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Background and Objectives: Enhanced beat-to-beat variability of ventricular

repolarization (BVR) has been linked to arrhythmias and sudden cardiac death. Recent

experimental studies on human left ventricular epicardial electrograms have shown

that BVR closely interacts with low-frequency (LF) oscillations of activation recovery

interval during sympathetic provocation. In this work human ventricular computational cell

models are developed to reproduce the experimentally observed interactions between

BVR and its LF oscillations, to assess underlying mechanisms and to establish a

relationship with arrhythmic risk.

Materials and Methods: A set of human ventricular action potential (AP) models

covering a range of experimental electrophysiological characteristics was constructed.

These models incorporated stochasticity in major ionic currents as well as descriptions

of β-adrenergic stimulation and mechanical effects to investigate the AP response

to enhanced sympathetic activity. Statistical methods based on Automatic Relevance

Determination and Canonical Correlation Analysis were developed to unravel individual

and common factors contributing to BVR and LF patterning of APD in response to

sympathetic provocation.

Results: Simulated results reproduced experimental evidences on the interactions

between BVR and LF oscillations of AP duration (APD), with replication of the high

inter-individual variability observed in both phenomena. ICaL, IKr and IK1 currents were

identified as common ionic modulators of the inter-individual differences in BVR and

LF oscillatory behavior and were shown to be crucial in determining susceptibility to

arrhythmogenic events.
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Conclusions: The calibrated family of human ventricular cell models proposed in this

study allows reproducing experimentally reported interactions between BVR and LF

oscillations of APD. Ionic factors involving ICaL, IKr and IK1 currents are found to underlie

correlated increments in both phenomena in response to sympathetic provocation. A

link to arrhythmogenesis is established for concomitantly elevated levels of BVR and

its LF oscillations.

Keywords: low-frequency oscillations, beat-to-beat variability, cardiac cell models, beta-adrenergic stimulation,

stochasticity, sympathetic provocation, arrhythmogenesis

1. BACKGROUND AND OBJECTIVES

Beat-to-beat variability of repolarization (BVR) is an inherent
property of ventricular electrical function (Thomsen et al., 2006;
Baumert et al., 2016). When enhanced, this temporal variability
has been associated with arrhythmia vulnerability in patients
with structural heart disease (Tereshchenko et al., 2009), drug-
induced long QT syndrome (Hinterseer et al., 2008), heart failure
(Hinterseer et al., 2010), and catecholaminergic polymorphic
ventricular tachycardia (Paavola et al., 2015). A link between
increased BVR and arrhythmogenesis has been established in a
range of animal models as well (Thomsen et al., 2006; Gallacher
et al., 2007; Wijers et al., 2018). Various approaches have been
proposed in the literature to quantify BVR at the level of the
body surface electrocadiogram (ECG), including measurements
of QT interval variability (Baumert et al., 2016), T-wave
alternans (Verrier et al., 2011), or T-wave morphology variations
(Ramirez et al., 2017).

Recent studies have shown that BVR presents a clear low-
frequency (LF) oscillatory pattern that can be quantified from
the ECG by measuring LF oscillations of the T-wave vector,
so-called Periodic Repolarization Dynamics (PRD) (Rizas et al.,
2014, 2016). PRD has been shown to be unrelated to heart rate
variability or respiratory activity and has been postulated to
most likely reflect the effect of phasic sympathetic activity on the
ventricular myocardium. Increases in PRD have been associated
with destabilization of repolarization leading to ventricular
arrhythmias and sudden cardiac death (Rizas et al., 2014, 2017).
The described T-wave oscillations have been suggested to reflect
oscillations of the ventricular action potential (AP) duration
(APD) (Hanson et al., 2014; Rizas et al., 2016; Porter et al., 2018).
In in vivo studies on heart failure patients, APD has been shown
to indeed oscillate at the same LF range (Hanson et al., 2014).
Additional studies have demonstrated that both LF oscillations
of APD and BVR are significantly augmented in response
to physiologically-induced increased sympathetic activity,
with a close interaction between both observed increments
(Porter et al., 2017, 2018).

The mechanisms underlying the interactions between BVR
and LF patterning of APD in response to sympathetic
provocation (SP) and its potential link to arrhythmogenesis
remain to be investigated. Regarding BVR, a growing number
of studies, both experimental and computational, have provided
evidence on the role of ion channel stochasticity and Ca2+ cycling
variations as underlying mechanisms of temporal variability at

different scales, covering from isolated cells (Lemay et al., 2011;
Pueyo et al., 2011, 2016a; Antoons et al., 2015; Kistamas et al.,
2015; Nánási et al., 2017) to coupled cells / tissue (Zaniboni et al.,
2000; Pueyo et al., 2011; Lemay et al., 2011; Magyar et al., 2015;
Nánási et al., 2017) to whole heart (Yamabe et al., 2007; Baumert
et al., 2016). Furthermore, the action of adrenergic stimulation in
modulating those BVR mechanisms and facilitating arrhythmia
initiation by the formation of afterdepolarizations and triggered
activity has been reported in single cells (Johnson et al., 2010,
2013; Heijman et al., 2013; Szentandrássy et al., 2015; Hegyi et al.,
2018) and in the whole heart (Gallacher et al., 2007). In respect
of LF oscillations of APD, computational investigations in single
cells have suggested that sympathetic nerve activity promotes
their generation by both a direct β-adrenergic (βA) action and
through the intermediary of mechano-electric feedback (Pueyo
et al., 2016b). In the presence of disease-related conditions, like
Ca2+ overload and reduced repolarization reserve (RRR), these
oscillations have been shown to contribute to pro-arrhythmia
(Pueyo et al., 2016b).

In the present study, which builds on the work published
in Pueyo et al. (2016b), a set of stochastic human ventricular
AP models are developed to reproduce the sympathetically-
mediated interactions between BVR and LF patterning of
APD observed experimentally, to investigate their underlying
mechanisms and to establish a link to arrhythmic risk. The
developed models are representative of a whole range of AP
characteristics and include biophysically detailed descriptions
of the electrophysiology, Ca2+ dynamics, βA signaling and
mechanics of human ventricular cells in health and disease.
Stochastic gating of ion channels are incorporated into major
currents active during AP repolarization. An approach based
on the Automatic Relevance Determination technique (MacKay,
1996) is adopted to unravel the major ionic contributors to
augmented BVR and LF oscillations of APD in response to
SP, with subsequent analysis of the involved mechanisms.
The relationship between the unraveled mechanisms and
arrhythmogenesis is established by a methodology grounded on
Canonical Correlation Analysis (Hotelling, 1936).

2. MATERIALS AND METHODS

2.1. Human Data
Previously acquired human data has been described in detail
elsewhere (Porter et al., 2018). Briefly, eleven heart failure
patients with cardiac resynchronization therapy defibrillator

Frontiers in Physiology | www.frontiersin.org 2 August 2019 | Volume 10 | Article 916

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Sampedro-Puente et al. Mechanisms Underlying Interactions LF-Oscillations BVR

devices had activation recovery intervals (ARIs) recorded from
left ventricular epicardial electrodes alongside simultaneous non-
invasive blood pressure and respiratory recordings. Heart rate
was clamped by right ventricular pacing. Recordings took place
during resting conditions and following an autonomic stimulus
(Valsalva maneuver). The study was approved by the West
London Ethics Committee and conformed to the standards set by
the Declaration of Helsinki (latest revision: 64th WMA General
Assembly). Informed consent was obtained in writing from
all subjects.

