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The cephalopods (Mollusca: Cephalopoda) are an exceptional class among the

invertebrates, characterised by the advanced development of their conditional learning

abilities, long-term memories, capacity for rapid colour change and extremely adaptable

hydrostatic skeletons. These traits enable cephalopods to occupy diverse marine

ecological niches, become successful predators, employ sophisticated predator

avoidance behaviours and have complex intraspecific interactions. Where studied,

observations of cephalopod mating systems have revealed detailed insights to the

life histories and behavioural ecologies of these animals. The reproductive biology of

cephalopods is typified by high levels of both male and female promiscuity, alternative

mating tactics, long-term sperm storage prior to spawning, and the capacity for intricate

visual displays and/or use of a distinct sensory ecology. This review summarises the

current understanding of cephalopod reproductive biology, and where investigated, how

both pre-copulatory behaviours and post-copulatory fertilisation patterns can influence

the processes of sexual selection. Overall, it is concluded that sperm competition

and possibly cryptic female choice are likely to be critical determinants of which

individuals’ alleles get transferred to subsequent generations in cephalopod mating

systems. Additionally, it is emphasised that the optimisation of offspring quality and/or

fertilisation bias to genetically compatible males are necessary drivers for the proliferation

of polyandry observed among cephalopods, and potential methods for testing these

hypotheses are proposed within the conclusion of this review. Further gaps within the

current knowledge of how sexual selection operates in this group are also highlighted, in

the hopes of prompting new directions for research of the distinctive mating systems in

this unique lineage.

Keywords: cryptic female choice, cuttlefish, mate choice, octopus, polyandry, sperm competition, squid,

reproduction

1. INTRODUCTION

Sexual selection is the competition within one or both sexes of a species toward
optimising individual reproductive success (Darwin, 1906; Bateson, 1983). The resulting
disparity in reproductive outcomes among individuals in a species can lead to the development
of specific behaviours and/or phenotypic traits that can enable individuals who display them to
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increase their genetic contribution to subsequent generations
(West-Eberhard, 1983; Andersson and Simmons, 2006).
Anisogamy, which is the differential investment between males
and females toward their gametes in most animal mating systems
(Kodric-Brown and Brown, 1987), typically results in conflicting
strategies for enhancing reproductive output between males and
females of the same species (Chapman et al., 2003). Females,
which have a relatively higher investment toward gametes,
generally have reproductive capacities that are resource-limited
(Bateson, 1983; Kodric-Brown and Brown, 1987). Meanwhile
males, which are usually less limited by their gamete production,
are primarily limited by the number of female gametes they
can successfully fertilise (Kodric-Brown and Brown, 1987).
Therefore, where anisogamy exists sexual selection can impose
females to evolve mechanisms by which they can obtain more
resources to create higher numbers of healthy viable eggs, and/or
to fertilise these eggs with sperm from higher quality and/or
genetically compatible males (Kirkpatrick, 1982; Kodric-Brown
and Brown, 1987; Tregenza and Wedell, 2000; Kokko et al.,
2003). Dissimilarly, sexual selection will often drive males
of a species to develop traits or behaviours that enable them
to achieve copulations with a higher number of females, to
mate with healthier more fecund females and to attain greater
fertilisation success with the females they mate with (Parker,
1970; Kodric-Brown and Brown, 1987; Reinhold et al., 2002).

The cephalopods (Mollusca: Cephalopoda) are a class of
invertebrates that might provide a different type of model
for studying the mechanisms and impacts of sexual selection.
Spermatozoa of male cephalopods are encased in a finite number
of discrete spermatophores that are transferred to the female,
in some cases individually (Mann et al., 1970). Depending
on species, males may or may not be able to regenerate
spermatophores (Anderson et al., 2002). In species where males
can regenerate spermatophores, the time and energy needed to do
so can potentially limit male mating frequency during a spawning
period (Mann et al., 1970; Anderson et al., 2002). The constraint
of having a fixed or limitedmale reproductive capacity might lead
to a higher investment by males toward their gametes, and could
present a system where both male and female mate selection
might be important to the reproductive success of individuals
within species (e.g., Huffard et al., 2008, 2010). Additionally,
several other cephalopod characteristics make this a unique and
interesting class of animals for studying the processes of sexual
selection. Male and female promiscuity are reported across this
class (Hall and Hanlon, 2002; Hanlon et al., 2002; Huffard et al.,
2008; Arnold, 2010; Squires et al., 2013; Morse et al., 2015). Males
are known to employ size-conditional mating strategies (Hanlon
et al., 1997; Hall and Hanlon, 2002; Huffard et al., 2008; Lin et al.,
2018). Females in some species are known to be selective of mates
(Hall and Hanlon, 2002; Wada et al., 2005a), can store sperm
(Perez et al., 1990; Hanlon et al., 1999; Morse, 2008; Hoving et al.,
2010; Bush et al., 2012; Cuccu et al., 2014) and can potentially
be selective about which sperm they use (Naud et al., 2004; Shaw
and Sauer, 2004; Buresch et al., 2009; Sato et al., 2013). While
females of the southern bottletail squid (Sepiadarium austrinum)
can gain nutritional and likely fecundity benefits through the
consumption of spermatophores (Wegener et al., 2013), in most

cases females receive no identifiable resources or parental care
from the males they mate with. This suggests that male quality
and/or genomic compatibility might be important factors in
female mate selection, as observed in other animals (Jennions
and Petrie, 1997; Tregenza andWedell, 2000; Kokko et al., 2003).
Furthermore, cephalopods’ capacity for complex behavioural
and visual displays can enable unique modes of courtship
and/or discretion of potential mates (Corner and Moore, 1981;
Hanlon et al., 1994; Huffard, 2007; Mäthger and Hanlon, 2007;
Mäthger et al., 2009).

This review is divided into four broad sections following
the introduction. The first of these briefly summarises the
present knowledge of how reproduction takes place within
each of the nine currently recognised extant cephalopod orders
(Allcock et al., 2015; Sanchez et al., 2018). The following
section focuses in greater detail on pre-copulatory behaviour
observed in three coastal cephalopod families, the loliginid
squid (Myopsida: Loliginidae), cuttlefish (Sepiida: Sepiidae) and
octopuses (Octopoda: Octopodidae), and specifically addresses
the mechanisms and behaviours that might lead to differential
copulatory rates within these more thoroughly studied mating
systems. The third section summarises recent advances in
understanding the post-copulatory processes that might lead to
differential male fertilisation success among the five cephalopod
families where this topic has been investigated. This review
concludes with a final section highlighting some of the gaps in
the current knowledge of cephalopod mating systems, and which
might serve as feasible and productive topics for investigation
in the near future. Biases in coverage by this review reflect the
skew of existing behavioural research toward more accessible,
abundant, and day-active species instead of offshore, nocturnal,
and rarer forms.

2. REPRODUCTIVE BIOLOGY OF
CEPHALOPODS

2.1. General Reproductive Strategies and
Life History Traits of the Cephalopoda
Shallow-water coastal cephalopods are typically known for
having relatively fast growth rates and short life-cycles ended
with a terminal spawning season (Joll, 1976; Le Goff and
Daguzan, 1991; Jackson, 2004; Sato et al., 2008). By contrast,
more protracted spawning periods have been observed in deep-
sea and cold-water pelagic taxa which might have longer life
spans, and pygmy species which can increase lifetime fecundity
through release of multiple clutches (Boletzky, 1986; Rocha
et al., 2001). Difficulty in finding mates, small egg-clutches due
to limitation of resources and low offspring survival, as well
as stable environmental conditions with reduced predation of
adults have each been hypothesised as selective pressures toward
increased parental investment and multiple spawning events for
cephalopod taxa occupying deep-sea habitats (Rocha et al., 2001;
Hoving et al., 2015). Some life history characteristics of deep-
sea and oceanic cephalopods include relatively longer life-cycles,
prolonged embryonic development within larger eggs, maternal
care of egg masses, intermittent or continuous spawning over a
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terminal breeding season and/or iteroparity throughout the adult
phase (Villanueva, 1992; Seibel et al., 2000; Rocha et al., 2001;
Hoving et al., 2004, 2008, 2015; Barratt et al., 2007; Laptikhovsky
et al., 2007, 2008; Arnold, 2010; Bush et al., 2012; Table 1).

This latter mode of life history is exemplified by the
nautilids (Nautiloidea: Nautilida), which are expected to
live more than 20 years and spawn seasonally each year
once sexually mature (Mikami and Okutani, 1977; Saunders,
1984; Arnold, 2010; Dunstan et al., 2011). Nautilids are
taxonomically distinct from other cephalopods in that they
are the only extant representatives of ectocochleate, or
externally shelled cephalopods (Cephalopoda: Nautiloidea;
Voss, 1977; Sanchez et al., 2018). However, several coleoid
taxa (Cephalopoda: Coleoidea) are also reported to spawn
over multiple seasons. These taxa include: several oegopsid
squids (Decapodiformes: Oegopsida; Harman et al., 1989;
Hoving et al., 2004), Vampyroteuthis infernalis (Octopoda:
Vampyroteuthidae; Hoving et al., 2015), Opisthoteuthis spp.
(Octopoda: Opisthoteuthidae; Villanueva, 1992), Graneledone
spp. (Octopoda: Megaleledonidae; Bello, 2006; Guerra et al.,
2012), Octopus chierchiae (Octopoda: Octopodidae; Rodaniche,
1984) and the currently undescribed larger Pacific striped
octopus (“LPSO”; Octopoda: Octopodidae) which has a
continuous spawning phase (Caldwell et al., 2015). These taxa,
with the exceptions of O. chierchiae and LPSO are all either
deep-sea or pelagic cephalopods. Some of the larger oegopsid
squid, V. infernalis and the giant Pacific octopus (Enteroctopus
dofleini) have relatively slower growth rates and are estimated to
live for 2–8 years (Hartwick, 1983; Hoving et al., 2015; Hoving
and Robison, 2017). However, the rest of the coleoid cephalopods
are thought to have life-spans of only several months to 2 years
(Table 1), and in the case of terminal spawners, die shortly after
breeding (McGowan, 1954; Roper, 1965; Joll, 1976).

