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Human spaceflight is associated with a substantial loss of skeletal muscle mass
and muscle strength. Neuromuscular electrical stimulation (NMES) evokes involuntary
muscle contractions, which have the potential to preserve or restore skeletal muscle
mass and neuromuscular function during and/or post spaceflight. This assumption is
largely based on evidence from terrestrial disuse/immobilization studies without the
use of large exercise equipment that may not be available in spaceflight beyond the
International Space Station. In this mini-review we provide an overview of the rationale
and evidence for NMES based on the terrestrial state-of-the-art knowledge, compare
this to that used in orbit, and in ground-based analogs in order to provide practical
recommendations for implementation of NMES in future space missions. Emphasis
will be placed on knee extensor and plantar flexor muscles known to be particularly
susceptible to deconditioning in space missions.

Keywords: muscle atrophy, spaceflight analog, countermeasure, muscle weakness, electrical stimulation

INTRODUCTION

Prolonged exposure to microgravity is associated with multi-system deconditioning including the
cardiovascular (Hargens and Richardson, 2009) and musculoskeletal systems (Narici and de Boer,
2011). For instance, spaceflight-induced decrements in bone mineral density (Vico and Hargens,
2018) and skeletal muscle mass (Fitts et al., 2010) are common, particularly in lower-limb muscles
(LeBlanc et al., 1995). Despite the considerable subject variability in the extent of muscle atrophy
and functional loss, one of the most affected muscles seems to be the triceps surae, for which
muscle fiber atrophy of 20% has been observed after 6 months of spaceflight (Fitts et al., 2000;
Fitts et al., 2010). Long-term spaceflight is also known to impair functionality (Mulavara et al.,
2018), neuromuscular control (Cohen et al., 2012) and skeletal muscle strength (Tesch et al., 2005;
Shiba et al., 2015), with the strength decline primarily reflecting the loss of muscle mass (Fitts et al.,
2010). Since the Skylab missions, it has been known that spaceflight induces more weakness in
thigh than arm muscles, particularly the knee extensors, for which ∼20% of strength loss was
reported after 1- and 2-month missions (Fitts et al., 2000). Recent studies suggest that in some
individuals there are persistent neuromuscular control issues - compounded by and/or related to
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neurovestibular dysfunction (e.g., Van Ombergen et al., 2017)
- resulting in extended periods of physical rehabilitation upon
return to Earth (Lambrecht et al., 2017; Petersen et al., 2017).

Besides muscle atrophy, spaceflight-related muscle weakness
appears also to reflect a number of neuromuscular alterations,
including a selective transformation of slow muscle fibers (type I)
to faster phenotypes (type II) (Trappe et al., 2009). In fact, there
is evidence that slow muscle fibers are predominantly affected
by spaceflight (Fitts et al., 2000; Yamakuchi et al., 2000; Sandona
et al., 2012; Wang and Pessin, 2013). Recent pilot data from the
SARCOLAB study also suggest that reduced plantar flexor muscle
volume may be associated with altered muscle architecture,
contractile protein composition, and impaired muscle fiber
contractility (Rittweger et al., 2018).

Exercise Training as a Countermeasure
In order to address microgravity-induced deconditioning,
exercise countermeasure training is performed daily on the
International Space Station (ISS) (Hackney et al., 2015). Despite
the medical standard agreements between the ISS international
partners, each partner utilizes different training regimes that
are to some extent individually tailored for each crewmember.
For example, exercise countermeasures in the United States
operating segment (NASA, ESA, JAXA, and CSA) consist of an
integrated resistance and aerobic training schedule employing the
advanced resistive exercise device (ARED), the second generation
treadmill (T2), and a cycle ergometer with vibration isolation
and stabilization (CEVIS) (Petersen et al., 2016). In contrast,
the Russian operating segment employs the treadmill, the

cycle ergometer, and the force loader (HC)-1 installed on
the ergometer (Yarmanova et al., 2015). These tools are
complemented by a set of resistance bands, compression thigh
cuffs, lower body negative pressure trousers, suits for lower
body compression and postural (axial) loading and also an
electrical stimulator.