2.2. Stochastic Human Ventricular Models
2.2.1. Models of Electrophysiology
The ORd human ventricular epicardial cell model (O’Hara
et al., 2011) served as a basis to construct a set of AP models
covering a range of experimentally observed electrophysiological
characteristics. Each AP model in the dataset, which represents
a different virtual cell, was obtained by varying the ionic
conductances of the following currents: rapid delayed rectifier
K+ current, IKr; slow delayed rectifier K+ current, IKs; transient
outward K+ current, Ito; L-type Ca2+ current, ICaL; inward
rectifier K+ current, IK1; sodium current, INa; sodium-K+ pump
current, INaK; and sodium-Ca2+ exchanger current, INaCa. A total
of 500 models were initially generated by sampling the nominal
conductance values of the ORd model in the range ±100% using
the Latin Hypercube Sampling method (McKay et al., 1979;
Pueyo et al., 2016b).

Out of all the generated models, only those satisfying the
calibration criteria shown in Table 1 were retained. Such criteria
were based on experimentally available human ventricular
measures of steady-state AP characteristics taken from O’Hara
et al. (2011), Guo et al. (2011), Britton et al. (2017), Jost
et al. (2008), and Grandi et al. (2010). These characteristics
included: APD90|50, denoting 1 Hz steady-state APD at 90%|50%
repolarization (expressed in ms); RMP, standing for resting
membrane potential (in mV); Vpeak, measuring peak membrane
potential following stimulation (in mV); and1APD90, calculated
as the percentage of change in APD90 with respect to baseline
when selectively blocking IKs, IKr or IK1 currents (measured
in ms). After applying the described calibration criteria, the
initial set of 500 models was reduced to a set of 161 selected
models. In addition, models leading to pro-arrhythmic events
at baseline conditions were excluded because they did not allow
quantification of BVR or LF oscillations of APD, thus resulting
in a final population of 123 models. For each of those models,
the parameters θKs, θKr, θto, θCaL, θK1, θNa, θNaCa, and θNaK
were defined to take the values of the factors multiplying the
nominal conductances of IKs, IKr, Ito, ICaL, IK1, INa, INaK, and
INaCa, respectively, with respect to the original ORd model,
i.e., Ij = θjIj,ORd, where Ij,ORd represents current j in the
ORd model, with j being one of the elements in the set
{Ks, Kr, to, CaL, K1, Na, NaCa, NaK}.

Stochasticity was incorporated into the equations describing
the ionic gating of four major currents active during AP
repolarization, namely IKs, IKr, Ito, and ICaL, following the
approach described in Pueyo et al. (2011) For a gating variable
x, the temporal evolution of the probability of this gate being

TABLE 1 | Calibration criteria applied onto human ventricular cell models.

AP characteristic Min. acceptable value Max. acceptable value

Under baseline conditions (Guo et al., 2011; O’Hara et al., 2011

Britton et al., 2017)

APD90 (ms) 178.1 442.7

APD50 (ms) 106.6 349.4

RMP (mV) −94.4 −78.5

Vpeak (mV) 7.3 –

Under 90% IKs block (O’Hara et al., 2011)

1APD90 (%) −54.4 62

Under 70% IKr block (Grandi et al., 2010)

1APD90 (%) 34.25 91.94

Under 50% IK1 block (Jost et al., 2008)

1APD90 (%) −5.26 14.86

open was calculated as in Equation (1), where the variance
of the stochastic term introduced to formulate the Stochastic
Differential Equation (SDE) describing ionic fluctuations was
inversely proportional to the number of channels of each species.
In Equation (1), x∞ and τx represent the steady-state value of
x and the time constant to reach that steady-state value, with
x, x∞ and τx being functions of voltage, while w is a Wiener
process. The number of channels N associated with each species j
were obtained for each virtual cell by multiplying the ionic factor
θj of that cell by the corresponding number of channels in the
ORd model, i.e., Nj = θjNj,ORd. Further details on estimation
of channel numbers for the ORd model are presented in the
Supplementary Material (section 1.1 and Table S1).

dx =
x∞ − x

τx
dt +

√
x∞ + (1− 2x∞)x

√
τxN

dw. (1)

2.2.2. Models of PKA Phosphorylation
βA stimulation (βAS) effects were modeled as in Pueyo et al.
(2016b) by using a modified version of the Xie et al. (2013)
model, with definition of graded and dynamic phosphorylation
levels of cellular protein kinase A (PKA) substrates. This
model was updated from the original βA signaling formulation
proposed in Soltis and Saucerman (2010) to slow down the
IKs phosphorylation and dephosphorylation rate constants to
fit experimental observations. PKA-mediated phosphorylation
of phospholemman (PLM) was accounted for by increasing
the Na+-K+-ATPase (NKA) affinity for the intracellular Na+

concentration, as in Xie et al. (2013). RyR phosphorylation was
described in this study following the formulation proposed in
Heijman et al. (2011).

2.2.3. Models of Electromechanical Coupling
An extended version of the Niederer model (Niederer et al.,
2006), adjusted to human cell characteristics, as in Weise and
Panfilov (2013) and Pueyo et al. (2016b), was used for the
electromechanical coupling model. The current through stretch-
activated channels (SACs), ISAC, was introduced as in Pueyo et al.
(2016b), with the total current obtained as the sum of the current
through K+-selective and non-specific cationic SACs. Further
details can be found in the Supplementary Material.
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2.2.4. Simulation of Baseline and Sympathetic

Provocation
A 0.1 Hz periodic stepwise dose of the βA agonist isoproterenol
(ISO) was simulated, in accordance with the pattern of muscle
sympathetic nerve activity in humans (Pagani et al., 1997). For
the first half of the simulated ISO period, the ISO dose was set
to either 0.01 µM, for simulated baseline conditions, or 1 µM,
for simulated SP, while it was 0 µM for the second half in both
cases. Additionally, phasic changes in hemodynamic loading
accompanying enhanced sympathetic activity were simulated at
the same 0.1 Hz frequency by varying the stretch ratio following a
sinusoidal waveform with a maximum change of 1% for baseline
conditions and 10% for SP. Sympathetically induced changes
in βAS and hemodynamic loading were considered to be in-
phase with each other. A total of 640 beats (320 for baseline
and 320 for SP) were simulated while pacing the cells at 1 Hz
frequency. Figure S1 illustrates simulation of βAS and stretch
effects at baseline and in response to sympathetic provocation,
while Figure S2 illustrates the APD time series of a cell in the
generated population in response to the simulated protocol. For
comparison purposes, additional simulations were run under
constant βAS and/or hemodynamic loading.

2.2.5. Simulation of Disease-Related Conditions
On top of simulating physiological conditions, models describing
disease conditions were built by including representations of:
Reduced Repolarization Reserve (RRR), defined by simultaneous
blockades of IKr and IKs currents; and Ca2+ overload, defined
by increases in the extracellular Ca2+ levels. In both cases,
an approach like the one described in Pueyo et al. (2016b)
was used. Mild disease conditions were simulated by a 1.5-fold
increment in the extracellular Ca2+ concentration and 7.5% and
20% inhibitions of IKr and IKs currents, respectively. Moderate
disease conditions were simulated by a 2.5-fold increment in the
extracellular Ca2+ concentration and 22.5% and 60% inhibitions
of IKr and IKs currents, respectively. Severe disease conditions
were simulated by a 4-fold increment in the extracellular Ca2+

concentration, 30% and 80% inhibitions of IKr and IKs currents,
respectively, and by additionally increasing the conductance of
non-specific cationic SACs as described in Isenberg et al. (2003)
(GSAC,ns changed from 0.006 nS/pF for physiological, mild and
moderate disease conditions to 0.01 nS/pF for severe disease
conditions). Table S2 summarizes how physiological as well as
mild, moderate and severe disease conditions were simulated in
this study.

