Ji et al., 2017a). In immunofluorescence microscopy experiments, COS-7 cells were grown on Ø 15 mm coverslips, pre-coated with poly-L-lysine (Sigma-Aldrich), and transfected with K_{IR}2.1 (WT or Δ PEST) using Lipofectamine according to the manufacturer's protocol.

Drugs

Chloroquine (Sigma, St. Louis, MO, United States, cat. No. C6628) was dissolved in sterile water at a concentration of 10 mM and stored at -20° C. Cycloheximide (Sigma, cat. No. C7698) was dissolved in ethanol at a concentration of 5 mg/mL, stored and aliquoted at -20° C until use. SPM was prepared in DEPC water at a concentration of 50 mM. All drugs were diluted on the day used.

Immunohistochemistry and Fluorescence Microscopy

COS-7 cells were stained essentially as described earlier (Ji et al., 2017a). Antibodies used were K_{IR}2.1 (1:250; Santa Cruz Biotechnology, Heidelberg, Germany, cat. no. sc-18708), Pan-Cadherin (1:800, Sigma-Aldrich, St. Louis MO, United States, cat. no. C1821). Cell nuclei were stained with 4',6-diamidino-2-phenylindole (DAPI; 1:50.000; Molecular Probes, Leiden, Netherlands) during secondary antibody incubation. Secondary antibodies used were donkey anti-mouse DyLight (1:250; Jackson ImmunoResearch Laboratories Inc., West Grove, PA, United States) or donkey anti-goat Alexa Red (1:400; Jackson ImmunoResearch Laboratories Inc.). Conventional fluorescence microscopy was performed on a Nikon eclipse 80i light microscope equipped with a $40 \times$ objective (NA 0.75). Confocal images were obtained using a Zeiss Axiovert 200 M confocal microscope (Carl Zeiss Microscopy GmbH, Germany) equipped with a $63 \times$ water immersion objective (NA 1.2) plus 29 digital zoom. Excitation was performed with an air-cooled Argon ion laser (LASOS, RMC 7812Z, 488 nm) for GFP and a HeNE (LASOS, SAN 7450A, 543 nm) laser for DyLight.

Western Blot

Cell lysis, western blot and subsequent analysis was performed as described earlier (Ji et al., 2017b). K_{IR}2.1 antibody used was identical as used for immunofluorescence microscopy. Equal protein loading was determined by Ponceau staining.

Patch-Clamp Electrophysiology

HEK293T cells were transfected with WT or Δ PEST K_{IR}2.1 expression constructs together with a GFP expression construct to identify transfected cells. Inside-out patch clamp measurements on excised membrane patches were performed using an AxoPatch 200B amplifier controlled by pClamp9 software (Molecular Devices, Sunnyvale, CA, United States) at 21°C as described before (Ji et al., 2017b). To record K_{IR}2.1 currents, inside-out patch-clamp measurements were performed using a ramp protocol ranging from -100 to +100 mV over 5 s

from a holding potential of -40 mV. Bath solution contained (in mM): 125 KCl, 4 EDTA, 2.8 KH₂PO₄, 7.2 K₂HPO₄ (pH 7.2 with KOH), and pipette solution contained (mM): 145 KCl, 5 HEPES, 1 CaCl₂ (pH 7.4 with KOH). Excised patches were placed in close proximity of the inflow region of the perfusion chamber. Measurements were started following washout of polyamines/Mg²⁺ from the channel pore, observed by the disappearance of current rectification.

Whole cell patch clamp measurements were done as described before (Houtman et al., 2012) using an AxoPatch 200B amplifier controlled by pClamp9 software at 21°C. Whole cell $I_{KIR2.1}$ measurements were performed by applying 1 s test pulses ranging between -120 and +30 mV, in 10 mV increments, from a holding potential of -40 mV, and with series resistance compensation of at least 70%. Signals were low-pass filtered at 2 kHz and sampled at 4 kHz. Liquid junction potential (LJP) was determined with the built in "Junction Potential Calculator" application of pCLAMP. Using the current solutions, LJP was 14.7 mV. Steady state current at the end of the pulse was normalized to cell capacitance and plotted versus test potential (corrected for LJP).

Statistics

Group averages are presented as mean \pm SEM, unless indicated otherwise. Differences between groups were tested by (un)paired Student's *t*-test or two-way ANOVA followed by a *post hoc* Bonferroni test. Results with P < 0.05 were considered as statistically significant. Statistically analyses were performed using Prism 6 (GraphPad, CA, United States).

RESULTS

Vertebrate K_{IR}2.1 Proteins Contain a Conserved PEST-Domain

We aligned 31 K_{IR}2.1 amino acid sequences covering the phyla from fish to man (Houtman et al., 2014). Least sequence identity was observed between residues 380 and 415 in the C-terminal domain. However, since we noticed that this region was enriched in proline (P), glutamate (E), aspartate (D), serine (S), and threonine (T) residues, a hallmark of so-called PEST domains (Rechsteiner and Rogers, 1996), individual sequences were screened according to a PEST finding algorithm using the EMBOSS program epestfind. With a PEST score above 5, an amino-acid sequence will be considered as a genuine PEST domain. This revealed that all 31 sequences are characterized by a PEST domain having scores ranging between 8.7 (rainbow trout) and 24.5 (Opossum) with an average score of 19.4 (median 21.7) (Table 1). In addition, we added predicted K_{IR}2.1 sequences of the lobe finned fish Coelacanth (XP_005992210) and of the primitive cartilaginous fish elephant shark (XP_007886827) whose sequences also contained PEST domains with a high PEST score (10.11 and 24.10, respectively) (Table 1). In contrast, no PEST domains were found in human KIR2.2, KIR2.3 or KIR2.6 channel proteins, while K_{IR}2.4 contains a PEST domain (residues 378-424) with a PEST score of 9.39 that starts upstream from the K_{IR}2.1 PEST domain (**Figure 1**).