2.2. Reproductive Biology in Nautilida
The order Nautilida (Figure 1) contains only two genera,
Allonautilus and Nautilus, and as mentioned above these taxa
are the only extant representatives of the cephalopod subclass:
Nautiloidea. Correspondingly, their life histories are relatively
unique among cephalopods in that they have opportunities to
breed continuously throughout their extended life spans (Mikami
and Okutani, 1977; Saunders, 1984; Arnold, 2010). Distributional
data have indicated that nautilid populations, where sampled,
always have an operational sex ratio (OSR) biased toward males
(1:3 in Saunders and Ward, 1987). Additionally, Haven (1977)
who sampled a population of Nautilus pompilius year round to
depths of 340m, found an increase in female catch rates between
January and May. These data suggest there might be a seasonal
migration of females in this species, possibly related to an annual
breeding, feeding, or spawning season.

Relatively very little is known about the reproductive habits
of nautilids in the wild. Aquarium observations have provided
a basic understanding of copulatory behaviour in captive
individuals (N. macromphalus in Mikami and Okutani, 1977; N.
pompilius in Arnold, 2010). Successful copulations takes place
by the male grasping the female with his tentacles and drawing
the pair’s mantle apertures together. The male then uses an

enlarged labial tentacle, called a spadix, to push the female’s
buccal tentacles to the side and transfer one long spermatophore
(∼30 cm) to the female’s organ of Valenciennes (Mikami and
Okutani, 1977), an analogue to the seminal receptacle in some
coleoid cephalods except that the spermatophores appear to
remain intact within the organ of Valenciennes until the time
of fertilisation (Arnold, 2010). The exact method of fertilisation
is still not understood in nautilids. However, it has been
hypothesised that the spermatophore(s) break during egg-laying
and the spermatozoa migrate independently toward the oocyte
micropyle(s) (Arnold, 2010).

Copulations have been reported to last as long as 30 h (Mikami
and Okutani, 1977), and females have been observed as passive
throughout the process. Males are frequently observed to bite
the females on the mantle and shell during copulation (Arnold,
2010), the reason for which is still not understood. Bites were
observed to leave marks on the shell, suggesting that these
could theoretically be used as an indication of a female’s mating
and/or possibly egg-laying history (Arnold, 2010). However,
males’ response to and/or preference for females with different
numbers of bite marks have not been assessed.

Arnold (2010) additionally indicated that male copulation
attempts are extended to any object that shares a similar shape
and size of another nautilid, and that male/male copulation
attempts are common. This suggests that nautilids may have
difficulty recognising conspecifics and/or discriminating between
sexes. This aspect of social naiveté might be related to living in
the pelagic environment where the ability to find mates could
be limiting to reproductive success. In this context, it might to
be less costly for males to waste time and/or energy attempting
unviable copulations, than to risk missing an opportunity to
transfer gametes to a suitable mate, as has been hypothesised for
other cephalopod species (Hoving et al., 2012; Morse et al., 2015).

In captivity, nautilids deposit eggs both singly and in small
clusters on aquarium floors over an extended annual period,
and to do so over multiple years (Carlson et al., 1992; Arnold,
2010). The eggs’ exteriors are tough, flexible and opaque white
in colour (Mikami and Okutani, 1977). Embryonic development
in nautilids takes from 9 months to over a year (Arnold, 2010),
and there have been no observations of maternal egg care.
Upon hatching, juveniles appear like miniature adults and are
immediately capable of actively swimming and feeding on cut-up
pieces of prawn (Carlson et al., 1992).

2.3. Reproductive Biology in Oegopsida
Depending on species, male oegopsid, or “open-eye” squids
(Decapodiformes: Oegopsida; Figure 2), are thought to use either
a hectocotylised arm or an elongated terminal organ to deliver
sperm to the female (Nesis, 1996; Hoving et al., 2004). However,
the method and placement of sperm transfer can take place
in a variety of ways depending on the taxon. In Lycoteuthis
lorigera, females can store spermatophores in dorsal pouches
located on the neck (Hoving et al., 2007). Illex spp. (Oegopsida:
Ommastrephidae) are not known to have any seminal receptacle,
and sperm are stored only inside spermatophore casings within
females’ mantle cavities (Durward et al., 1980; Arkhipkin
and Laptikhovsky, 1994). External spermatophore placement is
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TABLE 1 | The life history characteristics pertaining to reproductive biology are summarised below for the nine extant orders of Cephalopoda.

Order Approx.

no. of

species

Size range Lifespan Method of

sperm

transfer

Female sperm storage

organ

Site of

fertilisation

Reproductive

cycle[32]
Fecundity Maternal care Hatchling type

Nautilida 7[1] Shell up to

229mm in

diameter[1]

>20 years[5] Spadix[15] Organ of Valenciennes[15] Oocyte

micropyles

(hypothesised[28])

PS[28] 10–20

eggs/year[40,41]
Not reported Direct

developing[50]

Oegopsida 236[2] 20 to at least

2,000mm

ML[3]

Up to at least

2 years[6]
Hectocotylus

or elongated

terminal

organ[16]

Dorsal pouches[18]; inside

MC[19]; or external[16]
Thought to be

external[16]
MS[33]; or

ITS[16]
Up to 6

million[16]
Extended egg care

in two

species[45,46]

Planktonic

larvae[51]

Myopsida 50[2] 20–900mm

ML[3]
1–2 years[7] Hectocotylus[3] Sperm receptacle near BA;

or inside MC[20]
External[29] ITS[29] ∼2,000–

55,000[42]
ANG[47] Planktonic

larvae[51]

Idiosepiida 6[2] <25mm

ML[1]
80–151

days[8,9]
Hectocotylus[1] Sperm receptacle near

BA[21]
External[30] CS[34] 53–922[34] Not reported Direct

developing[34]

Sepiolida 70[2] Up to 80mm

ML[1]
5 months to

reports of 2

years[10]

Hectocotylus[1] Internal spermatheca[22]; or

external[23]
External[22]; or

“confined

external”[31]

ITS[22]; or

CS[35]
Up to 931[43] ANG[48] Direct

developing[51]

Sepiida 120[2] 60–510mm

ML[1]
1–2 years[11] Hectocotylus[1] Paired sperm receptacles

near BA; or external[24]
External[22] ITS[36] Up to

8,000[36]
ANG[49] Direct

developing[51]

Spirulida 1[2] ∼45mm

ML[1]
18–20

months[1]
Hectocotylus[1] Sperm receptacle near

BA[1]
Unknown Unknown Unknown Not reported Unknown

Octopoda 300[2] 15mm ML

(∼1g) to over

600mm ML

(>180 kg)[4]

∼7

months[12] to

5 years[13]

Hectocotylus

in Incirrata[4];

Unknown in

Cirrata

Oviduccal glands[25];

ovaries[26]; or inside

dismembered hectocotyli

within MC[27]

Oviduccal

glands[25]; or

inside

ovaries[26]

STS[37];

MS[38]; or

CS[39]

30[44]-

700,000[37]
Extended egg care

in Incirrata[12]; not

reported in Cirrata

Planktonic

larvae[37]; or

direct

developing[12]

Vampyromorphida 1[2] Up to

130mm ML[4]
Predicted >8

years[14]
Funnel

(hypothesised[17])

Infraorbital pits[17] Unknown Suggested

to be PS[14]
Up to

20,711[14]
Not reported Unknown

ANG, accessory nidamental gland; BA, buccal area; CS, continuous spawning; ITS, intermittent terminal spawning; MC, mantle cavity; ML, mantle length; MS, multiple spawning; PS, polycyclic spawning; STS, simultaneous terminal

spawning. 1(Jereb and Roper, 2005); 2 (Allcock et al., 2015); 3 (Jereb and Roper, 2010); 4(Jereb et al., 2014); 5 (Dunstan et al., 2011); 6(Hoving and Robison, 2017); 7(Jackson, 2004); 8(Tracey et al., 2003); 9 (Sato et al., 2008); 10(Marine

Biological Laboratory, 2019); 11(Gabr et al., 1998); 12(Tranter and Augustine, 1973); 13 (Hartwick, 1983); 14(Hoving et al., 2015); 15(Mikami and Okutani, 1977); 16(Hoving et al., 2004); 17 (Pickford, 1949b); 18(Hoving et al., 2007);
19(Durward et al., 1980); 20 (Hanlon et al., 1997); 21(Sato et al., 2010); 22(Squires et al., 2013); 23 (Hoving et al., 2009); 24(Naud et al., 2005); 25(Froesch and Marthy, 1975); 26(Perez et al., 1990); 27(Laptikhovsky and Salman, 2003);
28(Arnold, 2010); 29(Hanlon et al., 2004); 30 (Sato et al., 2013); 31(Hoving et al., 2008); 32 (Rocha et al., 2001); 33(Nesis, 1996); 34(Nishiguchi et al., 2014); 35(Laptikhovsky et al., 2008); 36(Laptikhovsky et al., 2003); 37(Joll, 1976);
38(Rodaniche, 1984); 39 (Caldwell et al., 2015); 40(Okubo et al., 1995); 41(Uchiyama and Tanabe, 1999); 42(Hixon, 1980); 43(Salman and Önsoy, 2010); 44(O’Dor and Malacaster, 1983); 45(Seibel et al., 2000); 46(Bush et al., 2012);
47(Barbieri et al., 1996); 48(Collins et al., 2012); 49(Richard et al., 1979); 50(Carlson et al., 1992); 51 (Boletzky, 1987). Taxonomic orders and the sequence they are presented in are based on phylogenies described in Allcock et al. (2015).
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FIGURE 1 | The Palau nautilus, Nautlius belauensis (Nautiloidea: Nautilida).
Photograph taken by Manuae, and downloaded via Wikimedia under licence:

[CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)].