2.3. Measurements of Repolarization
Variability
For each of the developed APmodels, APD at 90% repolarization,
denoted as APD in the following, was calculated for every beat
of the stochastic realizations. A triangulation measure (T1) was
calculated as the difference between APD at 90% and 50%
repolarization. The last L = 120 beats of each condition (baseline
and SP) were used for evaluation of measures describing BVR
and LF oscillatory behavior. Averages of those measures over
stochastic realizations were computed.

2.3.1. Beat-to-Beat Variability of Repolarization
The following BVR measures were evaluated:

• Standard deviation of APD over the last L beats:

mSD =

√

√

√

√

1

L− 1

L
∑

l=1

(APD(l)− APD)2 (2)

where APD is the average APD over those L beats.
• Normalized variance of APD over the last L beats:

mNSD =
m2

SD

APD
2 . (3)

• Short-Term Variability (STV) of APD, defined as the average
distance perpendicular to the identity line in the Poincaré plot,
computed as the average over windows of Lwin = 30 beats
sliding every one beat along the last L = 120 simulated beats:

mSTV =
1

L− Lwin + 1





L−Lwin+1
∑

l=1

l+Lwin−1
∑

i=l

|APD(i+ 1)− APD(i)|
(Lwin − 1)

√
2



 .

(4)
• Normalized STV:

mNSTV =
m2

STV

APD
2 . (5)

2.3.2. Low-Frequency Repolarization Variability
Spectral analysis was performed to compute LF variability
measures following the methodology described in Porter et al.
(2018). The APD time series of the last L = 120 beats, for either
baseline or SP, was linearly detrended. Power Spectral Density
(PSD) was estimated after fitting an autoregressive model to
the detrended APD time series using the Yule-Walker method.
The optimal order of the autoregressive model was chosen in
the range between L/3 and L/2 to minimize Akike’s Information
Criterion, with a requisite on the residuals to pass a whiteness
test. Two measures were extracted from the estimated PSD:

• LF power (mPLF), calculated as the integral of the PSD over the
[0.04, 0.15] Hz band.

• Normalized LF power (mNPLF): LF power normalized by the
total power in the [0.04, 0.5] Hz frequency band.

2.4. Contributors to BVR and LF
Oscillations
Automatic Relevance Determination (ARD) was used to unravel
individual and common factors, in the form of ionic conductance
levels, contributing to BVR and LF oscillations of APD in
response to SP. ARD is a Bayesian sparsity method, first proposed
in the context of neural network models (MacKay, 1996), which
has been successfully used to determine the relevance of various
input features to given measures (see e.g., Rasmussen and
Williams, 2006).

In a regression problem where an output variable (in this case,
a BVR or LF oscillatory measure) is aimed to be predicted by
several input variables (in this case, the conductances of ionic
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currents), it commonly happens that some of the variables are
irrelevant to the prediction. However, when a finite dataset is
analyzed, random correlations between the irrelevant inputs and
the output are always obtained, diminishing the capability of the
techniques employed for the prediction. A method like ARD,
able to infer which input variables are relevant and prune all
the irrelevant ones, is advantageous. ARD works by adjusting
multiple weight constants, one associated with each input, which
are inferred from the data and automatically set to be large for
the relevant features and small for the irrelevant ones. The fact
that ARD renders a sparse set of explanatory variables makes
its results more interpretable than for other correlation-based
methods (see e.g., Gunn and Kandola, 2002 for the relation
between sparsity and interpretability).

Each virtual cell n out of the N simulated models was
considered as a data point determined by its D = 8
parameters (factors multiplying ionic conductances).
Those factors were stacked in a row vector x(n) =
[θ (n)Ks , θ

(n)
Kr , θ

(n)
to , θ (n)CaL, θ

(n)
K1 , θ

(n)
Na , θ

(n)
NaCa, θ

(n)
NaK], representing the

feature vector of each data point. All data were stacked in the
feature matrix X, i.e., X = [x(1); · · · ; x(N)]. Hence an element
of X, denoted as xn,i, was the value of the i-th conductance
parameter of virtual cell n. In addition, we used y as a wildcard
to denote the column vector with the values of the analyzed
variability measure for the data points. Hence, the values in y

can either correspond to a temporal BVR measure or a measure
of the magnitude of APD LF oscillations: mSD, mNSD, mSTV,
mNSTV, mPLF and mNPLF. To simplify the training process of the
algorithm, the values of y were standardized to zero mean and
unit variance. Using this input-output definition we posed the
following regression model.

y(n) = f (x(n))+ r(n) (6)

where r(n) is additive random Gaussian noise with variance
σ 2
r and f is a function linking the inputs and the outputs.

Typical choices for f include linear, polynomial or neural network
functions, with the ones most extensively used by the Bayesian
learning community being Gaussian Processes (Rasmussen and
Williams, 2006), which represent a powerful and flexible non-
parametric option:

f (x(n)) ∼ GP

(

m(x(n)), c(x(n), x(n
′))

)

(7)

where m(x(n)) is the mean function and c(x(n), x(n
′)) is the

covariance function between data points n and n′. In its simplest
form,m(x(n)) = 0 and all the complexity of the model is captured
by the covariance function. The covariance is commonly
described by linear, polynomial or radial basis functions, or other
more complicated functions (see e.g., Rasmussen and Williams,
2006). In this work, a linear function was used for the covariance:

c(x(n), x(n
′)) =

D
∑

i=1

σ 2
d,ixn,ixn′ ,i. (8)

Considering this choice, f (x(n)) can be shown to define a set of
linear functions with respect to x(n), where directions (i.e., the

different factors contained in each x(n)) are weighted according
to σ 2

d,i.
ARD was applied to optimize type II Maximum Likelihood

(ML-II) with respect to σ 2
d,i and σ 2

r . Specifically, a quasi-
Newton method (in the case of our implementation, L-BFGS,
see e.g., Boyd and Vandenberghe, 2004) was used to find the
values of the hyperparameters leading to maximization of the
following function:

L(σ 2
d,1, · · · , σ

2
d,8, σ

2
r )

=
1

2
log detCext(σ

2
d,1, · · · , σ

2
d,8, σ

2
r )

+
1

2
yTCext(σ

2
d,1, · · · , σ

2
d,8, σ

2
r )

−1y+
N

2
log(2π) (9)

where Cext(σ 2
d,1, · · · , σ

2
d,8, σ

2
r ) = C(σ 2

d,1, · · · , σ
2
d,8) + σ 2

r I, with I

being the identity matrix and C(σ 2
d,1, · · · , σ

2
d,8) being the matrix

obtained by evaluating the covariance function c(x(n), x(n
′)) for

every pair of data points in X. To avoid overfitting, ten-fold cross
validation was applied. Results are presented after averaging the
ten corresponding values for each σ 2

d,i. The higher the value of

σ 2
d,i, the more relevant the i-th factor (input parameter) is for

the prediction.
This methodology allows establishing which factors are more

relevant to predict a given output measure (i.e., a BVR or LF
oscillatory measure). In the following, these relevance values are
presented as normalized values so that they add up to one to
facilitate assessment of the relative relevance of each factor. Since
relevance factors do no account for the sign of the contribution,
that is, whether an increase in the BVR or LF oscillation measure
corresponds to upregulation or downregulation of an ionic
current, the Gaussian Process regression was interpreted as a
linear regression where the covariance matrix is Cext and the sign
of each contribution was calculated as

sθi = sign((C−1
extX)

T
y) (10)

where θi is each of the conductance parameters and T denotes
matrix transposition.

Finally, to address the fact that a factor may only be relevant
in association with another one, the same methodology was
applied after removing one factor (ionic conductance) at a
time. If after removing a specific factor, the relevance associated
with another factor was found to be significantly changed,
a tight relationship between the effects of the two factors
was postulated and common mechanisms underlying such a
relationship were explored.