PtPan troglocytesChimpanzeeKEEDDSENGVPESTSTDTPPDIDLH21.76MaMuMacaca mulattaMacacaKEEDDSENGVPESTSTDTPPDIDLH21.76EqEquus cabalusBovineKEEDDSENGVPESTSTDTPPDIDLH21.76EtBos tarusBovineKEEDDSENGVPESTSTDTPPDIDLH21.76SaSus sorolaPigKEEDDSENGVPESTSTDTPPDIDLH21.76CfCanis familiarisDogKEEDDSENGVPESTSTDTPPDIDLH21.76Usus americanusAmerican black bearKEEDDSENGVPESTSTDTPPDIDLH21.76CaOryctolegus curiculusEuropean rabbitKEEDDSENGVPESTSTDTPPDIDLH21.76OnMyotis lucifuguaLittle brown batKEEDDSENGVPESTSTDTPPDIDLH21.76DnDasyus novemcinctusAmadilloKEEDDSENGVPESTSTDTPPDIDLH21.76MmMussiculusMouseKEEDDSENGVPESTSTDTPPDIDLH21.76ShSpernophilus tridecemtineatusThriteen-lined ground squirrelKEEDDSENGVPESTSTDSPPGIDLH21.76MdMonodelphis domesticaOpossumKEEDDSENGVPESTSTDSPPGIDLH21.76MdMonodelphis domesticaOpossumKEEDDSENGVPESTSTDTPPDIDLH21.83ClColumix ignonicaJapanese qualiKEEDDSENGVPESTSTDTPPDIDLH21.83ClColumix ignonicaGhickenKEEDDSENGVPESTSTDTPPDIDLH21.83ClColumix ignonicaGhickenKEEDDSENGVPESTSTDTPPDIDLH21.83ClColumix ignonicaGhickenKEEDDSENGVPESTSTDTPPDIDLH21.83ClColumix ign	Code	Scientific name	Common name	PEST sequence	Score
Madua Macaca KEEDDSENGVPESTSTDTPPDIDLH 21.76 Eq Equis caballus Horse KEEDDSENGVPESTSTDTPPDIDLH 21.76 Bt Bos tarus Bovine KEEDDSENGVPESTSTDTPPDIDLH 21.76 St Size scrola Pig KEEDDSENGVPESTSTDTPPDIDLH 21.76 Gf Canis familiaris Dog KEEDDSENGVPESTSTDTPPDIDLH 21.76 Via Ursus americanus American black bear KEEDDSENGVPESTSTDTPPDIDLH 21.76 Ca Oryotolague curiculus European rabbit KEEDDSENGVPESTSTDTPPDIDLH 21.76 Mi Myotis lucilugus Little brown bat KEEDDSENGVPESTSTDTPPDIDLH 21.78 Dn Dasyus novemcinctus Armadillo KEEDDSENGVPESTSTDTPPDIDLH 21.77 Rin Matus norvegicus Mouse KEEEDSENGVPESTSTDTPPDIDLH 21.76 St Spermophius tridecentlineatus Thirteen-lined ground squirrel KEEEDSENGVPESTSTDSPPGIDLH 21.92 Cp Cavia porcelius Guinea pig KEEDDSENGVPESTSTDTPPDIDLH 21.92 Cp Cavia porcelius	Hs	Homo sapiens	Human	KEEDDSENGVPESTSTDTPPDIDLH	21.76
EqEques caballusHorseKEEDDSENGVPESTSTDTPPDIDLH21.76BtBostaurusBovineKEEDDSENGVPESTSTDTPPDIDLH21.76SasSus sorofaPigKEEDDSENGVPESTSTDTPPDIDLH21.76Canis familarisDogKEEDDSENGVPESTSTDTPPDIDLH21.95UaUrsus amaricanusAmerican black bearKEEDDSENGVPESTSTDTPPDIDLH21.76Canis familarisMadgascar hedgehogKEEDDSENGVPESTSTDTPPDIDLH21.76DoOryctolegus cunclusEuropean rabbitKEEDDSENGVPESTSTDTPPDIDLH21.76M1Myotis lucifugusLittle brown batKEEDDSENGVPESTSTDTPPDIDLH21.78DnDasyus novemoinctusAmardiloKEEDDSENGVPESTSTDSPPDIDLH21.78MmMus musculusMouseKEEDDSENGVPESTSTDSPPOIDLH21.92ChCavia porceliusMouseKEEDDSENGVPESTSTDSPPOIDLH21.92CpCavia porceliusMouseKEEDDSENGVPESTSTDSPPOIDLH21.92CpCavia porceliusGuinea pigKEEDDSENGVPESTSTDSPPOIDLH21.92CpCavia porceliusGuinea pigKEEDDSENGVPESTSTDTPPOIDLH21.92CqGalus gallusChickanKEEDDSENGVPESTSTDTPPOIDLH21.93CjCalumis ponicaJapanese qualiKEEDDSENGVPESTSTDTH21.83CjColumis japonicaChickanKEEDDSENGVPESTSTDTH21.83CjColumis japunicaCalorina kingsnakeKEEDDSENGVPESTSTDTH21.84CjColumis japunicaCalorina kingsnakeKEEDDSENGVPESTSTDTH </td <td>Pt</td> <td>Pan troglodytes</td> <td>Chimpanzee</td> <td>KEEDDSENGVPESTSTDTPPDIDLH</td> <td>21.76</td>	Pt	Pan troglodytes	Chimpanzee	KEEDDSENGVPESTSTDTPPDIDLH	21.76
BitBox tarursBovineKEEDDSENGVPESTSTDTPPDIDLH21.76SesSus scrotaPigKEEDDSENGVPESTSTDTPPDIDLH21.76CrCanis familiarisDogKEEDDSENGVPESTSTDTPPDIDLH21.90UaUrsus americanusAmerican black bearKEEDDSENGVPESTSTDTPPDIDLH21.90EtEchinops telfairiMadagascar hedgehogKEEDDSENGVPESTSTDTPPDIDLH21.71OcOryctolagus curiculusEuropean rabbitKEEDDSENGVPESTSTDTPPDIDLH21.76MIMyots lucifugusLittle brown batKEEDDSENGVPESTSTDTPPDIDLH21.78DnDasygus novemcinctusArmadilloKEEDDSENGVPESTSTDTPPDIDLH21.79RnRatus novegicusNovegian ratKEEDDSENGVPESTSTDTPPDIDLH21.92CpCavia porceallusGuinea pigKEEDDSENGVPESTSTDTPPDIDLH21.92CpCavia porceallusGuinea pigKEEDDSENGVPESTSTDTPPDIDLH21.83ClCoturnis japonicaJapanese quailKEEDDESNGVPESTSTDTPPDIDLH21.83ClCoturnis japonicaJapanese quailKEEDDEITGVPESTSTDTPDIDH21.83ClCoturnis japonicaJapanese quailKEEDDEITGVPESTSTDTH11.81TaTrachenys scripta elegansRed-aered SilderKEEDDEITGVPESTSTDTH11.84ClCalumba californiaeCalifornia kingsnakeKEEDDEITGVPESTSTDTH17.61TaTrachenys scripta elegansRed-aered SilderKEEDDEITGVPESTSTDTH17.81StSpenderSpecialisWest-African clawed frogKEEDDE	MaMu	Macaca mulatta	Macaca	KEEDDSENGVPESTSTDTPPDIDLH	21.76
SaSus scrafaPigKEEDDSENGVPESTSTDTPPDIDLH21.76CfCanis familiarisDogKEEDDSENGVPESTSTDTPPDLDLH21.95UaUrsus americanusAmerican black bearKEEDDSENGVPESTSTDTPPDIDLH21.61Chinops teflairiMadagascar hedgehogKEEDDSENGVPESTSTDTPPDIDLH21.71OcOryctolagus cuniculusEuropean rabbitKEEDDSENGVPESTSTDTPPDIDLH21.72MIMyotis lucifugusLittle brown batKEEDDSENGVPESTSTDTPPDIDLH21.73DinDasypus novemcinctusAmadilloKEEDDSENGVPESTSTDTPPDIDLH21.73MinMus musculusMouseKEEEDSENGVPESTSTDTPPDIDLH21.92StSpermophilus tidecemlineatusThirteen-lined ground squirrelKEEEDSENGVPESTSTDTPPDIDLH21.92CpCaria porcellusGuinea pigKEEDDSENGVPESTSTDTPPDIDLH21.76MdMonodelphils domesticaOpossumKEEDDSENGVPESTSTDTPPDIDLH21.83CjCulumba livanPlatypusHGVPESTSTDSPPOIDH21.83CjCalumba livanDomestic pigeonKEEDDEITGVPESMSTDTH21.83CjCalumba livanDomestic pigeonKEEDDEITGVPESMSTDTH21.83CjCalumba livansRed-ared SilderKEEDDEITGVPESMSTDTH21.83CjCalumba livanaCaliornia kingsnakeKEEDDEITGVPESMSTDTH21.83CjCalumba livanaMedakaKEEDDEITGVPESMSTDTH21.83CjCalumba livanaCaliornia kingsnakeKEEDDEITGVPESMSTDTH21.84CjCalum	Eq	Equus caballus	Horse	KEEDDSENGVPESTSTDTPPDIDLH	21.76
CfCanis familiarisDogKEEDDSENGVPESTSTDTPPDLDLH21.95UaUrsus americanusAmerican black bearKEEDDSENGVPESTSTDTPPDDLH21.60EtEchinops telfairiMadagascar hedgehogKEEDDSENGVPESTSTDTPPDDLH21.71CoOryctolagus cuniculusEuropean rabbitKEEDDSENGVPESTSTDTPPDDLH21.76M1Myotis lucifugusLittle brown batKEEDDSENGVPESTSTDTPPDLLH21.78DnDasypus novemcinctusArmadilloKEEDDSENGVPESTSTDTPPDLLH21.76M1Mus musculusMouseKEEEDSENGVPESTSTDSPPGIDLH21.07RnRattus norvegicusNorvegian ratKEEEDSENGVPESTSTDSPPGIDLH21.76CpCavia porcellusGuinea pigKEEEDSENGVPESTSTDSPPGIDLH21.95CpCavia porcellusGuinea pigKEEEDSENGVPESTSTDTPPDIDLH21.95CqGailus gallusChickenKEEEDDSENGVPESTSTDTPDIDH24.52CaColumba liviaDonestic pigeonKEEDDEIDTCVPESNSTDTPH21.83CjColumba liviaDonestic pigeonKEEDEDIDTCVPESNSTDTH17.21TgTachonys scripta elegansRed-eared SliderKEEDDSINGVPESNSTDTH17.21TgTachonys tropicalisColumna kingsnakeKEEEDSENGVPESNSTDTH13.64BbBilcca bjoerknaWhite breamKEEEDSENGVPESNSTDTH13.62CrOprines carjoaCelfornia kingsnakeKEEEDSENGVPESNSTDTH14.24KtXonopus tropicalisColumna kingsnakeKEEEDSENGVPESNSTDTH13.66<	Bt	Bos taurus	Bovine	KEEDDSENGVPESTSTDTPPDIDLH	21.76