FIGURE 2 | A dead specimen of the neon flying squid, Ommastrephes
bartamii (Decapodiformes: Oegopsida). Photograph taken by the British

Museum of Natural History, and downloaded from the public domain via

Wikimedia.

also common in several species of deep-sea squids, including
Architeuthis sp. (Hoving et al., 2004), Octopoteuthis deletron
(Hoving et al., 2012), Taningia danaei (Hoving et al., 2010)
and Moroteuthis ingens (Hoving and Laptikhovsky, 2007). This
method of spermatophore placement has been suggested as a
consequence of size dimorphism between the sexes, in that
smaller males need to be able to mate quickly and escape from
larger and potentially cannibalistic females (Hoving et al., 2004).
Where studied, externally placed spermatophores in oegopsid
species enter through females’ skin autonomously to achieve
implantation and storage (Hoving and Laptikhovsky, 2007).

The oegopsids have the highest fecundity among the
cephalopod class. Oocyte counts have led to estimations of
fecundity reaching as high as 1–6 million in Dosidicus gigas
(Ehrhardt et al., 1983) and 3- 6million inArchiteuthis sp. (Hoving

et al., 2004). Both of these deep-water species have extended or
multiple spawning events, enabling higher fecundity than their
counterpart taxa in coastal or shallow-water habitats (Rocha
et al., 2001). Egg deposition and care are variable among the
oegopsids. In deep-sea habitats where there are typically few hard
surfaces enabling egg attachment, where known, most oegopsids
lay eggs in neutrally buoyant egg masses that they let go into
the water column (Guerra et al., 2002; O’Shea et al., 2004; Staaf
et al., 2008). By contrast, females in the family Enoploteuthidae
lay single, buoyant egg-capsules (Young and Harman, 1985).
Maternal egg care has been reported in Bathyteuthis berryi and
Gonatus onyx. These species have been known to carry their
egg masses in their arms and guard them from predators and
parasites throughout their development (Seibel et al., 2000; Bush
et al., 2012). In the case of G. onyx, embryonic development
is estimated to take up to 9 months, and females will drop
their two feeding tentacles after egg deposition, presumably to
better hold the egg mass with their eight arms (Seibel et al.,
2000). Larval morphology is highly variable among oegopsids,
however all taxa studied to date are planktonic upon hatching
(Boletzky, 1987).

2.4. Reproductive Biology in Myopsida
The myopsid, or “closed-eye” squids (Decapodiformes:
Myopsida; Figure 3) are an order of neritic squids that
typically live for only 1–2 years (Jackson, 2004), spawn in large
assemblages (Hanlon, 1998; Hanlon et al., 2002; Jantzen and
Havenhand, 2003) and are thought to reproduce over only
one breeding season (McGowan, 1954; Roper, 1965). Males
can transfer sperm in at least three ways within myopsid taxa.
Typically, pairs can mate in either a head to head or parallel
position, and males use their hectocotylised arms to place
spermatophores in either the seminal receptacles near the
females’ buccal mass or inside females’ mantle cavities near the
distal ends of their oviducts (Hanlon et al., 1997; Jantzen and
Havenhand, 2003). Female Lolliguncula brevis have specialised
pads on the inside of their mantle walls where males place
spermatophores during parallel mating (Hanlon et al., 1983). A
third method of spermatophore placement has been observed
during sneaker copulations (described in section 3.1.1) in Loligo
vulgaris. Sneaker males in this species have been observed to
opportunistically place spermatophores directly into females’
arms either on or near eggs that are about to be deposited onto
an egg mass (Hanlon et al., 2002). Fertilisation in myopsids is
external, and takes place at the time of egg deposition (Hanlon
et al., 2004; Shaw and Sauer, 2004; Naud et al., 2016).

Where studied, spawned egg counts in Myopsida have ranged
from 2,024 in L. brevis to 55,308 in Doryteuthis pealei (Hixon,
1980). Myopsids deposit eggs on the substrate, either in single
clutches or in communal egg masses (Hanlon et al., 1997; Jantzen
and Havenhand, 2003). Female myopsids possess an accessory
nidamental gland (ANG) and it is has been hypothesised that
bacterial communities, cultured here and passed to egg capsules,
might help to protect myopsid eggs from fouling or harmful
microbes (Barbieri et al., 1996). All myopsids are intermittent
terminal spawners (Roper, 1965; Hanlon et al., 2004), meaning
the females deposit eggs in multiple batches over a single
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FIGURE 3 | The bigfin reef squid, Sepioteuthis lessoniana (Decapodiformes:

Myopsida) from Komodo National Park. Photograph by P. Morse.

FIGURE 4 | The two-toned pygmy squid, Idiosepius pygmaeus
(Decapodiformes: Idiosepiida). Photograph taken by krokodiver and

downloaded via Flickr under licence: [CC BY-SA 2.0 (https://

creativecommons.org/licenses/by/2.0/)].

spawning period and die shortly after (Rocha et al., 2001).
One species, D. opalescens, was previously reported to have
simultaneous terminal spawning (McGowan, 1954). However,
females of this species have since been observed depositing eggs
in multiple batches, and to re-join the shoal between discrete egg-
laying events (Hanlon et al., 2004). Nomaternal egg care has been
reported within this order (apart from the protective properties
imparted by the ANG), and all myopsid larvae are planktonic
upon hatching (Boletzky, 1987).

2.5. Reproductive Biology in Idiosepiida
Pygmy squids (Decapodiformes: Idiosepiida) are an order of
small, short-lived (80–150 days: Tracey et al., 2003; Sato et al.,
2008), continuous spawning, shallow-water, coastal cephalopods
comprising the single genus, Idiosepius (Nishiguchi et al., 2014;
Figure 4). Copulations in this group take place in a head to

head position where the male attaches spermatangia to the base
of the female’s arms (Kasugai, 2000; Sato et al., 2013). It is
thought that the spermatozoa might then actively swim from
the spermatangia to the female’s seminal receptacle located near
the buccal membrane (Sato et al., 2010). Like in myopsids, egg
fertilisation in idiosepiids is external and takes place at the time of
egg deposition (Sato et al., 2013). In captivity, female I. pygmaeus
have been observed to lay a total of 53–922 eggs over up to
eight egg clutches (Nishiguchi et al., 2014). Eggs are deposited
individually into an egg capsule which is attached to the substrate
(Natsukari, 1970) and are reported to hatch after approximately
7–40 days of development depending on species (Nabhitabhata
et al., 2004; Kasugai and Segawa, 2005). Idiosepiids are direct
developing, however all hatchlings are planktonic during their
juvenile stage (Nishiguchi et al., 2014).

2.6. Reproductive Biology in Sepiolida
Similar to other decapod cephalopods (Cephalopoda:
Decapodiformes), fertilisation in most bobtail squids
(Decapodiformes: Sepiolida) takes place externally (Rodrigues
et al., 2009; Squires et al., 2013; Wegener et al., 2013). However in
at least one species, the pelagic Heteroteuthis dispar, fertilisation
has been reported to take place either in the female oviducts
or visceropericardio coelom through what the authors refer
to as “confined external fertilisation” (Hoving et al., 2008).
During copulation, sepiolid males usually use their arms to latch
onto females’ necks (Rodrigues et al., 2009; Squires et al., 2013;
Figure 5), or in the case of Rossia pacifica grasp females from a
parallel position (Brocco, 1971). In most cases males then use
their hectocotylised first left arms to transfer spermatangia to
inside females’ mantle cavities where sperm is stored in posterior
pouch-like receptacles (Hoving et al., 2008; Rodrigues et al., 2009;
Squires et al., 2013). Rossia moelleri is an interesting exception.
Males of this species are known to implant spermatangia into
females’ external mantle tissue (Hoving et al., 2009). These
authors suggest that a combination of mechanical and chemical
processes aid the spermatangia to enter through females’ skin
autonomously to the oviducts where it is hypothesised that
fertilisation might occur in this species.