This method is implemented in Python 3 using the GPy,
Gaussian Process Toolbox (see Sheffield ML group, 2012) and
is available in Data Sheet 2 of the Supplementary Material
(section 1.6).

2.5. Contributors to Arrhythmogenesis
Canonical Correlation Analysis (CCA) (Hotelling, 1936;
Hardoon et al., 2004) was used to identify the ionic
conductances with the largest contribution to the occurrence
of arrhythmogenic events under simulated diseased conditions.
This method has been widely used in several different
applications (see e.g., Torres et al., 2007; Kaya et al., 2014;
Zhu et al., 2014 for some representative examples).
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FIGURE 1 | (Left panel) Experimental zero-mean ARI series (ARI - ARI) and corresponding spectra at rest (left) and following Valsalva maneuver (right). (Right panel)

Simulated zero-mean APD series (APD - APD) and corresponding spectra at baseline (left) and following sympathetic provocation (right). The LF region of the spectra

is shadowed in red and the high frequency region in green.

Similarly to the description of ARD above, the data were
stacked in the feature matrix X, with xn,i, being the value of
the i-th factor for virtual cell n. A binary vector z of length N
was generated, which contained a value of 1 in the positions
corresponding to virtual cells for which pro-arrhythmic events
were observed following SP and 0 otherwise.

Given X and z, CCA was applied to compute the values of the
canonical variables wx and wz such that:

(w∗
x ,w

∗
z ) = arg max

wx ,wz
corr(Xwx, zwz) (11)

with corr being the linear correlation between the projected
versions of X and z, i.e., Xwx, zwz . The elements of vector w∗

x

represent the projection of ionic factors into a subspace common
with zw∗

z and can be interpreted as the correlations of each of
these factors with the presence of pro-arrhythmic events. Hence,
the higher the value of an element in w∗

x , the higher the relevance
of such factor to the events in z.

3. RESULTS

3.1. Sympathetic Provocation Increases
BVR and LF Oscillations of APD
Figure 1 shows representative examples of zero-mean time series
of experimental ARI (ARI - ARI, with ARI denoting temporal
mean of ARI, left panel) and simulated APD (APD - APD,
with APD denoting temporal mean of APD, right panel) and
corresponding PSDs at baseline and following SP. In both
experiments and simulations, a remarkable increase in BVR in
response to SP can be clearly appreciated from the APD series.
Also, the experimental and simulated spectra corresponding to
SP show notably more marked peaks in the LF band as compared
to baseline.

Of note, the peaks in the high frequency band present in the
experimentally recorded data were not analyzed in this study, as
vagal or respiratory effects were not included in our simulations

for being out of the scope of the present study. The simulated
results presented in this and the next sections correspond to
simulation of mild disease conditions, since these are compared
with experimental results obtained from heart failure patients
(see section 2.1). Results for physiological conditions remained
qualitatively unchanged with respect to those shown for mild
disease conditions.

Figure 2 shows relativemeasures of BVR and LF oscillations at
baseline and following SP for each individual of the experimental
and simulated datasets (the cases shown in Figure 1 are
highlighted in blue). For the vast majority of individuals, mNSD

and mNPLF increased in response to augmented sympathetic
activity. Importantly, both the level of BVR and LF oscillations
as well as the magnitude of change in response to SP presented
a high degree of variation between individuals, as shown in
Figure 2. As expected, the mNSD values in the simulations
were higher than in the experiments, as simulations correspond
to single epicardial cells while experimental data is from left
ventricular epicardial electrograms and, thus, includes the effects
of intercellular coupling acting to mitigate cell-to-cell variability.

In both experiments and simulations, the sympathetically-
mediated increases in BVR and LF oscillations were confirmed
either when quantified in absolute terms bymSD,mSTV andmPLF

or in relative terms bymNSD,mNSTV andmNPLF.

3.2. There Is a Close Interaction Between
BVR and LF Oscillations of APD,
Particularly in Response to Sympathetic
Provocation
Table 2 shows correlation values between measures of BVR
and LF oscillations of APD, both calculated using absolute and
normalized indices. As can be seen in Table 2, the LF power of
APD, mPLF, was highly correlated with BVR measured by the
short-term variability of APD,mSTV, and, even to a larger extent,
by the standard deviation of APD, mSD. This observation held
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FIGURE 2 | Left: Normalized variance mNSD (top) and Normalized LF power

mNPLF (bottom) at rest and following Valsalva maneuver calculated from

experimental ARI series. Right: mNSD (top) and mNPLF (bottom) at baseline

and following SP calculated from simulated APD series. The cases presented

in Figure 1 are highlighted in blue.

true when the correlation was evaluated both at baseline and in
response to SP. The strong association found between BVR and
LF oscillations of APD in our SP simulations was in line with the
one measured experimentally, where the Spearman correlation
coefficient betweenmPLF andmSD was 0.679.

When normalized measures were considered, Table 2 shows
that the correlation between the normalized LF power of APD,
mNPLF, and the normalized BVR measures, mNSTV and mNSD,
was notably reduced. This highlights the relevance of absolute
APD values in modulating the interactions between BVR and
LF oscillations of APD. The reduction in correlation after
considering normalized measures was particularly so for baseline
conditions, while following SP there was still a high interaction
between normalized BVR and LF oscillations of APD.

Figure S3 illustrates the simulated relationships between the
absolute measures mPLF and mSD and between the relative
measuresmNPLF andmNSD at baseline and in response to SP.

Based on the fact that the two ways of evaluating BVR, i.e.,
by standard deviation and by short-term variability of APD,
led to very similar outcomes in terms of the relationship with
LF oscillations of APD, the results in the next sections will be
shown formSTV and its normalized counterpartmNSTV. For APD
oscillatory behavior,mPLF andmNPLF will be used.

3.3. K+ and Ca2+ Current Densities Are
Common Modulators of BVR and LF
Oscillations of APD
Figure 3 illustrates the major contributors to the values of mSTV,
mNSTV, mPLF, and mNPLF found in our simulated population
in response to SP. The sign of the relationship between the

TABLE 2 | Spearman correlation coefficients between simulated BVR and LF

oscillation measures.

Baseline Sympathetic provocation

mPLF (ms2) mNPLF

(nu)

mPLF (ms2) mNPLF (nu)

mSD (ms) 0.9744 −0.1606 0.9439 0.5969

mNSD (nu) 0.8528 −0.1602 0.8784 0.5721

mSTV (ms) 0.9096 −0.3381 0.8341 0.4054

mNSTV (nu) 0.7646 −0.3530 0.7638 0.3868

contributing ionic current conductances and the evaluated BVR
or LF oscillation measurements was negative in all relevant cases,
meaning that downregulation of the ionic current density led
to an increment in the analyzed measurement. Note that each
bar in the graphs of Figure 3 represents relative relevance with
respect to the other evaluated factors, all adding up to one.
According to the results in Figure 3, mSTV and mPLF shared
the same major contributors to their observed values following
SP. Specifically, the three ionic conductances with the most
relevant role in determining the values of mSTV and mPLF

were those of IKr, IK1, and ICaL currents. For the normalized
measurements mNSTV and mNPLF, a substantial reduction in
the relevance of IKr conductance was observed with respect
to that quantified for the non-normalized measurements. IK1
and ICaL current conductances remained as the two most
relevant contributors to the values of mNSTV and mNPLF

following SP.
To assess potential associations between ionic conductances

in their contributions to the evaluated BVR and LF oscillations
measures, the same ARD technique was applied after removing
one ionic conductance at a time. For the majority of cases,
the computed relevance levels were highly similar after such
removals, meaning that there is no co-dependency in the
contribution of the different ionic conductances. However,
when IK1 conductance was removed from the analysis, the
relevance of other repolarization currents, like IKr and IKs,
in their contribution to mNSTV was notably increased. This
increment reveals common mechanisms in the contributions
of all these repolarization currents to the mNSTV values
following SP.