UsaUrsus americanusAmerican black bearKEEDDSDNGVPESTSTDTPPIDLH21.60EtEchinops telfairiMadagascar hedgehogKEEDDSENGLPESTSTDTPPDMDLH21.71OcOryctolagus curiculusEuropean rabbitKEEDDSENGVPESTSTDTPPDIDLH21.76MIMyotis lucitugusLittle brown batKEEDDSENGVPESTSTDTPPDIDLH21.76Dasypus novemcinctusArmadiloKEEDDSENGVPESTSTDTPPDIDLH21.76MmMus musculusArmadiloKEEDDSENGVPESTSTDTPPDIDLH21.76RnRattus norvegicusArmadiloKEEDDSENGVPESTSTDSPPGIDLH21.07RnRattus norvegicusNorwegian ratKEEEDSENGVPESTSTDTPPDIDLH21.92CpCavia porcellusGuinea pigKEEDDSENGVPESTSTDTPPDIDLH21.60MdMonodelphis domesticaOposumKEEDDSENGVPESTSTDTPPDIDLH21.61QaOmithorhynchus anatinusPlatypusHGVPESTSTDSPPDIDH21.63GlColurnix japonicaDapanese quailKEEDDIGVPESTSTDTH21.83ClColurniz japonicaDemestic pigeonKEEDEDIGVPESTSTDTH21.83ClColurniz laponicaCalifornia kinganakeKEEDESDNGVPESMSTDTH17.21TseTachemys scripta elegansRed-eared SliderKEEDESDNGVPESMSTDTH17.87LgLampropelits getula californiaeCalifornia kinganakeKEEDESDNGVPESMSTDTH18.38DrDano porking arpoincaZebra finchKEEEDSSDNGVPESMSTDTH18.38DrBlica bloerknaWhite breanKEEEGSSDSUGVPESMSTDTH<	Ss	Sus scrofa	Pig	KEEDDSENGVPESTSTDTPPDIDLH	21.76
EtEchinops telfairiMadagascar hedgehogKEEDDSENGLPESTSTDTPPDMDLH21.71OcOryctolagus cuniculusEuropean rabbitKEEDDSDNGVPESTSTDTPPDDLH21.76MIMyotis lucifugusLittle brown batKEEDDSDNGVPESTSTDTPPDILH21.78DnDasypus novencinctusArmadilloKEEDDSENGVPESTSTDTPPDILH21.71MmMus musculusMouseKEEEDSENGVPESTSTDSPPGIDLH19.51StSpernophilus tridecernlineatusThirteen-lined ground squirrelKEEEDSENGVPESTSTDSPPGIDLH21.92CpCavia porcellusGuinea pigKEEDDSENGVPESTSTDTPPDIDLH21.92CpCavia porcellusGuinea pigKEEDDSENGVPESTSTDTPPDIDLH21.92CqCavia porcellusGuinea pigKEEDDSENGVPESTSTDTPPDIDLH21.92CqCavia porcellusGuinea pigKEEDDSENGVPESTSTDTPPDIDLH21.92CqCavia porcellusGuinea pigKEEDDSENGVPESTSTDTPDIDH24.52CaGallus gallusChickenKEEDDEITGVPESTSTDTH21.83ClColumba liviaDomestic pigeonKEEDEDTGVPESMSTDTH17.21TgTaehonys cripta elegansRed-eared SliderKEEDDSDNGVPESMSTDTH17.67LgLampropeltis getuda californiaeCalifornia kingsnakeKEEDDSNGVPESMSTDTH17.81LgLampropeltis getuda californiaeCalifornia kingsnakeKEEDDSNGVPESMSTDTH13.88DrDanio terioCommon carpKEEGGNGSVGPGTNTDTSSDSDH16.26CcCyrinus carpioCalifornia kingsnake <td< td=""><td>Cf</td><td>Canis familiaris</td><td>Dog</td><td>KEEDDSENGVPESTSTDTPPDLDLH</td><td>21.95</td></td<>	Cf	Canis familiaris	Dog	KEEDDSENGVPESTSTDTPPDLDLH	21.95
OcOrycolagus cuniculusEuropean rabbitKEEDDSENGVPESTSTDTPPDIDLH21.76MIMyotis lucifugusLittle brown batKEEDDSINGVPESTSTDTPPDIDLH21.78DnDasypus noverncinctusArmadilloKEEDDSENGVPESTSTDTPPDINLH19.18MmMus musculusMouseKEEEDSENGVPESTSTDSPPGIDLH21.07RnRattus norvegicusNorwegian ratKEEEDSENGVPESTSTDSPPGIDLH21.92CpCavia porcellusGuinea pigKEEDDSENGVPESTSTDTPPDIDLH21.92CpCavia porcellusGuinea pigKEEDDSENGVPESTSTDTPPDIDLH21.92CqCavia porcellusGuinea pigKEEDDSENGVPESTSTDTPPDIDLH21.92CqCavia porcellusGuinea pigKEEDDSENGVPESTSTDTPPDIDLH21.92CqCavia porcellusGuinea pigKEEDDSENGVPESTSTDTPPDIDH24.52CaOrnithorhynchus anatinusPlatypusHGVPESTSTDSPSPDIDH15.94GgGallus galusChickenKEEDEDITGVPESTSTDTH21.83CjCoturnic japonicaJapanese quailKEEDEDITGVPESMSTDTH17.21TgTachemys scripta elegansRed-ared SliderKEEDEDSINGVPESMSTDTH17.21TgTachemys scripta elegansRed-ared SliderKEEDSSINGVPESMSTDTH17.62LgLampropelits getula californiaeCalifornia kingsnakeKEEDSSINGVPESMSTDTH17.62LgSopous trojcalisWhite breamKEEGIDSLGPGGTNTDTSSDSDH18.38DrDanio rerioCommon carpKEEGIGDSLGPGGTNTDTSSDSDH18.38<	Ua	Ursus americanus	American black bear	KEEDDSDNGVPESTSTDTPPDIDLH	21.60
MIMysical using buildingusLittle brown batKEEDDSDNGVPESTSTDTPPDLDLH21.78DnDasypus novemcinctusArmadilloKEEDDSENGVPESTSTDTPPDINLH19.18MmMus musculusMouseKEEEDSENGVPESTSTDSPPGIDLH21.07RnRattus norvegicusNorwegian ratKEEEDSENGVPESTSTDSPPGIDLH21.92CpCavia porcellusGuinea pigKEEDDSENGVPESTSTDTPPDIDLH21.76MdMondelphis domesticaOpossumKEEDDSENGVPESTSTDTPPDIDLH21.76QaOmithorhynchus anatinusPlatypusHGVPESTSTDSPPDIDH24.52CqCaturnik japonicaJapanese quailKEEDDSENGVPESTSTDTH21.83CjColumba liviaDomestic pigeonKEEDDSINGVPESTSTDTH21.83ClColumba liviaDomestic pigeonKEEDDSINGVPESMSTDTH17.21TgTachemys scripta elegansRed-eared SilderKEEDESDNGVPESMSTDTH17.61LgLampropeltis getula californiaeCalifornia kingsnakeKEEDSINGVPESMSTDTH14.34MtNoncorhynchus anatioCommon carpKEEGSDNGVPESMSTDTH18.38DrDanio rerioCommon carpKEEGNGDSLGPGGTNTDTSSDSDH18.38DrDanio rerioZebrafishKEEGTDEGNGSVGPDGTNTDNSDSDH18.38DrDanio rerioZebrafishKEEDTDEGNGSSVGPDGTOTDNISDTEH13.51CiLatineria chalumnaePilferlishKEEDTDEGNGSSVGPDGTOTDNISDTEH13.55LaLatineria chalumnaeColeacanthKEEDDEGNGSVGPDGTOTDNISDTEH13.55 </td <td>Et</td> <td>Echinops telfairi</td> <td>Madagascar hedgehog</td> <td>KEEDDSENGLPESTSTDTPPDMDLH</td> <td>21.71</td>	Et	Echinops telfairi	Madagascar hedgehog	KEEDDSENGLPESTSTDTPPDMDLH	21.71
Dayspus novemcinctusArmadilloKEEDDSENGVPESTSTDTPPDINLH19.18MmMus musculusMouseKEEEDSENGVPESTSTDSPPGIDLH21.07RnRattus norvegicusNorwegian ratKEEEDSENGVPESTSTDSPPGIDLH21.92StSpernophilus tridecemlineatusThirteen-lined ground squirrelKEEEDSENGVPESTSTDTPPDIDLH21.92CpCavla porcellusGuinea pigKEEDDSENGVPESTSTDTPPDIDLH21.76MdMonodelphis domesticaOpossumKEEDDSENGLPESTSTDTPPDIDH21.50OaOrnithorhynchus anatinusPlatypusHGVPESTSTDSPPDIDH15.94GgGallus gallusChickenKEEDDSENGLPESTSTDTH21.83CjCoturnix japonicaJapanese quailKEEDEIDTGVPESTSTDTH21.83ClColumba liviaDomestic pigeonKEEDEIDTGVPESMSTDTH17.21TgTaeniopygia guttataZebra finchKEEDESDNGVPESMSTDTH17.61TseTrachemys scripta elegansRed-eared SliderKEEDESDNGVPESMSTDTH17.62SbBlicca bjoerknaWhite breamKEEEOSDNGVPESMSTDTH24.83CrCyprinus carpioCalfornia kingsnakeKEEDESDNGVPESMSTDTH17.61SbBlicca bjoerknaWest-African clawed frogKEEDESDNGVPESMSTDTH17.61CaDanio rerioCommon carpKEEGGRDSLGPGGTNTDTSSDSDH18.38DrDanio rerioZebrafishKEEDTGGNGSVGPDGTTDNISENEH13.71OlOnzehnynchus mykissBaibow troutKEETDEGNGGSVGPDDTH8.70TrTakif	Oc	Oryctolagus cuniculus	European rabbit	KEEDDSENGVPESTSTDTPPDIDLH	21.76