Despite the significant investment in both resources and
crew time, astronauts typically require a period of rehabilitation
upon return to Earth (Lambrecht et al., 2017; Petersen et al.,
2017), indicative that deconditioning is not entirely prevented
(English et al., 2015; Sibonga et al., 2015). In fact, there
appears to be significant variability in the relative effectiveness
of ISS countermeasures across various physiological systems
(Williams et al., 2009), but also between individuals (Rittweger
et al., 2018). The current countermeasure regimes appear
unable to fully counteract muscle atrophy and weakness during
long-duration ISS missions. For example, even high-volume
aerobic training (∼500 km of running) complemented with
high-intensity resistance training (∼5000 high-intensity heel
raises) were insufficient to prevent plantar flexor weakness and
atrophy during a 6-month ISS mission (Rittweger et al., 2018).
Furthermore, the current countermeasures require significant
time and effort (both for exercise itself and for setup/stowage) in
addition to potentially interfering with other crewmember tasks,
including experimentation. This explains the increasing attention
devoted to consider low-volume, simple and complementary
exercise modalities, for use throughout, or potentially for only
a short period prior to re-exposure to a gravitational vector,

be it Earth, or the hypogravity of the Moon. One of those
easily applicable and potentially powerful countermeasures –
neuromuscular electrical stimulation (NMES) – is the focus
of this article.

Rationale for NMES
Neuromuscular electrical stimulation involves delivering pre-
programmed trains of stimuli to superficial muscles via self-
adhesive skin electrodes connected to small portable current
generators. Such electrical stimuli can be used to evoke
relatively strong (albeit sub-maximal) muscle contractions,
whose activation pattern is substantially different from that of
voluntary contractions. NMES recruits motor units in a non-
selective, spatially fixed, and temporally synchronous pattern
(Gregory and Bickel, 2005), with the advantage of activating
fast muscle fibers at relatively low force levels, but produces
greater muscle fatigue when compared with voluntary actions.
If provided repeatedly, NMES improves muscle strength, power
and endurance in healthy individuals (Gondin et al., 2011b;
Veldman et al., 2016), even though these effects are not superior
to those induced by voluntary training (Bax et al., 2005). More
importantly, NMES has been shown to preserve/restore muscle
mass and aspects of neuromuscular function during/following
a period of reduced activity due to illness, injury or surgery
(Dirks et al., 2014; Jones et al., 2016; Spector et al., 2016;
Maffiuletti et al., 2018), with greater effectiveness compared to
other rehabilitation modalities (Bax et al., 2005). As such, NMES
is widely used as a rehabilitation strategy for patients with a range
of diseases (Jones et al., 2016; Spector et al., 2016), both during
and following prolonged physical inactivity. NMES also provides
beneficial effects in healthy subjects undergoing short periods of
ground-based models of microgravity-induced deconditioning,
e.g., bed rest or limb immobilization (Dirks et al., 2014). The
majority of terrestrial NMES research has involved stimulation
of knee extensor and/or plantar flexor muscles, whose atrophy
and weakness can significantly impair locomotion. Although
traditional countermeasures have the potential to partially
attenuate spaceflight-induced muscle alterations (Fitts et al.,
2010), no direct comparison of the effectiveness of these
countermeasures versus NMES currently exists.

As such, this mini-review is focused on the use of NMES
as a potentially-complementary countermeasure against skeletal
muscle atrophy and weakness induced by human spaceflight. We
provide an overview of the rationale and evidence for NMES-
based terrestrial state-of-the-art knowledge, compare this to that
employed in orbit and in ground-based analogs, and provide
practical recommendations for possible NMES implementation
in future space (or analog) missions.

NMES IN ORBIT: SUB-OPTIMAL USE
AND EVIDENCE

Roscosmos have employed different NMES devices (see top of
Table 1) in orbit and in ground-based analogs (Kozlovskaya,
2008). The Tonus-3 unit (Yarmanova et al., 2015) possesses
four programs designed to stimulate: calf and quadriceps;
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TABLE 1 | In orbit and ground-based analog NMES devices/studies and recommendations for NMES use in spaceflight.

[Device]/(Study) Disuse model Duration (days) NMES Muscle NMES Duration NMES
freq (Hz)

NMES
on:off (s)

NMES
Intensity

Positive effect
on muscle mass?

Positive effect
on muscle
strength?