Sepiolids tend to lay comparatively fewer and larger eggs than
most other coleoid cephalopods (Rocha et al., 2001; Laptikhovsky
et al., 2008; Squires et al., 2013). Fecundity in sepiolids has been
recorded up to 646 eggs in captive southern dumpling squid,
Euprymna tasmanica (Squires et al., 2013), and up to 931 eggs in
R. macrosoma (Salman and Önsoy, 2010). Maternal care has not
been reported among sepiolid taxa, but many female sepiolids are
known to disguise their eggs with opaque egg casings, ink or sand
(Arnold et al., 1972; Rodrigues et al., 2009; Squires et al., 2013),
and to inoculate their eggs through the ANG (Collins et al., 2012).
Sepiolids resemble their adult forms upon hatching and lack a
planktonic phase (Boletzky, 1987).

2.7. Reproductive Biology in Sepiida
In sepiids (Decapodiformes: Sepiida; Figure 6), fertilisation,
where studied, is always external (Naud and Havenhand, 2006).
Eggs are fertilised by sperm either stored in females’ seminal
receptacles, located ventral to their buccal membrane, or from
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recently deposited spermatophores on females arms and/or
buccal areas (Naud et al., 2005). Reproductive behaviour has
been recorded in great detail for Sepia officinalis and S. apama
(Hanlon et al., 1999; Naud et al., 2004). Copulations in these
species take place in the head to head position. Pairs face each
other, intertwine arms and males use their hectocotylised fourth
left arms to transfer spermatophores from their funnel to females’

FIGURE 5 | A male (left) southern dumpling squid, Euprymna tasmanica
(Decapodiformes: Sepolida) grasps the female (right) around the lower mantle

during mating. Photograph taken by Zoe Squires, downloaded via Wikimedia

and cropped under licence: [CC BY 4.0 (https://creativecommons.org/

licenses/by/4.0)].

seminal receptacles and/or directly onto females’ buccal areas.
Males then use the hectocotylus to break open spermatophores,
and possibly to manipulate their placement on the female.
The female then uses either the stored or externally placed
sperm to fertilise her eggs individually at the time of deposition
(Naud et al., 2005).

Large sepiids are estimated to live from 1–2 years (Le Goff
and Daguzan, 1991; Gabr et al., 1998) and are predicted to lay up
to 8,000 eggs over intermittent spawning periods (Laptikhovsky
et al., 2003). Female sepiids are not known to physically guard
their eggs, but similar to sepiolids, several mechanisms for hiding
eggs are employed across these taxa. Where observed, female
sepiids always attach their eggs to the substrate or a hard object
(Adamo et al., 2000; Hall and Hanlon, 2002). Sepia officinalis
lay opaque eggs, darkened with ink to minimise detection by
predators (Boletzky et al., 2006). Female S. esculenta achieves the
same result by attaching sand and rubble to their eggs with a
sticky exterior (Natsukari and Tashiro, 1991). Both S. latimanus
and S. pharaonis hide their eggs in coral crevices, possibly to
help guard them against predatory fish (Corner andMoore, 1981;
Gutsall, 1989). The flamboyant cuttlefish (Metasepia spp.) have
been observed to lay their eggs in live rock and coconut shells
(in captivity: Grasse, 2014; in the wild: C.L. Huffard, personal
observations). As with myopsids and sepiolids, female sepiids
possess an ANG which is thought to aid in inoculating their
eggs against harmful pathogens (Richard et al., 1979). Similar
to sepiolids, sepiids are direct-developing and spend their entire
life histories on or near the seafloor (Boletzky, 1987), suggesting
that dispersal might be more limited in these orders than in most
other cephalopod taxa.

FIGURE 6 | The broadclub cuttlefish, Sepia latimanus (Decapoformes: Sepiida) from Komodo National Park. Photograph by P. Morse.
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2.8. Reproductive Biology in Spirulida
Spirulida (Decapodiformes: Spirulida) is a monotypic order
comprising the Ram’s horn squid (Spirula spirula; Figure 7).
Very little is know about the life history or behaviour of this
mesopelagic squid, but size profiling of dead specimens caught
at different depths and different times of year has led to some
insights (Bruun, 1943; Clarke, 1970). This small (up to 45mm
mantle length) and elusive cephalopod is predicted to have an
18–20 month lifespan and is thought to reach sexual maturity
at 12–15 months of growth (Jereb and Roper, 2005). Due to
observations that the smallest individuals have been caught at
the greatest depths (1,000–1,750m), it has been suggested that
females might deposit eggs at the bottom of continental slopes
(Jereb and Roper, 2005).

2.9. Reproductive Biology in Octopoda
The octopods (Octopodiformes: Octopoda) can be broadly
divided into two suborders: the incirrate octopods (Octopoda:
Incirrata; Figure 8), and the cirrate octopods (Octopoda:
Cirrata). Egg fertilisation in the incirrate octopods is always
internal (Froesch and Marthy, 1975). The male hectocotylus,
which is usually the third right arm (Robson, 1929), terminates
in a specialised organ called a ligula (Wells and Wells, 1972).

FIGURE 7 | An artist’s rendition of the ram’s horn squid, Spirula spirula
(Decapodiformes: Spirulida). This image was drawn by Lesueur in 1807, and

was downloaded from the public domain via Wikimedia.

FIGURE 8 | The gloomy octopus, Octopus tetricus (Octopodiformes:

Octopoda) from Fremantle, Western Australia. Photograph by P. Morse.

The ligula is composed of erectile tissue in some species
(Thompson and Voight, 2003), and it is thought that this
structure aids in spermatophore placement and/or removal
of competing spermatophores (Voight, 1991; Cigliano, 1995).
Males are hypothesised to use the ligula to reach inside the
female’s mantle aperture and presumably locate one of the
two oviducts (Wells and Wells, 1972; Supplementary Video 1).
Spermatophores are then passed from the male’s terminal organ,
which is inside the mantle, through the funnel and into the
base of the hectocotylised arm (Wells and Wells, 1972). The
spermatophores are carried through a ventral groove in the
hectocotylus to the ligula using a wave of contractions along
the arm (Wodinsky, 2008). The male then uses the ligula to
place each spermatophore at one of the openings to the female’s
paired oviducts (Wells andWells, 1972). This process can happen
while the male is mounting the female’s mantle (e.g., Eledone
spp. in Orelli, 1962; and Hapalochlaena spp. in Tranter and
Augustine, 1973; Overath and Boletzky, 1974; Figure 9A), by the
male reaching over to the female with the hectocotylus from
a distance (e.g., O. digueti in Voight, 1991; and algae octopus,
Abdopus aculeatus in Huffard et al., 2008; Figure 9B), or in a beak
to beak mating position with the female at times enveloping the
male in her web (LPSO in Caldwell et al., 2015; and occasionally

FIGURE 9 | Examples are shown of both the mount (A) and reach (B)

copulation postures displayed by incirrate octopuses. (A) A male southern

blue-ringed octopus (Hapalochlaena maculosa) mounts the female’s mantle as

he uses his hectocotylised third right arm to transfer spermatophores to the

female’s distal oviducts. Photograph taken under laboratory conditions by P.

Morse; (B) Two male algae octopus (Abdopus aculeatus) simultaneously mate

with a female (centre) by reaching with their hectocotylised third right arms to

transfer spermatophores to her distal oviducts. Photograph taken by C.

Huffard at Lizard Island, Australia.
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O. oliveri in Ylitalo et al., 2019). Males of some species have
been observed to use both mounting and reach strategies (O.
cyanea in van Heukelem, 1966; and O. tetricus in Huffard and
Godfrey-Smith, 2010), and might use the mounting position
more often with females that are unreceptive (P. Morse personal
observations with O. tetricus).

Osmotic pressure from exposure to seawater (Hanson et al.,
1973), and possibly mechanical rupture from the ligula, break
open spermatophores and sperm is usually stored as spermatozoa
inside the spermathecae of female’s oviducal glands (Froesch and
Marthy, 1975). However, in several deep-water octopuses (e.g.,
Eledone spp., G. macrotyla and Vulcanoctopus hydothermalis)
spermatangia migrate to the female’s ovaries, where fertilisation
occurs (Orelli, 1962; Perez et al., 1990; González et al., 2008;
Guerra et al., 2012). In the pelagic environment, where the
likelihood of encountering a conspecific of the opposite sex may
be the relatively low, males in three genera of incirrate octopods,
Argonauta, Tremoctopus and Ocythoe, have hectocotyli that fill
with sperm, get broken off and left inside the female’s mantle
cavity (Laptikhovsky and Salman, 2003). Males of the cirrate
octopods do not have a ligula (Villanueva, 1992), and it has not
yet been established how copulation occurs.

Fecundity is highly variable among incirrate octopods, and
egg count estimates have ranged from approximately 30 in
Bathypolypus arcticus (O’Dor and Malacaster, 1983) up to
700,000 in O. cyanea and O. tetricus (van Heukelem, 1966; Joll,
1976). Fecundity within the cirrate octopods has so far only
been assessed for O. grimaldii, and the maximum fecundity
estimated in this species was 3,202 based on follicular sheath
and remaining egg counts (Boyle and Daly, 2000). Opisthoteuthis
spp. lay single eggs continuously throughout their adult life cycle,
and there is no indication of parental care within these octopods
(Villanueva, 1992; Daly et al., 1998; Boyle and Daly, 2000).Where
studied, all incirrate octopods display some form of extended egg
care (Joubin, 1933; Tranter and Augustine, 1973; Hanlon et al.,
1985; Voight and Grehan, 2000; Huffard and Hochberg, 2005;
Miske and Kirchhauser, 2006). Most female incirrate octopods
attach eggs to hard substrates, usually inside dens or shelters,
where they guard and clean the eggs until hatching (Overath
and Boletzky, 1974; Joll, 1976). This maternal behaviour has also
been reported in two species of deep-sea octopuses, Graneledone
sp. and Benthoctopus sp. during ROV observations (Voight and
Grehan, 2000). These authors suggest, that in an environment
with limited substrate, these octopuses aggregate around deep-
sea rock outcrops as they begin their brooding phase.