MmMus musculusMouseKEEEEDSENGVPESTSTDSPPGIDLH21.07RnRattus norvegicusNorvegian ratKEEEDSENGVPESTSTDSPPGIDLH19.51StSpermophilus tridecemlineatusThirteen-lined ground squirrelKEEEDSENGVPESTSTDTPPDIDLH21.92CpCavia porcellusGuinea pigKEEDDSENGVPESTSTDTPPDIDLH21.67MdMonodelphis domesticaOpossumKEEDDSENGVPESTSTDTPPDIDLH21.63OaOmithorhynchus anatinusPlatypusHGVPESTSTDSPPDIDH24.52OaCoturnik japonicaJapanese quailKEEDDEIDGVPESTSTDTH21.83CjCoturnik japonicaDomestic pigeonKEEDEDITGVPESMSTDTH17.21TgTaeniopygia guttataZebra finchKEEDEDSONGVPESMSTDTLPDMDH17.67LgLampropeltis getula californiaeCalifornia kingsnakeKEEDESDNGVPESMSTDTH24.28XtNonous carpioCommon carpKEEGSNGVPDSMSTDMH16.26CcOprinus carpioZebrafishKEEGGNGSUPGGGTNTDTSSDSDH18.38DrDanio rerioZebrafishKEEGTDESLGPGGGTNTDTSSDSDH18.38DrDanio rerioZebrafishKEEGTDESLGPGGGTNTDTSSDSDH18.33OmOncorhynchus mykissRainbow troutKEETDEGNGSSVGPDGTTDNISENEH13.71OlOnyzias latipesPufferlishKEEDTDEGNGSSVGPDGTTDNISENEH13.71OLJayias latipesMedakaKEDDESNGSUGPGGTNDNISTEH13.71OLLatimeria chalumnaeCoelacanthKEEDDSDNGVPEIMSTDMH10.11 </td <td>MI</td> <td>Myotis lucifugus</td> <td>Little brown bat</td> <td>KEEDDSDNGVPESTSTDTPPDLDLH</td> <td>21.78</td>	MI	Myotis lucifugus	Little brown bat	KEEDDSDNGVPESTSTDTPPDLDLH	21.78
RnRatus norvegicusNorwegian ratKEEEDSENGVPESTSTDSPPGIDLH19.51StSpermophilus tridecemlineatusThirteen-lined ground squirrelKEEEDSENGVPESTSTDTPPDIDLH21.92CpCavia porcellusGuinea pigKEEDDSENGVPESTSTDTPPDIDLH21.76MdMonodelphis domesticaOpossumKEEDDSENGVPESTSTDTPPDIDH24.52OaOrnithorhynchus anatinusPlatypusHGVPESTSTDSPPDIDH21.83CgGallus gallusChickenKEEDEIDTGVPESTSTDTH21.83CjCoturnix japonicaJapanese quailKEEDEIDTGVPESTSTDTH21.83ClColumba liviaDomestic pigeonKEEDEIDTGVPESMSTDTH17.21TgTaeniopygia guttataZebra finchKEEDEIDTGVPESMSTDTH17.67LgLampropeltis getula californiaeCalifornia kingsnakeKEEDESDNGVPESTSTDTH24.28XtXenopus tropicalisWest-African clawed frogKEEGSDNGVPESMSTDTH11.36BbBlicca bjoerknaCommon carpKEEGGDSLGPGGTNTDTSSDSDH16.26CoCyprinus carpioCommon carpKEEGGNGSVGPDVTH8.70TrTakifugu rubripesPufferfishKEEDEGNGSSVGPDGTQTDNISENEH13.71OlOnzerlynchus mykissPufferfishKEEDDSDNGVPEIMSTDMH13.55LcLatimera chalumnaeCoelacanthKEEDDSDNGVPEIMSTDMH13.55	Dn	Dasypus novemcinctus	Armadillo	KEEDDSENGVPESTSTDTPPDINLH	19.18
StSpermophilus tridecemlineatusThirteen-lined ground squirrelKEEEDSENGVPESTSTDTPPDIDLH21.92CpCavia porcellusGuinea pigKEEDDSENGVPESTSTDTPPDIDLH21.76MdMonodelphis domesticaOpossumKEEDDSENGLPESTSTDTPPDIDH24.52OaOmithorhynchus anatinusPlatypusHGVPESTSTDSPPDIDH15.94GgGallus gallusChickenKEEDEIDTGVPESTSTDTH21.83CjCoturnix japonicaJapanese quailKEEDEIDTGVPESTSTDTH21.83ClColumba liviaDomestic pigeonKEEDEIDTGVPESMSTDTH17.21TgTaeniopygia guttataZebra finchKEEDEIDTGVPESMSTDTH17.67LgLampropeltis getula californiaeCalifornia kingsnakeKEEDESDNGVPESMSTDTH17.67LgLampropeltis getula californiaeCalifornia kingsnakeKEEGSDSUGVPESMSTDTH11.36BbBlicca bjoerknaWhite breamKEEGGDSLGPGGTNTDTSSDSDH18.38DrDanio rerioCommon carpKEEGTGDSLGPGGTNTDTSSDSDH18.38DrDanio rerioZebrafishKEEDTGSUGSGSVGPDVTH8.70TrTakitugu rubripesPulferfishKEEDTGSUGSSVGPDGTQTDNISENEH13.71OlOryzias latipesMedakaKEDDSDNGVPEIMSTDMH13.55LcLatimeria chalumnaeCoelacanthKEEDDSDNGVPEIMSTDMH10.11	Mm	Mus musculus	Mouse	KEEEEDSENGVPESTSTDSPPGIDLH	21.07
CpCavia porcellusGuinea pigKEEDDSENGVPESTSTDTPPDIDLH21.76MdMonodelphis domesticaOpossumKEEDDSENGLPESTSTDTPPDIDH24.52OaOmithorhynchus anatinusPlatypusHGVPESTSTDSPPDIDH15.94GgGallus gallusChickenKEEDEIDTGVPESTSTDTH21.83CjCoturnix japonicaJapanese quailKEEDEIDTGVPESTSTDTH21.83ClColumba liviaDomestic pigeonKEEDEIDTGVPESMSTDTH17.21TgTaeniopygia guttataZebra finchKEEDEIDTGVPESMSTDTH17.21TseTrachemys scripta elegansRed-eared SliderKEEDESDNGVPESMSTDTH17.67LgLampropeltis getula californiaeCalifornia kingsnakeKEEEGSDNGVPESTSTDTH24.28XtXenopus tropicalisWest-African clawed frogKEEGSDNGVPDSMSTDMH11.36BbBlicca bjoerknaWhite breamKEEGNGDSLGPGGTNTDTSSDSDH16.26CcCyprinus carpioCommon carpKEEGHGDSLGPGGTNTDTSSDSDH18.38DrDanio rerioZebrafishKEETDEGNGGSVGPDGTTDNISENEH14.34OmOncorhynchus mykissRainbow troutKEETDEGNGGSVGPDGTOTDNISENEH13.71ClOryzias latipesMedakaKEDDDEGNGSSVGPDGTQTDNISTEH13.55LcLatimeria chalumnaeCoelacanthKEEDDSDNGVPEIMSTDMH10.11	Rn	Rattus norvegicus	Norwegian rat	KEEEDSENGVPESTSTDSPPGIDLH	19.51
MdMonodelphis domesticaOpossumKEEDDSENGLPESTSTDTPPDIDH24.52OaOmithorhynchus anatinusPlatypusHGVPESTSTDSPPDIDH15.94GgGallus gallusChickenKEEDEIDTGVPESTSTDTH21.83CjCoturnik japonicaJapanese quailKEEDEIDTGVPESTSTDTH21.83ClColumba liviaDomestic pigeonKEEDEIDTGVPESMSTDTH17.21TgTaeniopygia guttataZebra finchKEEDEIDTGVPESMSTDTH17.21TseTrachemys scripta elegansRed-eared SliderKEEDESDNGVPESMSTDTH17.67LgLampropeltis getula californiaeCalifornia kingsnakeKEEEDSDNGVPESMSTDTH11.36BbBlicca bjoerknaWhite breamKEEGGNDSLGPGGTNTDTSSDSDH16.26CcCyprinus carpioCommon carpKEEGTGDSLGPGGTNTDTSSDSDH18.38DrDanio rerioZebrafishKEEDEIDGNGSSVGPDVTH8.70TrTakifugu rubripesPutferfishKEEDTEGNGGSSVGPDGTGTDNISENEH13.71OlOryzias latipesMedakaKEDDSDNGVPEIMSTDMH13.55LcLatimeria chalumnaeCoelacanthKEEDDSDNGVPEIMSTDMH10.11	St	Spermophilus tridecemlineatus	Thirteen-lined ground squirrel	KEEEDSENGVPESTSTDTPPDIDLH	21.92
OaOmithorhynchus anatinusPlatypusHGVPESTSTDSPPDIDH15.94GgGallus gallusChickenKEEDEIDTGVPESTSTDTH21.83CjCoturnix japonicaJapanese quailKEEDEIDTGVPESTSTDTH21.83ClColumba liviaDomestic pigeonKEEDEIDTGVPESMSTDTH17.21TgTaeniopygia guttataZebra finchKEEDEIDTGVPESMSTDTH17.21TseTrachemys scripta elegansRed-eared SilderKEEDESDNGVPESMSTDTLPDMDH17.67LgLampropeltis getula californiaeCalifornia kingsnakeKEEEGSDNGVPESMSTDTH24.28XtXenopus tropicalisWest-African clawed frogKEEGGDSLGPGGTNTDTSSDSDH16.26CcCyprinus carpioCommon carpKEEGGDSLGPGGTNTDTSSDSDH18.38DrDanio rerioZebrafishKEETDEGNGGSVGPDGTQTDNISSDEH14.34OmOncorhynchus mykissRainbow troutKEETDEGNGGSSVGPDGTQTDNISDTEH3.71OlOryzias latipesMedakaKEDDDSDNGVPEIMSTDMH13.75LcLatimeria chalumnaeCoelacanthKEEDDSDNGVPEIMSTDMH10.11	Ср	Cavia porcellus	Guinea pig	KEEDDSENGVPESTSTDTPPDIDLH	21.76
GgGallus gallusChickenKEEDEIDTGVPESTSTDTH21.83CjCoturnix japonicaJapanese quailKEEDEIDTGVPESTSTDTH21.83ClColumba liviaDomestic pigeonKEEDEIDTGVPESTSTDTH17.21TgTaeniopygia guttataZebra finchKEEDEIDTGVPESMSTDTH17.21TseTrachemys scripta elegansRed-eared SliderKEEDESDNGVPESMSTDTH17.67LgLampropeltis getula californiaeCalifornia kingsnakeKEEEGSDNGVPESMSTDTH24.28XtXenopus tropicalisWest-African clawed frogKEEEGSDNGVPESMSTDMH11.36BbBlicca bjoerknaWhite breamKEEEGSDNGVPDSMSTDMH16.26CcCyprinus carpioCommon carpKEEGGDSLGPGGTNTDTSSDSDH18.38DrDanio rerioZebrafishKEETDEGNGGSVGPDGTNTDTSSDSDH14.34OmOncorhynchus mykissRainbow troutKEETDEGNGGSVGPDGTQTDNISENEH3.71OlOryzias latipesMedakaKEDDSDNGVPEIMSTDMH13.51LcLatimeria chalumnaeCoelacanthKEEDDSDNGVPEIMSTDMH10.11	Md	Monodelphis domestica	Opossum	KEEDDSENGLPESTSTDTPPDIDH	24.52