[Tonus-3] Russian Space Station Multiple muscles 10,000(60) 1.5:1.5
10:50

[Stimul-01 HF Set] Russian Space Station Multiple muscles 2,500(50)

[Stimul-01 LF Set] Russian Space Station Multiple muscles 25 1:2

Mayr et al., 1999 Space Station (proposal) / Lower limbs 6 h/day 25–50 1:2 20–30% max
tetanic force

/ /

Shiba et al., 2015 ISS (n = 1; ? years) 30 (188-d stay) Upper arm 47 min/week
(3×/week)

? 2:2 80% max
comfortable
intensity

YES NO

Gould et al., 1982 Long-leg cast
(n = 10; 20 years)

14 Lower limbs 16 h/day 37 5:150 Tolerance YES ∼

Gibson et al., 1988 Long-leg cast
(n = 7; 26 years)

40 Quad 60 min/day 30 2:9 Visible contraction
(5% MVC)

YES /

Duvoisin et al., 1989 Bed rest
(n = 3; 36 years)

30 Lower limbs 40 min/day
(2×/day)

60 4:16 Tolerance (torque
recording)

YES YES

Dirks et al., 2014 Full-leg cast (n = 12; 23 yrs) 5 Quad 80 min/day
(2×/day)

100 5:10 Visible palpable full
contraction

YES NO

Reidy et al., 2017 Bed rest (n = 10; 70 years) 5 (with proteins) Quad 120 min/day
(3×/day)

75 4:10 Max tolerated
intensity

YES NO

Zange et al., 2017 Unloading device (n = 7; 26 years) 60 (with proteins) Calf 40 min/day
(2×/day)

30 5:5 Max tolerated
intensity

YES ∼

Recommendations Quad Calf 60 min/day
(2x/day)

30 5:10 5 min to reach max tolerated intensity, then
increased whenever possible to ≥20% MVC

In gray, in orbit devices/studies (the others are analogs). In bold, recommendations for future implementation of NMES in space. ISS, International Space Station; MVC, maximal voluntary contraction. ∼ = Inconsistent;
? = Unknown.
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calf and hamstring; calf, abdominal and back muscles; and
shoulder muscles. Pulses have a duration of 1 ms and maximum
current amplitude is ∼300 mA. Stimulation frequency is 10 kHz
modulated at 60 Hz. Stimulation (ON) time is 0.5/1.5 s with a
non-stimulation (OFF) period of 1.5 s, or alternatively an ON
time of 10 ± 1 s with an OFF time of 50 ± 5 s. Another
Russian stimulator, the Stimul-01 HF Set, generates high-
frequency alternating sinusoidal electrical stimuli at 2.5 kHz with
rectangular pulses modulated at 50 Hz. This device is intended for
40-min stimulation periods of lower limb, back, neck, shoulder
and arm muscles, although few details have been published
(Kozlovskaya et al., 2009). The Stimul-01 LF Set, a wearable
NMES system, was uploaded to the ISS in 2006 (Yarmanova et al.,
2015) based on data suggesting that low-frequency stimulation is
an effective countermeasure against the effects of ground-based
(dry immersion) gravitational unloading (Kozlovskaya et al.,
2009). The Stimul-01 LF Set provides NMES for 1 s followed by
2 s intervals. The symmetrical bipolar rectangular pulses have
a duration of 1 ms and are delivered at 25 Hz, a stimulation
pattern considered compatible with work-day activities without
being unduly uncomfortable.

Mayr et al. (1999) described an EMG-NMES system
(MYOSTIM-FES) embedded into a fabric garment for delivering
NMES to the main lower-limb muscle groups (Table 1). The
astronaut using this system was reported to be “in a much better
condition during flight and after landing” (Freilinger and Mayr,
2002), although no supporting data were published. In another
ISS study, NMES was delivered in the final 30 days of a 188-day
mission. A 12% increase in triceps brachii muscle volume within
a single astronaut was demonstrated, while muscle volume of the
non-stimulated triceps was essentially unchanged (Shiba et al.,
2015). Whilst limited, these data suggest that NMES application
during spaceflight is feasible and potentially able to (at least
partially) prevent muscle atrophy. However, currently there is
a paucity of data on both NMES effectiveness in orbit, and an
evidence-based rationale for its optimal use.

NMES IN GROUND-BASED ANALOGS

The major underlying cause of muscle atrophy in microgravity
is a net negative muscle protein balance (Phillips et al.,
2009; Wall and van Loon, 2013). Given the challenge of
experimentation and countermeasures testing in space, ground-
based models of microgravity such as tilted head-down bed
rest, lower-limb immobilization or axial unloading are generally
used. Such models have demonstrated a substantial decrease
in postabsorptive and postprandial muscle protein synthesis
(Gibson et al., 1987; Ferrando et al., 1996; Biolo et al., 2004;
Glover et al., 2008; Wall et al., 2013; Wall et al., 2016), which is
suggested to be accompanied by an increase in muscle protein
breakdown in the early phase of disuse (Urso et al., 2006;
Abadi et al., 2009; Wall et al., 2016). Even if the impact of
spaceflight on muscle protein turnover has yet to be investigated,
a similar decrease in whole-body protein synthesis was observed
following long-term (>3 months) spaceflight (Stein et al., 1999).
Although it remains to be established whether the same holds

true for muscle (rather than whole-body) protein turnover,
countermeasures which stimulate muscle protein synthesis, while
simultaneously suppressing muscle protein breakdown, are likely
to be effective in partially preventing muscle atrophy during
prolonged spaceflight.