Several other octopod species have ways of carrying their
developing eggs with them. Amphioctopus spp., Macrotritopus
defilippi, H. maculosa andWonderpus photogenicus, which all live
in sand or silt habitats, carry their eggs in the ventral aboral web,
in line of water expelled from the funnel (Tranter and Augustine,
1973; Hanlon et al., 1985; Huffard and Hochberg, 2005; Miske
and Kirchhauser, 2006). The pelagic Boliataena microtyla carries
its eggs and reportedly also their larvae within their arms (Young,
1972). Tremoctopus spp. carry their eggs using a calcifiedmaterial
that they secrete from their web and attach to their dorsal arms
(Naef, 1928). Vitreledonella richardi carries its developing eggs
and possibly newly hatched larvae within the female’s mantle

cavity (Joubin, 1933). The argonauts (Incirrata: Argonautidae)
carry their eggs within their shell (Laptikhovsky and Salman,
2003). Ocythoe spp. have long winding oviducts, where embryos
develop as they pass through (Naef, 1928), making the species
of this genus the only known ovoviviparous cephalopods. Upon
hatching, octopod larvae are either benthic and resemble their
adult forms (e.g., members of the subfamily Bathypolypodinae,
Boletzky, 1987; and H. maculosa, Tranter and Augustine, 1973)
or are planktonic (e.g., many Octopus spp., Boletzky, 1987).

2.10. Reproductive Biology in
Vampyromorphida
The order Vampyromorphida fits phylogenetically within the
superorder Octopodiformes (Allcock et al., 2015), and is
represented by only a single extant species, V. infernalis (Young
et al., 1998; Figure 10). This midwater species occupies the
mesopelagic to bathypelagic zones (500–3,000m, Seibel et al.,
1997), and ROV footage has never captured them mating.
Therefore, knowledge of reproduction in V. infernalis is limited
to observations made from dead specimens. V. infernalis
males lack a hectocotylised appendage, and it is thought that
they use their funnel to transfer spermatophores into females’
spermathecae, which in this species are two sperm storage
pits located beneath females’ eyes (Pickford, 1949b). Single V.
infernalis eggs have been found drifting freely in open waters,
suggesting that females might deposit eggs singly into the water
column (Pickford, 1949a). Examination of oocyte development
and numbers in dead specimens indicate that female V. infernalis
have multiple spawning events throughout their lifetime, and
can have potential fecundity up to 20,711 (Hoving et al., 2015).
The paralarvae of V. infernalis resemble adults except for that
they have a set of oblique fins, which later get reabsorbed
as the adult fins grow in (Young and Vecchione, 1999). The
paralarvae can swim freely in deep water habitats, however it is
not known whether hatchlings have a free-drifting phase before

FIGURE 10 | An artist’s rendition of the vampire squid, Vampyroteuthis
infernalis (Octopodiformes: Vampyromorphida). This image was originally

designed by Carl Chun in 1910, and was downloaded from the public domain

via Wikimedia.
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metamorphosing into the described paralarval form (Young and
Vecchione, 1999).

3. PRE-COPULATORY BEHAVIOUR IN
COASTAL CEPHALOPODS

3.1. Female Choice and Male/Male
Competition
3.1.1. Loliginidae
Loliginid squid are among the most social of the cephalopods, in
that they hunt in shoals and all species mate in large spawning
aggregations (Hanlon, 1998). These spawning aggregations are
consistently observed to have male-biased OSRs (1.4:1 in Hanlon
et al., 2002; 1:1–3:1 in Jantzen andHavenhand, 2003), where there
is a high turnover ofmates for bothmales and females and intense
male/male aggression over females takes place (Hanlon et al.,
1997, 2002; Jantzen and Havenhand, 2003). Currently, females
of only one loliginid species are known to be selective of male
partners. Wada et al. (2005a) observed Sepioteuthis lessoniana in
the laboratory and reported that females rejected more than half
of copulations attempted by small subordinate males, but rather
chose to copulate in 95% of attempts by larger, more dominant
males. Hanlon et al. (1994) provided an excellent account of
different body patterning and postures employed by male Loligo
vulgaris within spawning assemblages. These authors suggested
that males of this species use courtship in the forms of both
chromatophore patterning and by displaying enlarged testes,
which are visible in this species through the mantle, to females.
However, additional field and laboratory observations of mating
behaviour in Loligo spp. have suggested that females are likely to
accept copulations with all attempting males (Hanlon et al., 2002;
Shaw and Sauer, 2004), which questions the need for courtship
behaviour. It is possible that, rather than for courtship, these body
patterns and testis displays are used for sex identification within
loliginid mating systems.

In both Loligo and Sepioteuthis, male/male aggression and
dominance hierarchy greatly influence copulatory success among
males (Hanlon et al., 1994, 1997, 2002; Jantzen and Havenhand,
2003; Wada et al., 2005a). Females of these genera usually
arrive at spawning grounds already with a paired consort
male, and lone large males that are already waiting at egg-
laying sites, frequently challenge paired males for consort status
(Hanlon et al., 1997, 2002; Jantzen and Havenhand, 2003).
These challenges take the form of intense visual signalling and
occasionally fin beating. Both Hanlon et al. (2002) and Jantzen
and Havenhand (2003) report high turnovers of consorts in
L. vulgaris and S. australis, respectively. Additionally, smaller
“sneaker” males attempt sneaker copulations with already paired
females, by quickly moving in between females and consort
males and attempting to mate with females in a head to head
position (Sauer et al., 1997; Hanlon et al., 2002). Sneaker
males time their attempts for when females are about to
deposit an egg capsule, and place spermatophores either onto
females’ arms or directly on egg capsules (Hanlon et al., 2002).
Jantzen and Havenhand (2003) observed some S. australis
sneaker males to mimic female body patterns in order to

obtain sneaker copulations without prompting aggression from
consort males.

Consort males in both genera place spermatophores
internally, close to the opening of females oviducts, however this
happens in a “male parallel” position in Loligo spp. (Hanlon,
1998), while S. australis are observed to most often do this in
an upturned position (Jantzen and Havenhand, 2003). Hanlon
et al. (2002) report that L. vulgaris females arrive at spawning
sites already having sperm in their receptacles from what are
thought to be from previous head to head copulations. It is
likely that females of both genera will copulate with males
opportunistically outside of spawning aggregations, and store
sperm until future egg depositions. Although females of most
loliginid species have not been observed to be selective about
which males they copulate with (Hanlon et al., 1997, 2002; van
Camp et al., 2004; cf. Wada et al., 2005a), the high frequency
of multiple copulations between egg laying intervals (Hanlon
et al., 2002; Jantzen and Havenhand, 2003), differential male
mating strategies with different methods of sperm placement
(Hanlon et al., 1997, 2002), females’ capacity to store sperm
and to possibly be selective about which sperm they use during
external fertilisation (Hanlon et al., 2002; Shaw and Sauer,
2004) all suggest that sperm competition, and conceivably
post-copulatory female choice could greatly influence male
reproductive success in loliginid mating systems (addressed in
section 4.2).

3.1.2. Sepiidae
Cuttlefish have highly promiscuous mating systems, and as
mentioned in the previous section females spawn multiple times
over one or two breeding seasons (Le Goff and Daguzan, 1991;
Gabr et al., 1998). Both Sepia apama and S. latimanus are
known to have spawning aggregations in which males congregate
around egg-laying sites in order to attempt copulations with
spawning females (up to six individuals in S. latimanus, Corner
andMoore, 1981; up to 1000s of individuals in S. apama,Hall and
Hanlon, 2002). Field observations at these spawning sites have
revealed detailed accounts of natural reproductive behaviour in
these species.

As with loliginid squid, the OSR observed at wild cuttlefish
spawning assemblages are always male biased (4:1–11:1 in S.
apama, Hall and Hanlon, 2002;∼3:1–4:1 in S. latimanus, Corner
and Moore, 1981), consistent with both field and aquarium
observations of females copulating with multiple males between
egg-laying intervals (aquarium observation of S. officinalis,
Adamo et al., 2000; and Sepiella japonica, Wada et al., 2006;
field observations of S. latimanus, Corner and Moore, 1981;
and S. apama, Hall and Hanlon, 2002) and intense male/male
aggression over females (Corner and Moore, 1981; Adamo et al.,
2000; Schnell et al., 2015). However in contrast to loliginid
squid, female cuttlefish are reported to frequently reject male
copulation attempts (Corner and Moore, 1981; Adamo et al.,
2000; Hall and Hanlon, 2002; Schnell et al., 2015). Notably, wild
S. apama females have been observed to reject 70% of male
copulation attempts and only 3% of all copulations were forced
(Hall and Hanlon, 2002), emphasising that pre-copulatory female
discretion of males plays an important role in this mating system.
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Within S. apama spawning sites, larger males typically
compete with each other, using moderate physical contact and
occasional biting, to gain consort status with females, to which
they then transfer multiple spermatophores andmate guard (Hall
and Hanlon, 2002). Meanwhile, smaller, lone males either try to
locate unguarded females or attempt sneaker copulations with
already-paired females (Norman et al., 1999; Hall and Hanlon,
2002). Sneaker copulations in cuttlefish mating systems can be
defined in three ways: (i) the sneaker male either overtly follows a
guarded female and copulates with her while the consort male is
distracted; (ii) the sneaker male can copulate with the guarded
female while concealed from the consort male’s view, such as
by hiding under rocks where females lay eggs; or (iii) similar
to S. australis, sneaker males can mimic female chromatophore
patterning while approaching and mating with the female, to
avoid aggression from the consort males (Norman et al., 1999;
Hall and Hanlon, 2002). Male S. plangon, which do not spawn
in aggregations, have also been observed to display female
patterning on one half of the body that is exposed to a nearby
male, while showing typical male patterning to a female with their
other half of the body (Brown et al., 2012).