CiCoturnix japonicaJapanese quailKEEDEIDTGVPESTSTDTH21.83ClColumba liviaDomestic pigeonKEEDEIDTGVPESMSTDTH17.21TgTaeniopygia guttataZebra finchKEEDEIDTGVPESMSTDTH17.21TseTrachemys scripta elegansRed-eared SliderKEEDESDNGVPESMSTDTLPDMDH17.67LgLampropeltis getula californiaeCalifornia kingsnakeKEEDSDNGVPESMSTDTH24.28XtXenopus tropicalisWest-African clawed frogKEEGSDNGVPDSMSTDMH11.36BbBlicca bjoerknaWhite breamKEEGNGDSLGPGGTNTDTSSDSDH16.26CcCyprinus carpioCommon carpKEEGHGDSLGPGGTNTDTSSDSDH18.38DrDanio rerioZebrafishKEETDEGNGGSVGPDVTH8.70TrTakifugu rubripesPufferfishKEDTDEGNGGSVGPDGTQTDNISENEH13.71OlOryzias latipesMedakaKEDMDEGNGSSVGPDGTQTDNISDTEH13.55LcLatimeria chalumnaeCoelacanthKEEDDSDNGVPEIMSTDMH10.11	Oa	Ornithorhynchus anatinus	Platypus	HGVPESTSTDSPPDIDH	15.94
ClColumba liviaDomestic pigeonKEEDEIDTGVPESMSTDTH17.21TgTaeniopygia guttataZebra finchKEEDEIDTGVPESMSTDTH17.21TseTrachemys scripta elegansRed-eared SliderKEEDESDNGVPESMSTDTLPDMDH17.67LgLampropeltis getula californiaeCalifornia kingsnakeKEEDSDNGVPESTSTDTH24.28XtXenopus tropicalisWest-African clawed frogKEEGSDNGVPDSMSTDMH11.36BbBlicca bjoerknaWhite breamKEEGNGDSLGPGGTNTDTSSDSDH16.26CcCyprinus carpioCommon carpKEEGHGDSLGPGGTNTDTSSDSDH18.38DrDanio rerioZebrafishKEETDEGNGGSVGPDVTH8.70TrTakifugu rubripesPufferfishKEDTDEGNGGSVGPDGTQTDNISENEH13.71OlOryzias latipesMedakaKEDMDEGNGSSVGPDGTQTDNISDTEH13.55LcLatimeria chalumnaeCoelacanthKEEDDSDNGVPEIMSTDMH10.11	Gg	Gallus gallus	Chicken	KEEDEIDTGVPESTSTDTH	21.83
TgTaeniopygia guttataZebra finchKEEDEIDTGVPESMSTDTH17.21TseTrachemys scripta elegansRed-eared SliderKEEDESDNGVPESMSTDTLPDMDH17.67LgLampropeltis getula californiaeCalifornia kingsnakeKEEDSDNGVPESTSTDTH24.28XtXenopus tropicalisWest-African clawed frogKEEGSDNGVPDSMSTDMH11.36BbBlicca bjoerknaWhite breamKEEGNGDSLGPGGTNTDTSSDSDH16.26CcCyprinus carpioCommon carpKEEGTGDSLGPGGTNTDTSSDSDH18.38DrDanio rerioZebrafishKEETDEGNGGSVGPDQTTDTSSDSDH14.34OmOncorhynchus mykissRainbow troutKEETDEGNGGSVGPDQTTDNISENEH13.71OlOryzias latipesMedakaKEDMDEGNGSSVGPDGTQTDNISDTEH13.55LcLatimeria chalumnaeCoelacanthKEEDDSDNGVPEIMSTDMH10.11	Cj	Coturnix japonica	Japanese quail	KEEDEIDTGVPESTSTDTH	21.83
TseTrachenys scripta elegansRed-eared SliderKEEDESDNGVPESMSTDTLPDMDH17.67LgLampropeltis getula californiaeCalifornia kingsnakeKEEDSDNGVPESTSTDTH24.28XtXenopus tropicalisWest-African clawed frogKEEEGSDNGVPDSMSTDMH11.36BbBlicca bjoerknaWhite breamKEEGNGDSLGPGGTNTDTSSDSDH16.26CcCyprinus carpioCommon carpKEEGTGDSLGPGGTNTDTSSDSDH18.38DrDanio rerioZebrafishKEEGHGDSLGPGGTNTETSSDSEH14.34OmOncorhynchus mykissRainbow troutKEETDEGNGGSVGPDVTH8.70TrTakifugu rubripesPufferfishKEDTDEGNGGSVGPDGTQTDNISENEH13.71OlOryzias latipesMedakaKEDMDEGNGSSVGPDGTQTDNISDTEH13.55LcLatimeria chalumnaeCoelacanthKEEDDSDNGVPEIMSTDMH10.11	CI	Columba livia	Domestic pigeon	KEEDEIDTGVPESMSTDTH	17.21
LgLampropeltis getula californiaeCalifornia kingsnakeKEEEDSDNGVPESTSTDTH24.28XtXenopus tropicalisWest-African clawed frogKEEEGSDNGVPDSMSTDMH11.36BbBlicca bjoerknaWhite breamKEEGNGDSLGPGGTNTDTSSDSDH16.26CcCyprinus carpioCommon carpKEEGTGDSLGPGGTNTDTSSDSDH18.38DrDanio rerioZebrafishKEEGHGDSLGPGGTNTETSSDSEH14.34OmOncorhynchus mykissRainbow troutKEETDEGNGGSVGPDVTH8.70TrTakifugu rubripesPufferfishKEDTDEGNGGSVGPDGTQTDNISENEH13.71OlOryzias latipesMedakaKEDMDEGNGSSVGPDGTQTDNISDTEH13.55LcLatimeria chalumnaeCoelacanthKEEDDSDNGVPEIMSTDMH10.11	Tg	Taeniopygia guttata	Zebra finch	KEEDEIDTGVPESMSTDTH	17.21
XtXenopus tropicalisWest-African clawed frogKEEEGSDNGVPDSMSTDMH11.36BbBlicca bjoerknaWhite breamKEEGNGDSLGPGGTNTDTSSDSDH16.26CcCyprinus carpioCommon carpKEEGTGDSLGPGGTNTDTSSDSDH18.38DrDanio rerioZebrafishKEEGHGDSLGPGGTNTETSSDSEH14.34OmOncorhynchus mykissRainbow troutKEETDEGNGGSVGPDVTH8.70TrTakifugu rubripesPufferfishKEDTDEGNGGSVGPDGTQTDNISENEH13.71OlOryzias latipesMedakaKEDMDEGNGSSVGPDGTQTDNISDTEH13.55LcLatimeria chalumnaeCoelacanthKEEDDSDNGVPEIMSTDMH10.11	Tse	Trachemys scripta elegans	Red-eared Slider	KEEDESDNGVPESMSTDTLPDMDH	17.67
BbBlicca bjoerknaWhite breamKEEGNGDSLGPGGTNTDTSSDSDH16.26CcCyprinus carpioCommon carpKEEGTGDSLGPGGTNTDTSSDSDH18.38DrDanio rerioZebrafishKEEGHGDSLGPGGTNTETSSDSEH14.34OmOncorhynchus mykissRainbow troutKEETDEGNGGSVGPDVTH8.70TrTakifugu rubripesPufferfishKEDTDEGNGGSVGPDGTQTDNISENEH13.71OlOryzias latipesMedakaKEDMDEGNGSSVGPDGTQTDNISDTEH13.55LcLatimeria chalumnaeCoelacanthKEEDDSDNGVPEIMSTDMH10.11	Lg	Lampropeltis getula californiae	California kingsnake	KEEEDSDNGVPESTSTDTH	24.28
CcCyprinus carpioCommon carpKEEGTGDSLGPGGTNTDTSSDSDH18.38DrDanio rerioZebrafishKEEGHGDSLGPGGTNTETSSDSEH14.34OmOncorhynchus mykissRainbow troutKEETDEGNGGSVGPDVTH8.70TrTakifugu rubripesPufferfishKEDTDEGNGGSVGPDGTQTDNISENEH13.71OlOryzias latipesMedakaKEDMDEGNGSSVGPDGTQTDNISDTEH13.55LcLatimeria chalumnaeCoelacanthKEEDDSDNGVPEIMSTDMH10.11	Xt	Xenopus tropicalis	West-African clawed frog	KEEEGSDNGVPDSMSTDMH	11.36
DrDanio rerioZebrafishKEEGHGDSLGPGGTNTETSSDSEH14.34OmOncorhynchus mykissRainbow troutKEETDEGNGGSVGPDVTH8.70TrTakifugu rubripesPufferfishKEDTDEGNGGSVGPDGTQTDNISENEH13.71OIOryzias latipesMedakaKEDMDEGNGSSVGPDGTQTDNISDTEH13.55LcLatimeria chalumnaeCoelacanthKEEDDSDNGVPEIMSTDMH10.11	Bb	Blicca bjoerkna	White bream	KEEGNGDSLGPGGTNTDTSSDSDH	16.26
OmOncorhynchus mykissRainbow troutKEETDEGNGGSVGPDVTH8.70TrTakifugu rubripesPufferfishKEDTDEGNGGSVGPDGTQTDNISENEH13.71OIOryzias latipesMedakaKEDMDEGNGSSVGPDGTQTDNISDTEH13.55LcLatimeria chalumnaeCoelacanthKEEDDSDNGVPEIMSTDMH10.11	Cc	Cyprinus carpio	Common carp	KEEGTGDSLGPGGTNTDTSSDSDH	18.38
TrTakifugu rubripesPufferfishKEDTDEGNGGSVGPDGTQTDNISENEH13.71OIOryzias latipesMedakaKEDMDEGNGSSVGPDGTQTDNISDTEH13.55LcLatimeria chalumnaeCoelacanthKEEDDSDNGVPEIMSTDMH10.11	Dr	Danio rerio	Zebrafish	KEEGHGDSLGPGGTNTETSSDSEH	14.34
OIOryzias latipesMedakaKEDMDEGNGSSVGPDGTQTDNISDTEH13.55LcLatimeria chalumnaeCoelacanthKEEDDSDNGVPEIMSTDMH10.11	Om	Oncorhynchus mykiss	Rainbow trout	KEETDEGNGGSVGPDVTH	8.70
Lc <i>Latimeria chalumnae</i> Coelacanth KEEDDSDNGVPEIMSTDMH 10.11	Tr	Takifugu rubripes	Pufferfish	KEDTDEGNGGSVGPDGTQTDNISENEH	13.71
	OI	Oryzias latipes	Medaka	KEDMDEGNGSSVGPDGTQTDNISDTEH	13.55
CmCallorhinchus miliiElephant sharkKDEEESEGGSPETVSAEAPPSTDH24.10	Lc	Latimeria chalumnae	Coelacanth	KEEDDSDNGVPEIMSTDMH	10.11
	Cm	Callorhinchus milii	Elephant shark	KDEEESEGGSPETVSAEAPPSTDH	24.10