Long-duration bed rest induces significant muscle weakness
and atrophy (Mulavara et al., 2018). Dry immersion has been
shown to elicit rapid and profound losses of lower limb-muscle
contractile properties e.g., triceps surae (Kozlovskaya et al.,
1984; Koryak, 1998, 1999), similar to those observed in-flight
(Koryak, 2001), with signs of muscle denervation appearing
after only 3 days (Demangel et al., 2017). The effects of daily
low- and high-frequency NMES upon lower-limb muscles were
evaluated during 7 days of dry immersion and 105 days of
isolation (Koryak et al., 2008; Kozlovskaya, 2008; Koryak, 2018).
Low-frequency stimulation was effective in counteracting triceps
surae force-velocity property decrements, particularly with high
stimulation intensities.

Various NMES protocols have been employed in a range of
ground-based analog studies in an attempt to attenuate muscle
atrophy and weakness in healthy subjects (Table 1). Despite the
diversity in NMES parameters and protocols between studies
(ranges for duration: 40 min to 16 h per day; frequency: 30
to 100 Hz; intensity: visible contraction to maximum tolerated
current), a common finding is that daily NMES is an effective
countermeasure to prevent the loss of lower-limb muscle mass
associated to short-term disuse (from 5 to 60 days) as a result
of casting (Gould et al., 1982; Gibson et al., 1988; Dirks et al.,
2014), bed rest (Duvoisin et al., 1989; Reidy et al., 2017) and
axial unloading (Zange et al., 2017). Mechanistically, this is
probably due to an increase/maintenance of muscle protein
synthesis (Gibson et al., 1988; Wall et al., 2012), but may also
be accompanied by a suppression of muscle protein breakdown
(Dirks et al., 2014). NMES might also affect other intramuscular
processes including (but not limited to) emission of reactive
oxygen species, insulin signaling and substrate utilization, but
this is outside the scope of this mini-review (Min et al., 2011;
Zuo et al., 2011). Whilst NMES preserved muscle strength in
one of the analog studies (Duvoisin et al., 1989), the effects have
been inconsistent (Table 1). As such, despite the clear potential of
NMES to maintain muscle mass during unloading [particularly
when complemented with protein supplementation (Dirks et al.,
2017)], careful definition of NMES implementation is vital to
ensure optimal muscle functional outcomes.

STATE-OF-KNOWLEDGE ON
TERRESTRIAL NMES

Much work has been conducted to identify the optimal
evidence-based NMES parameters/protocols for neuromuscular
training/rehabilitation (Maffiuletti, 2010; Maffiuletti et al., 2018).
One of the main conclusions is that the externally-controllable
parameters (e.g., current and electrode characteristics) have a
minor impact on NMES effectiveness (Lieber and Kelly, 1991).
In fact, NMES utilization has varied substantially between in
orbit, ground-based analog and terrestrial studies (see Table 1),
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despite calls for standardization as long as 30 years ago
(Singer et al., 1987).

There is, however, increasing evidence that NMES
effectiveness is proportional to the amount of evoked
force/tension (Gondin et al., 2011a). This is generally expressed
as a percentage of the maximal voluntary strength, and is referred
to as “NMES training intensity.” For example, in Lai et al. (1988)
two groups of healthy volunteers had their quadriceps stimulated
for 3 weeks at low vs. high NMES training intensities. NMES
effectiveness, defined as an improvement in maximal strength
mediated by NMES, was linearly related to NMES training
intensity (+24 and +48% in respective groups). Therefore,
NMES training intensity, not current intensity/subjective
current level or any other stimulation parameter, should be (1)
considered as the main determinant of NMES effectiveness, (2)
quantified whenever possible on an individual basis, and (3)
maximized whenever possible by means of multiple subterfuges
(see e.g., Maffiuletti, 2010). Methodologically, at least four simple
strategies are able to amplify the muscle response to NMES
while minimizing the current-induced discomfort (i.e., the main
limitation of NMES): (1) localizing the muscle motor point
(i.e., the skin area above the stimulated muscle where the motor
threshold is the lowest for a given electrical pulse) (Gobbo
et al., 2014); (2) implementing a familiarization period of a
few days; (3) providing control of the stimulation unit directly
to the participant; (4) allowing the participant to contract
the stimulated muscle voluntarily to divert attention from
pain/discomfort induced by NMES (Maffiuletti, 2010).