Field observations of S. apama have indicated that females
can accept or reject copulations with males regardless of size or
mating strategy. Hall and Hanlon (2002) reported that females
often rejected large males to later accept copulations with
relatively smaller males. Consort males gain more copulations
with the females they guard (Hall and Hanlon, 2002; Naud et al.,
2004), and this is intuitively an advantageous strategy as males
compete intensely for this role. However, small males might still
achieve a competitive copulatory success overall, by investing
less time per female and thereby being able to copulate with
more females. A variety of chromatophore and postural displays
are very common during pre-copulatory behaviour in cuttlefish
(Corner and Moore, 1981; Boal, 1997; Norman et al., 1999;
Adamo et al., 2000; Hall and Hanlon, 2002; Brown et al., 2012;
Schnell et al., 2015; Kubodera et al., 2018). In some cases these
displays have been suggested as means of courtship (Corner and
Moore, 1981; Kubodera et al., 2018). However, there is no direct
evidence of females preferentially mating with particular males
that display different intensities of these displays, leading some
authors to suggest that visual displays, observed during cuttlefish
mating interactions, might be used for signalling agonistic intent
and in sex recognition (Boal, 1997; Hall and Hanlon, 2002;
Schnell et al., 2015).

During laboratory choice trials, S. officinalis females also
showed no preference for male size or social hierarchy. However,
females interestingly spent more time with males that had
copulated more recently (Boal, 1997). This finding probably
suggests one of two things: either (a) That females show
preference for a male trait or behaviour based on chemical or
visual cues that have not yet been measured (see section 3.3); or
(b) That females can discernmales’ mating history, possibly based
on chemical cues, and are attracted to males that have already
established a high copulatory success. If the latter case applies,
then there could be a selective advantage for females to prefer
males with higher copulatory success, because this is likely to
result in them having sons which also have higher copulatory

success than competing males. In this way a female preference
for male promiscuity could be reinforced through achieving
more grandchildren, and this would lead to a Fisherian run-away
process (Fisher, 1930).

Overall, the fact that there is intense male competition for
females during spawning and that female cuttlefish frequently
reject male copulation attempts, presumably based on cues other
than size or hierarchy, support that female choice plays an
important role in the differential reproductive success of male
cuttlefish. However, it is still not certain what criteria females
might use to discern between potential mates. Also, the details
of female sperm storage, external fertilisation and vigilant mate
guarding by consort males leading up to egg deposition all
suggest that the timing and order of sperm placement are likely
to influence the resulting fertilisation patterns (see section 4.5).

3.1.3. Octopodidae
Octopuses are different from cuttlefish and squid in that they
are mostly solitary animals, with little to no social interactions
outside of agonistic disputes over den space or mates (Cigliano,
1993; Huffard et al., 2008), cannibalism (Hanlon and Forsythe,
2008) and predominantly opportunistic copulations (Young,
1962; Anderson et al., 2003; cf. Huffard et al., 2008). Within
mating systems that have been observed in the field, OSR is
generally more balanced than is common in decapods (1:1–3.5:1
in Abdopus aculeatus, Huffard, 2005; 0.34:1–1.8:1 in Octopus
hubbsorum, Lopez-Uriarte and Rios-Jara, 2009). This might
suggest that pre-copulatory choice could be important for both
male and female mate selection within this family, and is
consistent with observations that females of at least three species
can initiate copulations with males (O. cyanea, Wells and Wells,
1972; Hapalochlaena lunulata, Cheng and Caldwell, 2000; and
H. maculosa, Morse et al., 2015). As mentioned previously, all
members of the Octopodidae family are terminal spawners with
the exceptions of O. chierchiae (Rodaniche, 1984) and LPSO
(Caldwell et al., 2015).

There is limited evidence for sex recognition and courtship
in octopuses. Cheng and Caldwell (2000) observed H. lunulata
males to attempt copulations with other males as often as
with females, suggesting no form of sex recognition prior
to copulation in this species. However, O. bimaculoides are
able to discriminate between different sexes of conspecifics
based on odour cues (Walderon et al., 2011). It has been
suggested that some octopuses use behavioural cues for sex
recognition and possibly courtship. Packard (1961) suggested
that male O. vulgaris might display their proximal suckers,
which are sexually dimorphic and bigger on males in this
species, to signal their sex and obtain copulations with females.
However, in a follow-up study, males of this species were not
observed to display their enlarged suckers to females during
laboratory copulations, and therefore there would have been no
opportunity for females to assess this trait (Wells and Wells,
1972). Voight (1991) has suggested that the ligula might be
used in courtship and influential to male copulatory success.
Ligulae have species-specific morphology among octopuses, and
Voight (1991) reported male O. digueti to display their ligulae to
females and make contact with females using their ligulae prior
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to copulation. However, this study stated that no evidence of true
courtship was found. A tactile phase leading up to copulation has
also been noted within in pairs of O. vulgaris, O. cyanea and O.
tetricus during laboratory observations (Wells and Wells, 1972;
Morse, 2008), and it is possible that this behaviour enables female
assessment of males’ ligulae. Both A. aculeatus and Amphioctopus
marginatus males have been observed in the field to display
different chromatophore patterns to females before copulation
(Huffard, 2007; Huffard and Godfrey-Smith, 2010), and in the
case of A. aculeatus, males approached conspecifics differently
depending on the colour pattern displayed by the approached
individual. In addition to chromatophore displays, A. aculeatus
pairs have been observed to synchronously perform a mantle
bounce behaviour and females of this species have been observed
to change postures to what is called a “DACT display” prior to
copulation (Huffard, 2007).

It is possible that some of these behaviours are means of
sex and/or species recognition but it is not clear if they are
methods of courtship. Females of at least five species of octopus
are known to frequently resist and/or reject male copulation
attempts in laboratory conditions (O. cyanea, Wells and Wells,
1972; O. digueti, Voight, 1991; O. tetricus, Morse, 2008; O.
bimaculoides Mohanty et al., 2014; and H. maculosa Morse
et al., 2015). However, no investigations have yet successfully
compared female receptivity to varying forms or intensities of
the above traits and behaviours. Additionally, most observations
of octopus reproductive behaviour have taken place in the
laboratory, where artificial measures of OSR, and confined spaces
that limit females’ ability to reject copulations, make it difficult
to accurately assess potential female preferences and/or which
males will achieve higher copulatory success within natural
mating systems.

Octopuses known to aggregate in the wild share certain
behavioural characteristics in common. A. aculeatus (Huffard
et al., 2008), LPSO (Caldwell et al., 2015) and O. tetricus (Scheel
et al., 2016) show specific chomatophore and postural displays to
conspecifics, and males and females occupy adjacent dens which
facilitates repeated copulations among pairs. Of these three
species, male A. aculeatus also exhibit high levels of aggression
to compete for mate guarding status, denning proximity,
and repeated copulations with larger females (Huffard, 2007;
Huffard et al., 2008, 2010). Like in loliginid squids, both male
and female A. aculeatus engaged in opportunistic copulations
while foraging away from their dens, and smaller males
attempted to gain sneaker copulations with guarded females by
camouflaging themselves or hiding behind rocks to not instigate
aggression from the guarding males (Huffard et al., 2008).
In this species, females were observed to accept copulations
with nearly all males. However, due to competition among
males, large mate guarding males obtained higher copulation
rates within the studied populations (Huffard et al., 2008).
Like in loliginid squid and cuttlefish, the high levels of female
promiscuity, sperm storage and mate guarding all suggest, that
in addition to differential copulatory rates, sperm competition
most likely plays an influential role in male reproductive
success within shallow-water octopus mating systems
(see section 4.6).

3.2. Differential Copulatory Success in
Females
Currently, male preference of females and differential female
copulatory rates have not been extensively noted within loliginid
squid or cuttlefish taxa. One study reported that younger S.
australis females laid more eggs than older females during 1
month of observations in aquaria (van Camp et al., 2005). These
authors have suggested that this might signify male preference in
this species toward younger females. However, females’ capacity
for sperm storage and intermittent egg laying among loliginid
squid (Shaw and Sauer, 2004; Buresch et al., 2009) means that
many of the females might not have finished laying eggs during
the duration of this study, and so this limits direct evidence to
support the theory of male choice in this species. Among the
cuttlefish, male S. apama have been observed to preferentially
attempt copulations with unfamiliar females (Schnell et al., 2015).
However, this observation may have been indicative of the males
withholding spermatophores from females with which they had
already mated, and might not necessarily result in differential
copulatory rates among females within this mating system.