PEST scores were determined with aid of the epestfind webtool at http://mobyle.pasteur.fr/cgi-bin/portal.py\$\Delta\$form=epestfind.

The K_{IR}2.1 PEST Domain Is Not Required for Normal Channel Protein Expression, Subcellular Localisation, Response to Chloroquine, or Rapid Protein Turnover Rate

A human $K_{IR}2.1$ protein lacking the complete PEST domain (Δ PEST) was constructed to gain insight into the biological role of the PEST domain. Upon transfection in HEK293T cells, Δ PEST channel protein was detected on Western blot using an antibody against the N-terminus having, as expected, a lower apparent Mw as compared to WT channel proteins (**Figure 2A**). We next addressed the subcellular localization of Δ PEST $K_{IR}2.1$ channel proteins upon ectopic expression in COS-7 cells. Twenty-four hour following transfection of cells with either WT or Δ PEST, immunostaining was performed using the N-terminal antibody against $K_{IR}2.1$. Signals were found throughout the cells, but

also in membrane ruffles indicative for plasma membrane localisation (Figure 2B).

To determine the potential of heterotetramerization, we co-transfected GFP-tagged WT $K_{IR}2.1$ in HEK293T with either non-tagged WT or Δ PEST encoding construct and performed co-IP with GFP antibody. We were able to co-immunoprecipitate non-tagged WT, and also Δ PEST channel proteins, as detected using the N-terminal directed antibody for western blot (**Figure 2C**). Therefore, we conclude that the PEST domain is not required for interaction between $K_{IR}2.1$ channel protein subunits.

 $K_{IR}2.1$ proteins are degraded by lysosomal degradation (Jansen et al., 2008; Varkevisser et al., 2013). Chloroquine application results in $K_{IR}2.1$ accumulation upon chronic exposure (Jansen et al., 2008; Varkevisser et al., 2013). We next assessed the response of $\Delta PEST K_{IR}2.1$ protein to chloroquine exposure of 10 μ M for 24 h in COS-7 cells by confocal microscopy. Both WT and $\Delta PEST K_{IR}2.1$ proteins displayed

FIGURE 1 Amino acid alignment of C-termini of human $K_{IR}2.1$, $K_{IR}2.2$, $K_{IR}2.3$, $K_{IR}2.4$, and $K_{IR}2.6$ encompassing the PEST domain region of $K_{IR}2.1$ indicated by double line above the alignment. Amino acid sequences are depicted in single letter code. Identical residues with respect to $K_{IR}2.1$ are depicted in white font on a black background. $K_{IR}2.4$ contains a potential PEST sequence extending from 378 to 424 (KSSFPGSLTAFCYENELALSCCQEEDEDDETEEGNGVETEDGAASPR). PEST domains in $K_{IR}2.1$ and $K_{IR}2.4$ are indicated in italic. PEST scores are depicted at the right side of the sequences.

similar responses (**Figure 3**). Intracellular K_{IR} 2.1 accumulation was observed in what appeared as vesicle like structures, presumably lysosomes.

PEST domains have been associated in protein turnover rate, i.e., many short-lived proteins contain a PEST domain (Sandoval et al., 2006; Belizario et al., 2008; Meyer et al., 2011). Therefore, we tested protein turnover rates in transiently transfected HEK293T cells in the presence of 200 μ g/mL CHX. WT and Δ PEST proteins displayed a time-dependent decrease in expression. Following 1 h of CHX treatment, a stronger decrease in Δ PEST expression compared to WT was found, however, no significant differences were detected on later time-points neither was there a significant difference in half life (T¹/₂ of 2.6 h vs. 1.7 h for the

WT and $\Delta PEST K_{IR}2.1$ protein, respectively) (**Figure 4**). Thus, removing the PEST domain from the K_{IR}2.1 protein does not decrease protein turnover rate.

Human K_{IR}2.1 ∆PEST Channels Produce Typical Inward Rectifying Potassium Currents With Enhanced Rectification

We assessed inward rectifier current formation of WT and Δ PEST channels by whole cell patch clamp electrophysiology on transiently transfected HEK293T cells. Both channel types resulted in the formation of typical inwardly rectifying potassium currents and corresponding IV curves (**Figure 5A**). Comparison

FIGURE 3 CQ treatment induces intracellular accumulation of WT and Δ PEST K_{IR}2.1 protein in COS-7 cells. Confocal images of WT and Δ PEST K_{IR}2.1 detected by N-terminal K_{IR}2.1 antibody (green), and Cadherin (membrane staining) by Pan-Cadherin antibody (red). Single staining results are depicted on the right by b/w images. Scale bar indicates 10 μ m.

of rectification (maximal outward current vs. maximal inward current) indicated no statistical difference in rectification between WT and Δ PEST channels in the whole cell mode (at -60 mV, $0.119 \pm 0.022 \text{ vs.} 0.085 \pm 0.014 (P = 0.31)$ for WT and Δ PEST, respectively) (**Figure 5B**).

To better assess inward rectification properties, insideout measurements of WT and $\Delta PEST K_{IR}2.1$ channels were performed in the absence of polyamines and Mg²⁺ using a ramp protocol from -100 to +100 mV (Figure 5C). Under baseline conditions almost straight voltage-current relationships were observed between -100 and +50 mV. Between +50and +100 mV some rectification was observed for WT channels. In contrast, $\Delta PEST K_{IR}2.1$ channels produced more pronounced rectification between +40 and +100 mV (Figure 5C). Quantification demonstrated a significantly stronger rectification (inward at -80 mV/outward at +50 mV) for $\triangle PEST$ compared to WT K_{IR}2.1 channel (2.7 ± 1.2 vs. $1.7 \pm 0.2, P < 0.01, n = 10, \text{ mean} \pm \text{SD}$) (Figure 5D). Upon application of 5 µM spermine, both types of channels displayed strong rectification (28.8 \pm 15.6 vs. 41.7 \pm 32.6; n.s. for \triangle PEST and WT currents) (Figure 5E). Finally, we observed a similar dose-dependent decrease in remaining current at +50 mV

upon perfusion with 0.1, 1 and 5 μ M spermine, respectively (**Figure 5F**) (WT: baseline vs. 0.1 μ M: *P* < 0.0001, 0.1 μ M vs. 1 μ M and 5 μ M: *P* < 0.0001, 1 μ M vs. 5 μ M: *P* < 0.05; Δ PEST: baseline vs. 0.1 μ M: *P* < 0.0001, 0.1 μ M vs. 1 μ M and 5 μ M: *P* < 0.05 and *P* < 0.0001, respectively, 1 μ M vs. 5 μ M: n.s.) The strongest decrease in current was observed upon perfusion with 0.1 μ M spermine (0.26 \pm 0.05 and 0.33 \pm 0.19 fold for WT and Δ PEST K_{IR}2.1 current, respectively).

Snake \triangle PEST K_{IR}2.1 Channels

Given the high level of conservation of the PEST domain across the vertebrate phyla, we hypothesized that enhanced rectification in Δ PEST channels could also be observed in the previously cloned snake K_{IR}2.1 channel (Houtman et al., 2014). For this purpose, a snake Δ PEST K_{IR}2.1 was generated similarly, as its human counterpart. **Figures 6A,B** depicts expression of snake WT and Δ PEST channels in HEK293T cells (**Figure 6A**) and COS-7 cells (**Figure 6B**) by Western blot and immunofluorescence microscopy, respectively.

Both WT and $\Delta PEST$ channels from snake produced typical K_{IR}2.1 currents as demonstrated by whole cell patch clamp electrophysiology (**Figure 6C**). When using inside-out patch

clamp measurements in the absence of polyamines and Mg²⁺ no statistical difference in rectification index was observed (1.9 ± 0.4 vs. 2.4 ± 1.3 ; P = 0.13 for WT and Δ PEST, respectively, mean \pm SD) (**Figures 6D,E**). Distribution analysis of rectification index of each patch measured, demonstrated a larger variation and rightward shift in Δ PEST channels compared to WT channels, although not as prominent as found for the human variants (**Supplementary Figure S1**). As for the human channels, application of spermine dose-dependently enhanced rectification (**Figure 6E**) (WT: baseline vs. 0.1 μ M: P < 0.05, 0.1 μ M vs. 1 μ M and 5 μ M: P < 0.05 and P < 0.0001, respectively, 1 μ M vs. 5 μ M: n.s.; Δ PEST: baseline vs. 0.1 μ M: P < 0.05, 0.1 μ M vs. 5 μ M: n.s.).