Since the same ionic conductances were found to modulate
BVR and LF oscillations of APD following SP, simulations were
ran in which βAS and stretch were modeled as constant, with
assigned values corresponding to the maximal effects in the
above simulations. As can be seen in Figure S4, in those cases
IKr and IK1 were still the major modulators of BVR whereas
the contribution of ICaL was drastically decreased. Thus, ICaL
modulation of BVR was mediated by the increment in the LF
oscillations of APD, while the role of IKr and IK1 as modulators of
BVR did not present such a strong dependence.

For healthy conditions, results were essentially the same as
those shown in Figure 3 for mild disease conditions, with only
a slight decrease in the relevance of INaCa contribution to mPLF.
This is illustrated in Figure S5.
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FIGURE 3 | Relevance of ionic current conductances to mPLF (A), mNPLF (B), mSTV (C) and mNSTV (D), calculated from simulated APD series under SP.

3.4. Modulation of BVR and LF Oscillations
of APD by K+ and Ca2+ Current Densities
Is Explained by Their Effects on Ionic
Gating Stochasticity, βAS, and
Hemodynamic Loading
Before describing the mechanisms by which IKr, IK1, and
ICaL current densities modulate BVR and LF oscillatory
measures following SP, the differential effects of the two
components associated with enhanced sympathetic activity,
namely βAS and mechanical stretch, to such measures were
analyzed. Figure 4 illustrates the variations in BVR and
LF oscillation measurements in the simulated population
for different scenarios, including combined phasic βAS and
mechanical stretch, only phasic βAS, only phasic mechanical
stretch and only phasic mechanical stretch without SACs. Results
showed that the largest contribution to LF oscillations, measured
either by mPLF or mNPLF, was caused by phasic mechanical
stretch, particularly when SACs were included in the models.
Regarding BVR, both effects contributed to mSTV and mNSTV,
even if not in an additive manner and with the contribution
of βAS being larger than that of mechanical stretch. Additional
effects associated with stochastic ionic gating of currents active
during AP repolarization added to the BVR values presented
in Figure 4.

3.4.1. Mechanisms Underlying the Role of IK1 as a

Modulator of BVR and LF Oscillations of APD
The role of IK1 current density as a modulator of APD
oscillatory behavior following SP was only relevant when
phasic mechanical stretch was simulated and particularly so
when SACs were included in the models. The mechanism
of action was as follows. Downregulation of IK1 increased
resting membrane potential (Figure 5A) and this increment
was associated with an enhancement of the total ISAC current
in the zenith of the oscillation, where phasic stretch reached
maximal values (Figures 5B,C). These effects altered the AP
shape at the end of the repolarization phase (Figure 5D)
and this, in turn, had an impact on the calculated APD.
In particular, the magnitude of the APD oscillations was
amplified (Figure 5E), which led to increases in both mPLF and
mNPLF (Figure 5F).

Furthermore, IK1 current density had an impact on
modulating BVR following SP, especially when including
the effects of SACs. Specifically, the above described
alterations in AP morphology induced by IK1 downregulation,
manifested as a slowing down of the final part of AP
repolarization, rendered the AP more sensitive to the effects
of stochastic ionic gating. This led to increased variability
in APD values of consecutive beats, thus enlarging mSTV

andmNSTV.
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FIGURE 4 | Distributions of BVR and LF oscillation measurements for simulated scenarios including individual and combined βAS and mechanical stretch effects,

with and without the contribution of SACs.

A B C

D E F

FIGURE 5 | (A) Resting membrane potential vs. IK1 current conductance in the population of virtual cells; (B) ISAC current for two examples corresponding to

upregulated and downregulated IK1 while keeping all the other currents at their default values in the ORd model; (C) Minimum ISAC current value vs. IK1 current

conductance in the population; (D) AP traces and (E) zero-mean APD series (APD - APD) for the examples in (B); (F) mNPLF values vs. IK1 current conductance in

the population.

3.4.2. Mechanisms Underlying the Role of IKr as a

Modulator of BVR and LF Oscillations of APD
The impact of IKr current density on the magnitude of BVR
and LF oscillations of APD was related to modulation of AP

repolarization duration. This is evidenced by the fact that
the contribution of IKr conductance was very relevant in the
modulation of mPLF and mSTV but was notably reduced for their
normalized counterpartsmNPLF andmNSTV.
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A B C

FIGURE 6 | (A) Minimum APD vs. IKr current conductance in the population of virtual cells; (B) APD range vs. minimum APD; (C) zero-mean APD series (APD - APD)

for two examples corresponding to downregulated and upregulated IKr while keeping all the other currents at their default values in the ORd model.

A B C

FIGURE 7 | (A) Average triangulation vs. ICaL current conductance and (B) mPLF values vs. average triangulation for the population of virtual cells; (C) zero-mean

APD series (APD - APD) for two examples corresponding to downregulated and updownregulated ICaL while keeping all the other currents at their default values in the

ORd model.

In the case of mPLF, the mechanism of action was as follows.
IKr downregulation led to AP prolongation, which in our
simulations including phasic βAS and stretch could be seen
as an increase in both the minimum and the average APD
within each oscillation period (Figure 6A). The observed AP
lengthening correlated with an increment in the magnitude of
the APD oscillations, quantified by the APD range (Figure 6B).
This was the result of amplified effects of βAS and stretch
on the prolonged AP. In relation to the amplified oscillation
amplitude, mPLF was increased. Representative examples are
shown in Figure 6C, where the case with longer APD
induced by downregulated IKr was associated with larger
LF oscillations.

In the case of mSTV, the lengthening of AP repolarization
induced by IKr downregulation led to more accentuated temporal
voltage variations. This occurred under phasic βAS, stretch
and the combination of both effects associated with enhanced
sympathetic activity.

3.4.3. Mechanisms Underlying the Role of ICaL as a

Modulator of BVR and LF Oscillations of APD
The contribution of ICaL to BVR and LF oscillations was
relevant under both simulated βAS and mechanical stretch, with
an important role of SACs in explaining ICaL modulation of
APD oscillations.

ICaL downregulation shortened the AP plateau, leading to
more triangular APs (Figure 7A). This, in turn, magnified the
effects of phasic βAS and accentuated the APD differences
within each simulated oscillation period. This change produced
an increase in the magnitude of LF oscillations of APD,
associated with increments in bothmPLF andmNPLF (Figure 7B).
Representative examples of low and high BVR and LF oscillations
of APD related to up- and downregulation of ICaL current are
presented in Figure 7C. In close correspondence with the above
described mechanisms, the more triangular AP induced by ICaL
downregulation facilitated larger voltage fluctuations. This was
seen as increasedmSTV andmNSTV.
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FIGURE 8 | Pro-arrhythmic events observed following SP in cells under simulated severe disease conditions.

Under simulated mechanical stretch on top of βAS, there
was an additional change in the amplitude and duration of
intracellular and subspace Ca2+ concentrations as well as in the
ISAC current. All these effects modified the AP repolarization
morphology, enhancing the differences within each simulated
oscillation period. As a consequence, mPLF and mNPLF were
further increased and, correspondingly,mSTV andmNSTV too.

3.5. Severe Disease Conditions Accentuate
Both BVR and LF Oscillations of APD,
Leading to Electrical Instabilities
Disease conditions simulated by Ca2+ overload and RRR
had an impact on sympathetically-mediated BVR and LF
oscillations of APD. Specifically, when severe disease conditions
were simulated, including also an associated increase in the
conductance of non-specific cationic SACs, pro-arrhythmic
events could be observed. These occurred in 35% of the cases in
our population and took the form of early afterdepolarizations
(EADs), EAD bursts and spontaneous beats. Examples are
presented in Figure 8.