There are however some indications ofmale choice for females
in octopuses. Field observations of A. aculeatus have observed
males to preferentially mate guard and copulate more with larger
females, which are likely to have a higher egg-laying capacity
than smaller females (Huffard et al., 2008). Males of this species
were also observed to have longer bouts of male/male aggression
over larger females, however were more likely to engage in
competitive bouts over medium sized females which are less
likely to soon be usurped by other larger males (Huffard et al.,
2010). Similar observations have beenmade ofO. bimaculoides in
the laboratory, where higher levels of male-male aggression were
reported in the presence of immature females (Mohanty et al.,
2014). These authors have hypothesised that a first-male sperm
precedence in fertilisation patterns could lead to a greater male
investment toward mating with smaller or younger females in
some Octopus mating systems. However, this hypothesis has yet
to be verified through analyses of brood paternities.

Observations of male preference and differential female
copulatory success in female octopuses, but not necessarily in
the decapods are likely related to differences in OSR among
these mating systems (Table 2). In loliginid squid and cuttlefish
where OSR is more often to be heavily male biased (Hall and
Hanlon, 2002; Jantzen and Havenhand, 2003), it is more likely
that males might attempt copulations with every possible female
they have access to. In shallow-water octopuses where the OSR
is more balanced (Huffard, 2005; Lopez-Uriarte and Rios-Jara,
2009), male selection of females might be an important factor to
female reproductive success.

3.3. The Roles of Signalling and Sensory
Ecology in Precopulatory Mate Choice
3.3.1. Visual Signalling
Cephalopods possess a unique system of neurally controlled
chromatophores, leucophores, iridiophores and dermal muscles
that allow them to rapidly change the colour, tone, pattern and
texture of their skin (Packard and Hochberg, 1977; Mäthger
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and Hanlon, 2007). This ability enables cephalopods to employ
impressive crypsis behaviours for defence against potential
predators (Huffard, 2006; Krajewski et al., 2009; Staudinger et al.,
2011). Additionally, several studies have identified cephalopods
to use these pattern-changing abilities as a means of intra-
specific signalling (Hanlon et al., 1994; Boal et al., 2004;
Palmer et al., 2006). As mentioned above, visual displays using
various chromatophore patterns have been observed in spawning
assemblages of loliginid squid and cuttlefish, as well as in pre-
copulatory behaviours of octopuses (Corner and Moore, 1981;
Hanlon et al., 1994; Hall and Hanlon, 2002; Huffard, 2007;
Huffard and Godfrey-Smith, 2010; Schnell et al., 2015). It is so
far postulated that visual signals might aid in sex and species
recognition, and for displaying agonistic intent between con-
specifics (Boal, 2006; Scheel et al., 2016). However, no studies so
far have shown a conclusive response of opposite sex receivers
to these signals, which leaves the role of visual signalling in
courtship unclear.

An important aspect of visual signalling in cephalopods is that
most studied taxa are not able to discriminate between different
wavelengths of light like in human colour vision (Messenger
et al., 1973; Mäthger et al., 2009), but rather are sensitive to
the angles in which light is travelling (Moody and Parriss,
1961; Saidel et al., 1983; Shashar et al., 1996). This is termed
polarisation-sensitivity, and is common amongst invertebrates
and has also been reported in some birds and fish (Cronin et al.,
2003). Polarisation-sensitivity is considered especially useful in
deep-water environments where the wavelength spectrum of
light decreases with depth but properties of polarised light
remain intact (Shashar and Cronin, 1996). The ability to
discriminate polarised light properties likely helps cephalopods
with both navigation and in locating crustacean prey-items that
have highly polarised exoskeletons (Shashar and Cronin, 1996).
However, cephalopods are also able to change the polarised
patterns reflected from their skin using their chromatophores
and iridiophores (Shashar et al., 1996; Boal et al., 2004). Because
cephalopods use skin patterning for visual signalling (Palmer
et al., 2006), are polarisation-sensitive (Moody and Parriss, 1961)
and have the ability to alter the polarised patterns reflected
from their skin (Shashar et al., 1996), this presents the likely
possibility that that cephalopods might have the capacity to use
polarised signalling as a means of intra-specific communication,
imperceptible to the human eye (Mäthger et al., 2009).

Evidence for use of polarised signalling as a communication
channel in cephalopods is still very limited. In the laboratory,
S. officinalis responded differently to their own mirror image
depending on whether or not the mirror distorted the reflectance
of polarised light (Shashar et al., 1996), and female S. officinalis
have been observed to display more polarised patterns than
males (Boal et al., 2004). However, neither the quantity nor
the nature of these displays differed in response to the number
or sex of conspecifics viewed by the displaying female (Boal
et al., 2004), making it unclear what type of information
might be sent or received through polarised signals and what
benefit these signals might have for the signaler or receiver. At
present, no studies have yet incorporated imaging polarimetry
within a context of investigating mate choice or potential
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courtship. As visual signalling has been observed as an important
component of pre-copulatory behaviour in studied cephalopods,
the further integration of imaging polarimetry within field or
laboratory mate choice studies might be an interesting topic to
explore and could reveal substantially more information about
cephalopod communication.

3.3.2. Chemoreception
Cuttlefish, squid, and octopus can sense chemical stimuli both
from a distance using olfactory organs close to the eyes, and upon
contact with objects using chemoreceptor cells located on the
lips and suckers (Budelmann, 1996). Distance chemoreception
between conspecifics has not yet been investigated within the
Loliginidae, however at least some species have the capacity to
obtain information from chemical stimuli in the water (Lucero
et al., 1992). Tactile chemoreception of conspecific eggs has
been investigated within D. pealei, and it is suggested that a
pheromone present in egg capsules of this species triggers males
to engage in male/male agonistic behaviour to compete over
females (Buresch et al., 2003; King et al., 2003). This mechanism
may be partially responsible for the synchronised spawning
assemblages within loliginid taxa (Buresch et al., 2003; King
et al., 2003). Distance chemoreception has been investigated in
slightly more detail among the cuttlefish. Sepia officinalis increase
ventilation rates when exposed to seawater containing odour
from conspecifics, suggesting that this species can detect other
members of its species based on chemical stimuli from a distance
(Boal and Marsh, 1998). However, S. officinalis does not display
any change in approach behaviour based solely on odours from
conspecifics of different sex or mating history (Boal and Golden,
1999). Therefore, it is currently not supported that distance
chemoreception would play a role in sex identification or mate
choice in this species. However, it has not yet been assessed
whether chemical cues might influence female receptivity to
approaching males.

Distance chemoreception could play a role in the mating
system of at least two octopus species. Laboratory trials with O.
bimaculoides revealed that this species can detect conspecifics
based on odour cues, and that ventilation rates of individuals
were different depending on the sex of conspecifics that were
detected (Walderon et al., 2011). Similar studies withH.maculosa
found that the change in female ventilation rates in response
to male odours correlated with agonistic behaviour and the
probability that the female would reject a copulation attempt
from the detected male (Morse et al., 2017). Therefore, distance
chemoreception might enable some octopuses to determine the
sex of conspecifics, and possibly to locate and/or discriminate
between potential mates. Octopuses also possess many more
chemoreceptors per sucker than decapods (10,000 cells per
sucker in octopuses compared to∼100 cells in cuttlefish suckers,
Budelmann, 1996). This is likely related to the way in which
octopuses reach into holes and crevices while foraging for
food (Budelmann, 1996). However, a neurological study in O.
vulgaris has also identified that the olfactory lobes, responsible
for processing the sensory of chemical stimuli, are integrated
with parts of the brain that regulate signal molecules involved in
reproductive behaviours as well as feeding (Polese et al., 2015).

As mentioned above, a tactile phase prior to copulation has
been observed in O. vulgaris and O. cyanea (Wells and Wells,
1972), O. digueti (Voight, 1991) and O. tetricus (Morse, 2008).
It is feasible that because octopuses have well-developed tactile
chemoreception, that this could be used by some species to
identify species, sex or possibly relatedness and/or quality or
potential mates. As yet, the role of tactile chemoreception in
mate choice has not been investigated within any cephalopod
mating system.

4. POST-COPULATORY SEXUAL
SELECTION IN COASTAL CEPHALOPODS

4.1. The Role of Sperm Competition in
Sexual Selection
The aspects of female promiscuity and sperm storage strongly
suggest that post-copulatory processes take an influential role
in sexual selection within cephalopod mating systems. The
previous section addressed how different traits or behaviours
can lead to differential copulatory rates within species. However,
reproductive success is based on the quantity of alleles passed
on to future generations, and in highly promiscuous mating
systems where females store sperm from multiple males in
between egg laying intervals, copulatory rates alone will not
necessarily determine the reproductive success of individuals.
The differential fertilisation success between males that have
copulated with the same female is referred to as sperm
competition (Parker, 1970). Sperm competition can impact the
relative reproductive success of males if certain morphological
traits or behaviours can help some males to achieve increased
fertilisation success (Parker, 1970). Sperm competition can also
affect the reproductive success of females if fertilisation can be
biased toward males that are more genetically compatible (Zeh
and Zeh, 1996, 1997; Tregenza and Wedell, 2000; Mays and Hill,
2004), or if whichever trait or behaviour used by males to achieve
higher fertilisation success can be inherited by their sons (Yasui,
1997; Kokko et al., 2003).