DISCUSSION

In the current work we established the existence of a conserved PEST domain in the C-terminus of the $K_{IR}2.1$ potassium ion channel protein. The PEST domain is not essential for normal plasma membrane expression of $K_{IR}2.1$ protein, tetramerization with wildtype channel proteins, intracellular $K_{IR}2.1$ accumulation in response to chronic chloroquine treatment or rapid protein degradation. However, deletion of the PEST domain increases rectification behavior of the human $K_{IR}2.1$ channels.

PEST domains are defined by a specific signature, i.e., a stretch of amino acids rich in P, E, D, S and T most often confined by positively charged residues on both sides, rather than by a determined sequence motif. This may explain why this domain has not been recognized in the KIR2.1 protein before. Following the identification of PEST domains, the notification of the presence of PEST domains in many short living proteins stood at the basis of the PEST hypothesis, stating that PEST domains destabilize the protein in which they are present (Rogers et al., 1986). However, the identification of PEST domains in longliving proteins did not favor the PEST hypothesis, neither did the observations that deleting a PEST domain did not necessarily increase half-life (e.g., Pakdel et al., 1993; Xiao et al., 2014). Upon ectopic expression in HEK293 cells, KIR2.1 proteins have a short half-life (2.64 h). Deletion of the PEST domain did not increase $T^{1/2}$ which is in contrast to the original PEST domain hypothesis as mentioned above. From these results we conclude that the PEST domain in K_{IR}2.1 proteins does not promote protein instability and is not responsible for rapid protein degradation.

The human K_{IR}2.1 PEST domain (residues 385-409) is located between the ER export signal FCYENE (374-379) and the PDZ binding domain ESEI (425-427). Similarly, the snake KIR2.1 PEST (383-401) is located between ER export signal (372-377) and PDZ binding domain (422-425). In crystallization studies, the last 57 residues of the mouse KIR2.1 channels were found to lack intrinsic structural rigidity, and it was suggested that this domain might require interactions with other regions of the protein and/or cytoplasmic proteins to adopt one or more defined conformations (Pegan et al., 2005). Therefore, the proline-rich PEST domain by itself might form a flexible linker domain between the two sequence conserved domains, and might allow for protein-protein interactions without affecting other structural domains of the channel. We can speculate that this would allow interaction of the PDZ binding domain with a range of different proteins depending on the cell type in which the channel is expressed. If so, this will provide versatility to this channel which is expressed in many different cell types and tissues (De Boer et al., 2010). The question then remains however, why the KIR2.2, KIR2.3, and KIR2.6 channel proteins do not contain a PEST domain between its ER export and PDZ domains. Furthermore, it does not explain evolutionary conservation of the PEST motif if only a flexible linker in this region of the K_{IR}2.1 channel would serve the same purpose. On the other hand, domain linker regions may also serve an important function in the interplay between different domains (Gokhale and Khosla, 2000).

Inward rectification in $K_{IR}2.1$ channels depends on polyamines entering the channel from the cytosolic side. Enormous progress in the understanding of the mechanism has been obtained but knowledge of all mechanisms involved at the molecular level is far from complete and consensus has not been reached (Nichols and Lee, 2018). As rectification at strong positive potentials is stronger in $\Delta PEST$ channels than in WT using inside-out patches following spermine washout, enhanced rectification appears an intrinsic property of the PEST domain lacking channels. Nevertheless, upon spermine application, strong rectification ensues in $\Delta PEST$ channels

Quantification of rectification index (inward current at -80 mV divided by outward current at +50 mV) of WT and $\Delta PEST I_{K/R2.1}$ from ramp protocol elicited currents in inside-out mode without (**D**, baseline) and in the presence of 5 μ M spermine (**E**) (mean \pm SD, WT n = 10, $\Delta PEST n = 10$). (**F**) Quantification of normalized outward current (at +50 mV) from WT and $\Delta PEST$ channels in inside-out patch clamp under baseline conditions and with increasing spermine concentrations. ^{##}P < 0.01 vs. WT; ****P < 0.0001 vs. baseline (mean \pm SD, WT n = 10, $\Delta PEST n = 10$).

demonstrating that the basic mechanism of (bulk) rectification is not affected. We can only speculate on the mechanism of stronger rectification. Deletion of the PEST domain may have a charge effect on the protein that results in altered structural adaptations upon depolarization and thus induce subtle effects on rectification. Furthermore, the deletion may affect interactions with, not yet identified, cellular constituents at this site that play a role in rectification. Rectification effects in the snake K_{IR}2.1 channel upon PEST deletion are less prominent, which might be related to the reduced length of the PEST domain in this species. However, the size of the PEST domain seems unrelated to the evolutionary pathways followed. In the same phylum PEST domains have different lengths (e.g., rainbow trout, 18 residues vs. white bream, 24; California kingsnake, 19 vs. red-eared slider, 24).

A potential physiological role for the PEST domain in $K_{IR}2.1$ channels awaits further work, in which *in vivo* models with ubiquitous expression of Δ PEST channels may provide first clues

FIGURE 6 [Expression analysis and channel formation of snake WT and $\Delta PEST K_{IR}2.1$ protein and electrophysiological analysis of formed channels in transiently transfected HEK293T cells and COS-7 cells. **(A)** Western blot depicting WT (approximately 50 kDa) and $\Delta PEST$ (approximately 47 kDa) K_{IR}2.1 protein. Non-transfected cells (NT) were used as negative control. Ponceau staining depicts loading control. **(B)** Subcellular localization of ectopically expressed WT and $\Delta PEST K_{IR}2.1$ channel proteins in COS-7 cells. Apart from plasma membrane staining, intracellular aggregates were observed. **(C)** Representative current traces of WT and $\Delta PEST K_{IR}2.1$ recorded in whole cell mode (left) and normalized current-voltage relation curves of WT and $\Delta PEST I_{KIR2.1}$ (right) (mean \pm SEM, WT n = 9, $\Delta PEST n = 7$). **(D)** Steady state I_{KIR2.1} traces from WT and $\Delta PEST$ channel containing inside-out patches elicited by a voltage ramp protocol from -100 to + 100 mV, under baseline conditions (black) and upon application of 5 μ M spermine (red). **(E)** Quantification of rectification index (inward current at -80 mV divided by outward current at +50 mV) of WT and $\Delta PEST I_{KIR2.1}$ from ramp protocol elicited currents in inside-out mode without (left panel) and in the presence of 5 μ M spermine (middle panel) (mean \pm SD, WT n = 11, $\Delta PEST n = 24$). Quantification of normalized outward current (at +50 mV) from WT and $\Delta PEST h = 24$). Quantification of normalized outward current (at +50 mV) from WT and $\Delta PEST n = 10$).

into which of the many cell types that express $K_{IR}2.1$ channel proteins, the PEST domain plays a prominent role. Only then can clinical implications be envisioned.

DATA AVAILABILITY

The datasets generated for this study are available on request to the corresponding author.

AUTHOR CONTRIBUTIONS

MQ, YJ, MH, MV, FR, BK, and MvdH performed the research. MQ, YJ, MH, MV, FR, and MvdH analyzed the results. MvdH designed the study. MQ and MvdH wrote the manuscript. All authors reviewed the final version of the manuscript.

FUNDING

MQ and YJ were supported by a grant from the Chinese Scholarship Council.

REFERENCES

- Belizario, J. E., Alves, J., Garay-Malpartida, M., and Occhiucci, J. M. (2008). Coupling caspase cleavage and proteasomal degradation of proteins carrying PEST motif. *Curr. Protein Pept. Sci.* 9, 210–220. doi: 10.2174/ 138920308784534023
- Bies, J., Markus, J., and Wolff, L. (2002). Covalent attachment of the SUMO-1 protein to the negative regulatory domain of the c-Myb transcription factor modifies its stability and transactivation capacity. *J. Biol. Chem.* 277, 8999–9009. doi: 10.1074/jbc.M110453200
- De Boer, T. P., Houtman, M. J., Compier, M., and Van der Heyden, M. A. G. (2010). The mammalian KIR2.x inward rectifier ion channel family: expression pattern and pathophysiology. *Acta Physiol.* 199, 243–256. doi: 10.1111/j.1748-1716.2010.02108.x
- Gokhale, R. S., and Khosla, C. (2000). Role of linkers in communication between protein modules. *Curr. Opin. Chem. Biol.* 4, 22–27. doi: 10.1016/S1367-5931(99)00046-0
- Hansen, S. B., Tao, X., and MacKinnon, R. (2011). Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. *Nature* 477, 495–498. doi: 10.1038/nature10370
- Hofherr, A., Fakler, B., and Klöcker, N. (2005). Selective Golgi export of Kir2.1 controls the stoichiometry of functional Kir2.x channel heteromers. J. Cell Sci. 118, 1935–1943. doi: 10.1242/jcs. 02322
- Houtman, M. J., Korte, S. M., Ji, Y., Kok, B., Vos, M. A., Stary-Weinzinger, A., et al. (2014). Insights in KIR2.1 channel structure and function by an evolutionary approach; cloning and functional characterization of the first reptilian inward rectifier channel KIR2.1, derived from the California kingsnake (Lampropeltis getula californiae). *Biochem. Biophys. Res. Commun.* 452, 992–997. doi: 10.1016/j.bbrc.2014. 09.031
- Houtman, M. J., Takanari, H., Kok, B. G., Van Eck, M., Montagne, D. R., Vos, M. A., et al. (2012). Experimental mapping of the canine KCNJ2 and KCNJ12 gene structures and functional analysis of the canine KIR2.2 ion channel. *Front. Physiol.* 3:9. doi: 10.3389/fphys.2012.00009
- Jansen, J. A., De Boer, T. P., Wolswinkel, R., Van Veen, T. A., Vos, M. A., Van Rijen, H. V., et al. (2008). Lysosome mediated Kir2.1 breakdown directly influences inward rectifier current density. *Biochem. Biophys. Res. Commun.* 367, 687–692. doi: 10.1016/j.bbrc.2007.12.168