For those cases where arrhythmogenic events were observed
under severe disease conditions (denoted as subpopulation A),
BVR and LF oscillations of APD were increasingly accentuated
for higher levels of disease conditions, as illustrated in Figure 9.
As can be noted from the figure, mNSTV and mNPLF took larger
values for progressively higher levels of Ca2+ overload and RRR.
Similarly occurred for the non-normalized indices mSTV and
mPLF. Those cases not presenting arrhythmogenic events under
severe disease conditions (denoted as subpopulation NA) showed
lower values of BVR and LF oscillation measures for both mild

and moderated disease conditions. This can be appreciated in
Figure 9 as well.

The results of Canonical Correlation Analysis (CCA)
performed to assess major contributors to pro-arrhythmic events
under severe disease conditions are presented in Figure 10.
According to these results, the ionic currents with a major
involvement in pro-arrhythmicity were IKr, ICaL, IK1, and INaK,
the first three being major modulators of BVR and LF oscillations
of APD. The sign of the relationship between ionic conductances
and pro-arrhythmicity was negative (i.e., current downregulation
facilitating pro-arrhythmic events) in all cases except for ICaL.

The role of IKr, ICaL, and IK1 in contributing to pro-
arrhythmicity is further illustrated in Figure 11, which shows the
distribution of virtual cells as a function of their IKr, ICaL, and
IK1 conductances (θKr, θCaL, and θK1, respectively). As can be
appreciated, pro-arrhythmic cells were most commonly located
in regions with low θKr and θK1, thereby exemplifying how IKr
and IK1 downregulation contribute to pro-arrhythmicity. The
effect of ICaL was only significant in the region where θKr < 1,
implying that the role of ICaL was dependent on IKr expression.
The information needed to reproduce Figure 11 is available in
Data Sheet 1 of the Supplementary Material (section 1.5).

4. DISCUSSION

A population of human ventricular stochastic AP models was
built and shown to reproduce a range of responses in terms of
BVR and LF oscillations of APD following enhanced sympathetic
activity, as reported experimentally (Porter et al., 2018). The
models included descriptions of electrophysiology, βA signaling,
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FIGURE 9 | Violin plots representing the distributions of log(mPLF), mNPLF, mSTV, and mNSTV for mild and moderate disease conditions. The whole population of

models is divided into two subpopulations: the set of cells presenting (denoted by A) and not presenting (denoted by NA) pro-arrhythmic events following SP under

severe disease conditions.
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FIGURE 10 | Relevance of ionic current conductances to pro-arrhythmic

events.

mechanics and ionic gating stochasticity and served to investigate
the interactions between the two investigated phenomena,
namely temporal variability and LF oscillatory behavior of
APD, following sympathetic provocation. Ionic mechanisms
underlying inter-individual differences in those phenomena
were ascertained and individual characteristics associated with
concomitantly large beat-to-beat variability and LF oscillations
of repolarization were established. These were linked to higher
susceptibility to electrical instabilities in the presence of disease
conditions like Ca2+ overload and RRR.

4.1. Relationship Between
Sympathetically-Mediated BVR and LF
Oscillations of APD in a Human Ventricular
Population
Increases in LF oscillations of repolarization in response to
enhanced sympathetic activity have been described at the level

CaL

0

1

2
K

1
Kr

0

1

2

K
1

0 1 2

Kr

0

1

2

C
a
L

0
2

1

2

K
1

CaL

1

Kr

2

1
0 0

FIGURE 11 | Location of cells presenting (red) and not presenting (gray)

pro-arrhythmic events under simulated severe disease conditions as a function

of relevant ionic current conductance values.

of the electrocardiographic T-wave and QT interval in humans
and animals (Negoescu et al., 1997; Rizas et al., 2014, 2016)
and at the level of the ventricular APD in ambulatory patients
(Hanson et al., 2014; Porter et al., 2018). A direct effect related
to enhanced activity of the sympathetic nerves innervating
ventricular myocardium, rather than just an effect attributable
to heart rate variability, has been proved (Negoescu et al., 1997;
Rizas et al., 2014; Porter et al., 2018). In this study, phasic βAS
andmechanical stretch were simulated in association withmuscle
sympathetic nerve activity patterns during enhanced sympathetic
activity (Pagani et al., 1997). Pacing at a constant rate was applied
to the models. In accordance with experimental observations,
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increments in absolute and normalized LF power of APD have
been overall measured in our population. Nevertheless, there is a
high degree of inter-individual variability, with some individual
cases showing no change or even a decrease in LF oscillations of
APD in response to SP, which is in line with experimental reports
as well.

Additionally, clinical and experimental studies have reported
that enhanced sympathetic activity leads to increased BVR in
patients with the long QT syndrome type 1 (Satomi et al., 2005)
and animal models of this disease (Gallacher et al., 2007) as
well as in heart failure patients (Porter et al., 2017). Our human
ventricular AP models, by including stochastic expressions of
ionic current gating, allowed investigation of BVR at baseline and
in response to SP. In agreement with experimental evidences,
most of the models in our diseased population have shown
sympathetically-mediated increments in BVR. The increase in
BVR in the referred experimental/clinical studies as well as in
our simulations of disease could be explained by βAS effects
under conditions of reduced IKs, which is indeed the case in
our simulations and in long QT syndrome type 1 investigations
and could also be the case in heart failure following previous
reports suggesting downregulation of this current in failing
hearts (Long et al., 2015). Also, mechanical effects associated
with increased sympathetic activity could synergistically enhance
BVR. Furthermore, in our simulations, a wide range of individual
behaviors in terms of BVR patterns could be characterized
following SP, in line with experimental data.

The interactions between BVR and LF oscillations of APD
have been recently investigated in ambulatory patients with heart
failure following a standard sympathetic provocation maneuver
(Porter et al., 2018). In the present study, a strong correlation
between BVR and LF oscillation measures has been measured
as well by simulation of SP through phasic βAS and mechanical
stretch in human ventricular myocytes. This holds true for
physiological conditions and for disease conditions, simulated
by Ca2+ overload and RRR, which are characteristic of diseased
hearts like those of heart failure patients. In both simulations and
experiments the variability measurements mSD, mNSD, mPLF and
mPLF were quantified. In addition, the BVR measurement mSTV,
which accounts for information on the APD variation between
consecutive beats and has been extensively used for arrhythmic
risk prediction (Thomsen et al., 2004; Hinterseer et al., 2010),
was included in this study together with its APD-normalized
versionmNSTV.

The strong correlation between mSTV and mPLF found in
simulations and experiments can be explained in light of our
simulation outcomes. On the one hand, an increment in temporal
APD variability associated with random ionic gating directly
augments the LF power of APD, as it induces a rise in the
power of APD at all frequencies. Although the measurement
mNPLF normalizes mPLF by the total power, this marker turns
out to be more insensitive to the amplitude of the LF oscillations
of APD than mPLF, while still indicative of the presence or
absence of such oscillatory behavior. In the case of BVR, the
normalized measurement mNSTV has been quantified on top
of mSTV to correct for the dependence on the APD. Even if
the applied APD correction is able to reduce the correlation

between APD and mNSTV to a good extent, it does not abolish
it completely. The very strong correlation between mPLF and
mSTV, both at baseline and following SP, dropped to very low
correlation when mNPLF and mNSTV were evaluated at baseline.
Following SP, the correlation betweenmNPLF andmNSTV was still
remarkable, which can be explained by the fact that the presence
of a marked LF oscillatory pattern directly impacts the temporal
APD variability by increasing beat-to-beat APD differences.