FUTURE NMES RECOMMENDATIONS
FOR SPACEFLIGHT

Based on terrestrial best practice we recommend the following
approach for possible NMES utilization in future space missions,
including long-term exploration (see also bottom of Table 1).
NMES should be seen as a complement to, rather than a substitute
for pre-existing exercise countermeasures. This implies careful
planning of daily exercise training by considering that NMES is
performed in static conditions – so that other non-physical tasks
can be executed concomitantly – and separately from the other
exercise modalities (i.e., NMES is not superimposed to running,
cycling or rowing).

General Settings
Simultaneous bilateral stimulation of quadriceps femoris and
triceps surae muscles should be performed using two large
rectangular/elliptical electrodes per muscle (one distal and
one proximal) using a space-compatible portable 4-channel
stimulator. Astronauts should be in a seated position, with knee
and ankle joints restrained at 90◦. This knee angle is known to
reduce the involvement of the biarticular gastrocnemii, which
are less susceptible to muscle atrophy than the soleus (Fitts
et al., 2010). In this static position, reasonable levels of muscle
tension can be generated even in the absence of gravity (tension
will be much lower if limb movement is permitted), which is

an important prerequisite for maintaining/increasing the force
generating capacity of a muscle (Lieber and Kelly, 1993).

Current-Related Settings
Biphasic sinusoidal/rectangular pulses with a duration of at least
400–600 µs should be used, with an OFF time at least twice
the ON time (e.g., 5 s ON:10 s OFF). Stimulation frequency
should be close to 30 Hz to ensure full tetanic contractions while
minimizing fatigability (Spector et al., 2016).

Before Spaceflight
Prior to flight, muscle motor points should be localized and
marked on the skin according to the methodology proposed by
Gobbo and co-workers (Gobbo et al., 2014). A familiarization
period of ∼1 week (3–5 short sessions) should be performed to
improve tolerance and thus adherence, whilst also minimizing
any risk of muscle damage. Critically, the individual current
intensity-evoked force relationship should be determined for
each stimulated muscle group of each crewmember, which would
require the use of a dynamometer (such as the MARES).

During Spaceflight
Neuromuscular electrical stimulation should ideally be
performed twice daily, with stimulation periods of ∼30 min.
Current intensity should be progressively increased to the
maximally tolerated level during the first 5 min of each session,
to ensure strong muscle contractions. Current intensity should
thereafter be increased throughout the entire session, ideally
whenever possible. At the end of each session, average current
intensity (per channel/muscle), discomfort (0–10 scale) and
maximal evoked force (if available) should be recorded. NMES
should preferably be combined with protein ingestion to
augment its effect on muscle mass (Dirks et al., 2017).

REMAINING NMES SPACE
CHALLENGES

Whilst NMES-based resistance training has potential as an
inflight countermeasure, it has some limitations such as the
inability to activate the entire muscle (Maffiuletti, 2010), issues
with dose and tolerance (discomfort) but no long-term safety
concerns (Maffiuletti et al., 2018), and unclear effects upon
other physiological systems known to decondition in space (e.g.,
skeletal or cardiovascular systems). Nevertheless, knowledge
of the methodological and physiological specificities of NMES
would allow end-users to optimally apply NMES as a complement
to other countermeasures for preserving lower-limb functionality
(Maffiuletti, 2010).

This mini-review has focused upon muscles acting around
the knee and ankle joints. Nevertheless, other muscle groups
such as back extensors (Chang et al., 2016) have been shown
to decondition in space, leading to functional and operational
consequences (Green and Scott, 2017). Whilst NMES has
recently been used upon other muscle groups and multiple
body segments simultaneously (Kemmler et al., 2010), as well
as with agonist-antagonist co-contraction (Shiba et al., 2015),
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these modalities appear unsuitable at this stage because of
practical considerations and lack of convincing evidence.

CONCLUSION

Due to the significant discrepancies between the terrestrial
(clinical and experimental) NMES state-of-the-art, and that
currently performed in orbit and in analog studies, it is

crucial to use optimal NMES knowledge on Earth to revisit
and further develop NMES as a feasible strategy for human
spaceflight exploration.
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