ACKNOWLEDGMENTS

Part of this abstract has been presented at the 41st meeting of the ESC Working Group on Cardiac Cellular Electrophysiology, June 17–19, 2017, Vienna, Austria (Qile et al., 2017).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphys. 2019.00863/full#supplementary-material

FIGURE S1 | Distribution analysis of rectification classes of individual cell patches from human (left panel) and snake (right panel) WT and Δ PEST channel currents measured in the inside-out mode. Rectification indexes (inward current at -80 mV divided by outward current at +50 mV) from individual measurements were categorized in fifteen equal discrete classes from 0.0 to 8.0 The percentage of cell patches belonging to an individual class (all patches = 100%) are indicated on the y-axis. Whereas in most cell inside-out patches containing human WT K_{IR}2.1, rectification indexes were found to be between 1.0 and 2.0, all human Δ PEST patches displayed rectification indexes of 1.5 and higher. In snake K_{IR}2.1 WT and Δ PEST patches, the distribution of rectification classes displayed more overlap. Distribution analysis quantified from measurements depicted as mean values in **Figures 5D,E** and **6E**.

- Ji, Y., Takanari, H., Qile, M., Nalos, L., Houtman, M. J. C., Romunde, F. L., et al. (2017a). Class III antiarrhythmic drugs amiodarone and dronedarone impair KIR2.1 backward trafficking. J. Cell. Mol. Med. 21, 2514–2523. doi: 10.1111/ jcmm.13172
- Ji, Y., Veldhuis, M. G., Zandvoort, J., Romunde, F. L., Houtman, M. J. C., Duran, K., et al. (2017b). PA-6 inhibits inward rectifier currents carried by V931 and D172N gain-of-function KIR2.1 channels, but increases channel protein expression. J. Biomed. Sci. 24:44. doi: 10.1186/s12929-017-0352-x
- Kubo, Y., Baldwin, T. J., Jan, Y. N., and Jan, L. Y. (1993). Primary structure and functional expression of a mouse inward rectifier potassium channel. *Nature* 36, 127–133. doi: 10.1038/362127a0
- Lee, S. J., Wang, S., Borschel, W., Heyman, S., Gyore, J., and Nichols, C. G. (2013). Secondary anionic phospholipid binding site and gating mechanism in Kir2.1 inward rectifier channels. *Nat. Commun.* 4:2786. doi: 10.1038/ncomms3786
- Leonoudakis, D., Conti, L. R., Radeke, C. M., McGuire, L. M., and Vandenberg, C. A. (2004). A multiprotein trafficking complex composed of SAP97, CASK, Veli, and Mint1 is associated with inward rectifier Kir2 potassium channels. *J. Biol. Chem.* 279, 19051–19063. doi: 10.1074/jbc.M400284200
- Li, Y., Jin, K., Bunker, E., Zhang, X., Luo, X., Liu, X., et al. (2018). Structural basis of the phosphorylation-independent recognition of cyclin D1 by the SCFFBXO31 ubiquitin ligase. *Proc. Natl. Acad. Sci. U.S.A.* 115, 319–324. doi: 10.1073/pnas. 1708677115
- Ma, D., Taneja, T. K., Hagen, B. M., Kim, B. Y., Ortega, B., Lederer, W. J., et al. (2011). Golgi export of the Kir2.1 channel is driven by a trafficking signal located within its tertiary structure. *Cell* 145, 1102–1115. doi: 10.1016/j.cell. 2011.06.007
- Ma, D., Zerangue, N., Lin, Y. F., Collins, A., Yu, M., Jan, Y. N., et al. (2001). Role of ER export signals in controlling surface potassium channel numbers. *Science* 291, 316–319. doi: 10.1126/science.291.5502.316
- Meyer, R. D., Srinivasan, S., Singh, A. J., Mahoney, J. E., Gharahassanlou, K. R., and Rahimi, N. (2011). PEST motif serine and tyrosine phosphorylation controls vascular endothelial growth factor receptor 2 stability and downregulation. *Mol. Cell. Biol.* 31, 2010–2025. doi: 10.1128/MCB.01006-10
- Nichols, C. G., and Lee, S. J. (2018). Polyamines and potassium channels: a 25-year romance. J. Biol. Chem. 293, 18779–18788. doi: 10.1074/jbc.TM118.003344
- Nixon, P. J., Komenda, J., Barber, J., Deak, Z., Vass, I., and Diner, B. A. (1995). Deletion of the PEST-like region of photosystem two modifies the QB-binding pocket but does not prevent rapid turnover of D1. *J. Biol. Chem.* 270, 14919– 14927. doi: 10.1074/jbc.270.25.14919

- Pakdel, F., Le Goff, P., and Katzenellenbogen, B. S. (1993). An assessment of the role of domain F and PEST sequences in estrogen receptor half-life and bioactivity. J. Steroid Biochem. Mol. Biol. 46, 663–672. doi: 10.1016/0960-0760(93)90307-I
- Pegan, S., Arrabit, C., Zhou, W., Kwiatkowski, W., Collins, A., Slesinger, P. A., et al. (2005). Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. *Nat. Neurosci.* 8, 279–287. doi: 10.1038/ nn1411
- Preisig-Müller, R., Schlichthörl, G., George, T., Heinen, S., Brüggemann, A., Rajan, S., et al. (2002). Heteromerization of Kir2.x potassium channels contributes to the phenotype of Andersen's syndrome. *Proc. Natl. Acad. Sci. U.S.A.* 99, 7774–7779. doi: 10.1073/pnas.102609499
- Qile, M., Ji, Y., Houtman, M. J. C., Romunde, F., Veldhuis, M., Kok, B., et al. (2017). P1077 Identification of a PEST domain in the inward rectifier channel KIR2.1 involved in protein stability. *EP Europace* 19:iii238. doi: 10.1093/ehjci/eux150
- Rechsteiner, M., and Rogers, S. W. (1996). PEST sequences and regulation by proteolysis. *Trends Biochem. Sci.* 21, 267–271. doi: 10.1016/S0968-0004(96) 10031-1
- Rogers, S., Wells, R., and Rechsteiner, M. (1986). Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. *Science* 234, 364–368. doi: 10.1126/science.2876518
- Sandoval, A., Oviedo, N., Tadmouri, A., Avila, T., De Waard, M., and Felix, R. (2006). Two PEST-like motifs regulate Ca2+/calpain-mediated cleavage of the CaVbeta3 subunit and provide important determinants for neuronal Ca2+ channel activity. *Eur. J. Neurosci.* 23, 2311–2320. doi: 10.1111/j.1460-9568.2006. 04749.x
- Stockklausner, C., Ludwig, J., Ruppersberg, J. P., and Klöcker, N. (2001). A sequence motif responsible for ER export and surface expression of Kir2.0 inward rectifier K+ channels. *FEBS Lett.* 493, 129–133. doi: 10.1016/S0014-5793(01)02286-4
- Tao, X., Avalos, J. L., Chen, J., and MacKinnon, R. (2009). Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution. *Science* 326, 1668–1674. doi: 10.1126/science.1180310
- Vaidyanathan, R., Van Ert, H., Haq, K. T., Morotti, S., Esch, S., McCune, E. C., et al. (2018). Inward rectifier potassium channels (Kir2.x) and caveolin-3 domainspecific interaction: implications for Purkinje cell-dependent ventricular

arrhythmias. Circ. Arrhythm. Electrophysiol. 11:e005800. doi: 10.1161/CIRCEP. 117.005800

- Van der Heyden, M. A. G., and Jespersen, T. (2016). Pharmacological exploration of the resting membrane potential reserve: impact on atrial fibrillation. *Eur. J. Pharmacol.* 771, 56–64. doi: 10.1016/j.ejphar.2015. 11.026
- Varkevisser, R., Houtman, M. J., Waasdorp, M., Man, J. C., Heukers, R., Takanari, H., et al. (2013). Inhibiting the clathrin-mediated endocytosis pathway rescues KIR2.1 downregulation by pentamidine. *Pflugers Arch.* 465, 247–259. doi: 10. 1007/s00424-012-1189-5
- Xiao, K., Chen, P., and Chang, D. C. (2014). The VTLISFG motif in the BH1 domain plays a significant role in regulating the degradation of Mcl-1. *FEBS Open Bio.* 4, 147–152. doi: 10.1016/j.fob.2014. 01.006
- Xing, H., Hong, Y., and Sarge, K. D. (2010). PEST sequences mediate heat shock factor 2 turnover by interacting with the Cul3 subunit of the Cul3-RING ubiquitin ligase. *Cell Stress Chaperones* 15, 301–308. doi: 10.1007/s12192-009-0144-147
- Zhuang, X., Northup, J. K., and Ray, K. (2012). Large putative PEST-like sequence motif at the carboxyl tail of human calcium receptor directs lysosomal degradation and regulates cell surface receptor level. J. Biol. Chem. 287, 4165–4176. doi: 10.1074/jbc.M111. 271528

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Qile, Ji, Houtman, Veldhuis, Romunde, Kok and van der Heyden. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.