4.2. Main Contributors to Increased BVR
and LF Oscillations of APD Following
Enhanced Sympathetic Activity
The tight relationship between BVR and LF oscillations of APD
following enhanced sympathetic activity suggests there could
be common modulators of both phenomena. By building a
population of virtual cells representing a range of experimentally
reported characteristics, in this study it was possible to elucidate
the ionic current conductances with a major contribution
to inter-individual differences in absolute (mSTV and mPLF)
and normalized (mNSTV and mNPLF) BVR and LF oscillation
markers. For such elucidation, an approach based on the
Automatic Relevance Determination (ARD) technique was
developed. Similar approaches have been proposed in the context
of magnetoencephalography (Nummenmaa et al., 2007) and
wireless communications (Jacobs, 2012), among others, but to
the best of our knowledge this is the first time an ARD-
based technique is used to identify ionic modulators of cardiac
electrophysiological phenomena.

In Pueyo et al. (2016b) the mechanisms underlying LF
oscillations of ventricular APD were investigated by simulating
phasic βAS and mechanical stretch in association with enhanced
sympathetic activity. Differential IKs and ICaL phosphorylation
and dephosphorylation kinetics in response to βAS together with
variations in Ca2+ cycling and SACs in response to stretch were
found to synergistically underlie LF oscillatory behavior under
SP. While that study provided meaningful insights into the bases
for LF oscillations of ventricular repolarization, only an average
cell was modeled, which did not allow investigation of inter-
individual differences in LF oscillations of APD as in the present
study. Also, themodels of the population built here are stochastic,
as opposed to the deterministic models employed in Pueyo et al.
(2016b), thus allowing to quantify BVR at baseline and its change
in response to SP. This is of major relevance for investigation of
the interactions between BVR and LF oscillations of APD and of
their modulators in a whole population.

Our results highlighted the relevance of IKr, ICaL, and IK1
conductances in modulating inter-individual differences in both
BVR and LF oscillatory pattern of APD under SP. Regarding IKr,
its downregulation was shown to be a key factor for augmentation
of mSTV and mPLF but less important when considering their
normalized counterparts mNSTV and mNPLF. Concerning LF
oscillations of APD, there is little investigation in the literature
into factors acting to modulate their magnitude. In Pueyo et al.
(2016b), a reduction in the repolarization current was shown to
amplify APD oscillatory behavior. Our results are in line with
such observations. Considering the fact that mNPLF does not
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reflect themagnitude of the oscillations but mostly its presence or
absence, this normalized marker was found not to be modulated
by IKr. Regarding BVR, a variety of experimental, clinical and
computational studies have addressed the role of ionic current
conductances in modulating beat-to-beat temporal variability
quantified by markers such as mSTV or mSD. In accordance with
the results presented in Pueyo et al. (2011) for baseline conditions
and Heijman et al. (2013) for βAS, our study has shown IKr
downregulation to act as a contributor of BVR magnification.
Since such a contribution is to a large extent mediated by APD
lengthening, it becomes importantly reduced when measured
by markers that include APD normalization, such as mNSTV

ormNSD.
Another very relevant current in the modulation of BVR and

LF oscillatory behavior of APD was ICaL. Although no previous
studies in the literature have investigated the role of ICaL as a
modulator of LF oscillation amplitude, there have been a number
of studies addressing its role as a modulator of BVR. In Lemay
et al. (2011), ICaL downregulation was shown to increase the
random channel fluctuation effects in guinea pig models, which
is in good agreement with our presented results. On top of the
contribution of ICaL, a role for IKs and persistent INa currents in
enhancing BVRwas also demonstrated in Lemay et al. (2011).We
could not find such a role for those two currents, which could
be due to differences between species [guinea pig in Lemay et al.
(2011) and human in this study] and to the fact that this study
investigated conditions of enhanced sympathetic activity rather
than baseline conditions.

Regarding IK1 regulation, this is, to the best of our knowledge,
the first study identifying its relevance to BVR and LF oscillations
of APD. In our results, IK1 downregulation appears as a relevant
contributor when SACs are incorporated into the models to
simulate mechanical stretch changes associated with SP. Under
donwregulated IK1, SACs contribute to alter the AP shape during
the last part of repolarization in a phasic manner, leading to
increments in both BVR and LF oscillations.

As chronotropic effects of sympathetic provocation have been
well documented in in vivo studies, computational simulations
were additionally carried out while pacing the virtual cells at
higher frequencies. The main ionic contributors IKr, IK1, and ICaL
are confirmed to remain very relevant to explain inter-individual
differences in BVR and LF oscillatory behavior in response to
SP. Of note, the relevance of INaK in determining LF oscillations
of APD increases when the analysis is performed for pacing
frequencies above 1 Hz.

4.3. Pro-arrhythmic Events Associated
With Increased BVR and LF Oscillations of
APD Under Severe Disease Conditions
Ca2+ overload and RRR are properties commonly present
in diseased hearts, like those of patients with heart failure,
ischemic heart disease or post-myocardial infarction (Dhalla
and Temsah, 2001; Sridhar et al., 2008; Varró and Baczkó,
2011; Guo et al., 2012; Nissen et al., 2012; Gorski et al.,
2015). In this study, BVR and LF oscillations of APD have
been found to become increasingly accentuated in response

to disease progression. These results are in line with those
reported in previous clinical, experimental and theoretical studies
of the literature. In isolated myocytes and animal models of
diseases like diabetes, heart failure or post-myocardial infarction,
exaggerated temporal APD variability has been observed in
association with Ca2+ overload and RRR (Maltsev et al., 2007;
Sridhar et al., 2008; Wu et al., 2008; Meo et al., 2016). In
the long QT syndrome type 1, involving loss of IKs function,
elevated ventricular repolarization variability in response to βAS
has been documented and mechanisms have been proposed
based on animal models, isolated myocytes and computer
simulation research (Gallacher et al., 2007; Johnson et al., 2010,
2013; Heijman et al., 2013). In chronic atrioventricular block
dogs, where ventricular remodeling importantly compromises
repolarization reserve, beat-to-beat APD variability has been
found to be augmented with respect to healthy dogs (Stams
et al., 2016); an observation also confirmed at the level of
ventricular myocytes (Antoons et al., 2015). A mechanical
challenge in the form of preload variability has been reported
to be essential in that augmentation, with mechano-electrical
feedback through stretch-activated channels (SACs) postulated as
a major mechanism (Stams et al., 2016). In Pueyo et al. (2016b),
the presence of disease conditions has been reported to lead to
notably augmented LF oscillations of APD.

Under severe disease conditions, arrhythmogenic
manifestations have been found to arise in individual cases
of our population presenting large temporal repolarization
variability, either quantified at the LF band (LF oscillations) or
at all frequencies (BVR). These observations are in agreement
with studies relating disproportionate APD fluctuations,
particularly in response to enhanced sympathetic activity,
and the generation of afterdepolarizations and arrhythmias.
In Gallacher et al. (2007) the authors used an in vivo canine
model of the long QT syndrome type 1 to demonstrate that
βAS enhanced temporal and spatial variability of ventricular
repolarization, which precipitated Torsades de Pointes (TdP)
arrhythmias. The association between increased BVR and the
onset of TdP arrhythmias has also been demonstrated in dogs
with chronic atrioventricular block (Thomsen et al., 2006; Wijers
et al., 2018). In ventricular myocytes and wedge preparations
from human end-stage failing hearts, βAS has been shown to
generate electrical abnormalities that result in EADs and delayed
afterdepolarizations (DADs) (Veldkamp et al., 2001; Lang et al.,
2016). Using a rabbit model mimicking electrophysiological and
contractile alterations in human HF, βAS has been reported to be
a key factor in inducing DADs and increasing the propensity for
triggered arrhythmias (Pogwizd et al., 2001). At the level of the
surface ECG, increased BVR and LF oscillations of repolarization
have been shown to be risk predictors of ventricular arrhythmias
and sudden cardiac death (Wu et al., 2008; Rizas et al., 2014,
2017; Baumert et al., 2016).

Provided the tight relationship between magnification of BVR
and LF oscillations of APD and pro-arrhythmic risk, the existence
of common modulators has been explored in the present study.
Canonical Correlation Analysis has been proposed to identify
ionic factors contributing to pro-arrhythmic risk following
enhanced sympathetic activity. CCA revealed the important role
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of IK1, IKr, and ICaL in the development of pro-arrhythmic events.
These same factors are those primarily involved in modulation
of sympathetically-mediated BVR and LF oscillations of APD.
The role of IK1 in contributing to arrhythmogenesis has been
reported in a rabbit model of heart failure, where the combination
of upregulated INaCa, downregulated IK1 and residual βA
responsiveness has been shown to increase the propensity for
triggered arrhythmias (Pogwizd et al., 2001). In our study,
the contribution of IK1 downregulation to pro-arrhythmicity in
association with elevated temporal variability might have been
more prominent if our population of stochastic AP models had
been built based on an electrophysiological model more likely
producing delayed afterdepolarizations under downregulated
IK1, and possibly upregulated INaCa, as compared to the ORd
model. The role of IKr in arrhythmogenesis has been well
established in a variety of previously published investigations. In
Sridhar et al. (2008), the loss of repolarizing currents, including
IKr, has been described to lead to increased BVR, repolarization
instability and afterdepolarizations in myocytes from dogs
susceptible to sudden cardiac death. In Pueyo et al. (2016b)
reduced IKr and IKs have been reported to cause AP irregularities
associated with enhanced LF oscillations of APD induced by
sympathetic provocations. The implications of IKr inhibition
in promoting ventricular arrhythmias associated with increased
temporal APD dispersion has been further demonstrated in
animal models of disease (Stams et al., 2016). On top of K+

currents, the present work has identified ICaL current as another
relevant contributor to pro-arrhythmia associated with elevated
BVR and LF oscillations of APD, even if conditioned to the
presence of reduced IKr. In line with these results, increased ICaL
has been demonstrated to facilitate electrical abnormalities in the
form of EADs in ventricular myocytes from human failing hearts
(Veldkamp et al., 2001). The contribution of increased ICaL to
arrhythmogenesis during βAS has been also shown in Johnson
et al. (2013) under reduced IKs.

In this study, other currents, like IKs and INaL, were found
to have minor relevance as contributors to arrhythmogenesis
in association with temporal dispersion of repolarization. This
is contrast to previous studies showing major roles of IKs
downregulation and INaL upregulation (Undrovinas et al., 2006;
Gallacher et al., 2007; Maltsev et al., 2007; Wu et al., 2008;
Johnson et al., 2010, 2013; Heijman et al., 2013). This discrepancy
may be explained by differences between species, modeling
characteristics and, importantly, investigated conditions, since
this study has focused on the investigation of arrhythmic events
occurring following enhanced sympathetic activity.

4.4. Limitations
The stochastic models built in this study included random
gating descriptions for major ionic currents active during AP
repolarization like IKs, IKr, Ito, and ICaL, as in previous studies
of the literature (Pueyo et al., 2016a; Tixier et al., 2017).
Future studies could include stochasticity in other currents like
INaL, whose contribution to BVR has been reported in canine
ventricular models (Heijman et al., 2013).

In the present work the ORd ventricular AP model has been
used, which was developed based on extensive undiseased human

data. In this model the effect of varying the IKs current on AP is
significantly smaller than in other human ventricular cell models,
like the ten Tusscher-Panfilov model (ten Tusscher and Panfilov,
2006). The low relevance of IKs as an ionic modulator of BVR
and LF oscillations of APD found in this work may have to do
with it. In Pueyo et al. (2016b), which served as a starting point
for the present work, several electrophysiological, mechanical
and adrenergic signaling models were tested and only some
quantitative differences could be found, while the conclusions
remained qualitatively the same for all models. Nevertheless,
the role of certain ionic currents in modulating inter-individual
differences in BVR and LF oscillatory behavior, as investigated in
this study, might still be different if another AP model were used
as a basis. This should be addressed in future works.

Also in relation to the use of the ORd model as a basis
for the development of the population of models in our
study, it should be noted that other ventricular AP models
with updated mechanisms of Ca2+ induced Ca2+ release could
provide additional insight into the occurrence of spontaneous
Ca2+ release and delayed afterdepolarizations in association with
elevated BVR and LF oscillations of APD. Indeed, previous
studies have been shown that Ca2+ handling abnormalities are a
major driver of BVR during βAS (Johnson et al., 2013) and a link
between Ca2+ handling and arrhythmia liability during increased
sympathetic activity has been demonstrated, particularly in the
setting of heart failure (Johnson and Antoons, 2018).

The population of human ventricular cells used in this
work was generated by varying the conductances of eight
ionic currents. Ionic parameters other than maximal current
conductances might also represent relevant mechanisms
underlying the interactions between BVR and LF oscillations
of APD. In particular for the ICaL current, previous studies
have proved that modulation of other biophysical properties,
like a reduction in the amplitude of the non-inactivating
pedestal component of ICaL, allows to effectively suppress
EADs without blocking peak ICaL, thus preserving excitation-
contraction coupling (Madhvani et al., 2015). Future work could
address the investigations of the present study by generating a
population of virtual cells where biophysical ionic parameters
other than maximal conductances were varied, which could
eventually lead to findings that developed into more clinically
useful therapeutic approaches.

The present study has focused on single cells, while the
available experimental data on the interactions between BVR and
LF oscillations of human APD are from in vivomeasurements in
ambulatory heart failure patients. Simulated results qualitatively
reproduced the behavior observed in the experiments. Future
work could include assessment of those interactions in tissue and
whole-heart models. Nonetheless, cell-to-cell coupling has been
shown to be remarkably reduced in heart failure and other disease
conditions, which would render cell and tissue results close to
each other.

Statistical approaches based on ARD and CCA have been used
in this study. Future works could investigate generalization of
these techniques to consider nonlinear relationships by using
kernel functions, even if a larger number of simulations would
be required to avoid overfitting.
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5. CONCLUSIONS

Human ventricular models including descriptions of cell
electrophysiology, ion channel stochasticity, β-adrenergic
signaling and mechanical stretch were developed. These models
reproduced experimentally reported interactions between
beat-to-beat variability and low-frequency oscillations of
repolarization in response to enhanced sympathetic activity.
Ionic factors underlying correlated increments in both
phenomena were investigated, which included downregulation
of the inward and rapidly activating delayed rectifier K+ currents
and the L-type Ca2+ current. Concomitantly elevated levels
of beat-to-beat repolarization variability and its low-frequency
oscillations in diseased ventricles led to electrical instabilities
and arrhythmogenic events. This investigation serves as a
basis for future studies aiming at improving arrhythmic
risk stratification and guiding the search for more efficient
anti-arrhythmic therapies.
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Data Sheet 1 | Population of virtual cells indicating the pro-arrhythmic models

distribution (Figure-11-master.zip). This Data Sheet contains the ionic factors

associated with each virtual cell, both for the group presenting and the group not

presenting pro-arrhythmic events (as shown in Figure 11).

Data Sheet 2 | Automatic Relevance Determination

(automatic-relevance-master.zip). This Data Sheet presents the Python code

used to unravel individual and common factors, in form of ionic conductance

levels, contributing to Beat-to-beat Variability of Repolarization and

Low-Frequency Oscillations.

Data Sheet 3 | This document contains additional information about the

stochastic ORd model and the stretch-activated channels and βAS formulation. In

addition, details on the simulation of healthy and disease conditions are provided.

Additional figures are included to facilitate understanding.
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