A multitude of factors can affect sperm competition in
animal mating systems. Several of these include: The numbers
of males contributing sperm to a female (Parker, 1990), the
relative contributions of sperm provided by each male (Parker,
1990), removal of previous males’ sperm by subsequent male
partners (Birkhead and Hunter, 1990), preferential locations
for sperm placement (Naud et al., 2005), differential sperm
motility (Birkhead et al., 1999), cryptic female choice (CFC)
of sperm (Eberhard, 1996), and differential longevity of sperm
and/or stratification of sperm within sperm storage receptacles
that can lead to differences in fertilisation success based on
the order of copulation by competing males (Birkhead and
Hunter, 1990; Naud and Havenhand, 2006; Squires et al., 2015;
Hirohashi et al., 2016). The current understanding of how
sperm competition might impact cephalopod mating systems
is still in its infancy. However all of the above mechanisms
could potentially influence the relative fertilisation success of
male cephalopods (Table 3). The following will summarise the
current knowledge of sperm competition in cephalopods based
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TABLE 3 | Sperm competitive behaviours and evidence for cryptic female choice among five studied families of Cephalopoda are summarised below.

Family Sperm

loading

Sperm

removal

Differential

sperm

placement

Dimorphic

sperm

Evidence for separation of sperm

in female storage organ(s)

Evidence for cryptic female

choice

Known Predictors of paternity

Loliginidae Yes[1,2] Not reported Yes[1,2] Yes[12] Distinct switch in embryo paternity

along L. reynaidiii egg strings[13];

mating plugs in D. plei[14]

Female D. pealei can eject unwanted

spermatophores, and possibly

influence paternity by delaying egg

deposition[2]

Higher copulatory rates[1,2]; internal

spermatophore placement[1]; CFC[2];

and interval between copulation and

egg deposition[2]

Idiosepiidae Yes[3] Not reported Not reported Not reported Not reported Female I. paradoxus observed using

their buccal mass to remove recently

transferred spermatophores[3]

Not yet investigated. However, mating

chronology[3] and duration[19] are

suggested to influence paternity

Sepiolidae Not

reported

Suggested[7] Not reported Not reported Suggested due to invaginations of the

spermatheca[8]
Hypothesised[16] Last male paternity bias[16]

Sepiidae Yes[4,5] Yes[8,4,9] Yes[11] Not reported Different sperm compositions

observed in paired receptacles of S.
apama. Females also have access to

separate spermatangia externally

placed by males[11]

Preferential sperm use from externally

placed spermatangia in S. apama[2]
External placement of

spermatophores[11]; CFC[11]; and

suggestion of bias to recently mated

males[20]

Octopodidae Hypothesised[6] Suggested[10] Not reported Not reported Evidence suggests that sperm is

mixed in the oviduccal glands[15]
Female O. vulgaris can control release

of peptides that influence chemotaxis

of sperm[17]; possible removal of

unwanted spermatophores in O.
oliveri[18]

Paternity has been anecdotally

observed to correlate with copulation

duration[21]; mating

chronology[15,18]; terminating

member of copulation[15]; male

size[18] and male relatedness to the

female[15]

1(Iwata et al., 2005); 2(Buresch et al., 2009); 3(Sato et al., 2016); 4(Hall and Hanlon, 2002); 5(Wada et al., 2006); 6 (Morse et al., 2015); 9(Squires et al., 2013); 8(Hanlon et al., 1999); 9(Wada et al., 2010); 10(Cigliano, 1995); 11(Naud

et al., 2005); 12(Iwata et al., 2018); 13(Naud et al., 2016); 14 (Saad et al., 2018); 15(Morse et al., 2018a); 16(Squires et al., 2015); 17(De Lisa et al., 2013); 18(Ylitalo et al., 2019); 19(Sato et al., 2016); 20(Hanlon et al., 2005); 21(Morse,

2008). Taxonomic families and the sequence they are presented in are based on phylogenies described in Allcock et al. (2015).
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on observations of sperm loading, sperm removal, female choice
of sperm, sperm morphology and relative paternity patterns.

4.2. Sperm Competition in Loliginidae
Sperm competition has been investigated relatively more
thoroughly in loliginid squid than in other cephalopod taxa.
The current literature suggests that males employ sperm loading
(Hanlon et al., 1997, 2002; Jantzen and Havenhand, 2003), but
that also sperm placement (Iwata et al., 2005), the interval
between copulation and egg deposition (Buresch et al., 2009;
Hirohashi et al., 2016), spermatophore morphology (Iwata et al.,
2018) and possibly CFC of stored sperm (Shaw and Sauer,
2004; Buresch et al., 2009) can all influence fertilisation patterns.
Loliginid males compete for consort status with females that they
copulate with repetitively and guard from rival males (Hanlon
et al., 1997, 2002; Jantzen and Havenhand, 2003). This suggests
that sperm loading may be important for male fertilisation
success. Sperm loading has been confirmed in laboratory
paternity experiments with Heterololigo bleekeri (Iwata et al.,
2005) and Doryteuthis pealei (Buresch et al., 2009) where
higher copulatory rates, and presumably more spermatophores
transferred, resulted in higher male fertilisation success. These
studies also found that paternities were biased to males that
copulated with females in a parallel position that enabled internal
placement of spermatophores (Iwata et al., 2005; Buresch et al.,
2009), however that sperm from sneaker males, placed in the
seminal receptacles, had greater longevity (Hirohashi et al., 2016).

A recent investigation of spermatophore morphology in the
chokka squid, Loligo reynaudii revealed that large and small
males, which typically employ consort and sneaker mating
strategies, respectively, have distinct types of spermatophores
specialised for their mating strategy and method of sperm
transfer (Iwata et al., 2018). However, genotyping of L.
reynaudii egg strings obtained from wild spawning assemblages
have confirmed that paternity was typically biased to the
male observed guarding the female at the time of collection
(Naud et al., 2016). Interestingly, microscopy analyses of female
seminal receptacles in D. plei have revealed that everted
spermatophores can act as a mating plug, limiting females’
ability to access stored sperm from competing males the
female had previously mated with for up to 48 h (Saad et al.,
2018). These authors hypothesised that this could be a sperm
competitive strategy, advantageous for sneaker males that can
intercept females between copulations with consort males and
egg deposition. Overall, paternity bias to higher copulatory rates,
the parallel mating strategy andmate guarding males suggest that
consort males will generally achieve higher fertilisation success
within the mating systems of loliginid squids, and this further
explains both why males compete vigorously for this mating
strategy (Hanlon et al., 1997, 2002; Jantzen andHavenhand, 2003)
and why sneaker males have to metabolically invest so heavily
into producing competitive sperm (Hirohashi et al., 2016; Iwata
et al., 2018; Saad et al., 2018).

Female loliginid squid may also have the capacity to influence
the paternities of their egg capsules post-copulation. A female
D. pealei has been observed to eject spermatophores from her
mantle after a forced copulation (Buresch et al., 2009), and

these authors also identified that the interval between copulation
and egg deposition greatly affects egg capsule paternity. When
females of this species laid egg capsules within 40min of
copulation, the egg capsules were fertilised mostly by older sperm
frompreviousmale partners. However, after 140min, paternity of
egg capsules was biased to themost recent male to have copulated
with the female. Additionally, Naud et al. (2016) observed
a distinct switch in embryo paternity along L. reynaudii egg
strings, suggesting that females of this species might have been
using different males’ sperm for egg fertilisation in non-random
patterns. If females can reject spermatophores and presumably
can choose when to lay egg capsules (Buresch et al., 2009),
then these observations combined with females’ capacity to be
selective of stored sperm use during external fertilisation (Shaw
and Sauer, 2004; Naud et al., 2016), suggest that female loliginids
might be capable of controlling which males’ sperm fertilise their
egg capsules.

4.3. Sperm Competition in Idiosepiidae
Owing to their ease of husbandry in captivity (Nishiguchi
et al., 2014) there is a currently growing literature investigating
the mating system of idiosepiids. Relatively recent laboratory
investigations have revealed novel insights to processes of
post-copulatory mate choice within the Japanese pygmy squid
(Idiosepius paradoxus), suggesting that both sperm competition
and CFC might be prevalent within the mating system of
this taxon (Sato et al., 2013, 2016). These studies indicated
that both larger males and males who copulated for longer
with females, externally transferred more spermatophores to
the base of females’ arms during mating (Sato et al., 2016).
However, females of this species were observed to use their
buccal masses to remove spermatophores from larger males,
favouring the retention of spermatophores by males who
copulated with them for longer durations (Sato et al., 2016).
Additionally, these females were more likely to be selective
of transferred spermatophores during subsequent copulations,
suggesting possible female post-copulatory trade-up behaviour
(see Pitcher et al., 2003) in this species (Sato et al., 2013). Such
findings emphasise that both mating chronology and mating
duration may be of critical importance to paternal success within
this idiosepiid, but interestingly analysis of brood paternity in I.
paradoxus did not reveal any fertilisation bias to recently mated
males (Sato et al., 2016).

4.4. Sperm Competition in Sepiolidae
Similar to the idiosepiids, the amenability of some sepiolids
to the laboratory environment has prompted recent and novel
investigations of sperm competition within this family. Squires
et al. (2013) observed that male Euprymna tasmanica repeatedly
contract their mantle “pumping” while copulating with females.
Interestingly, this study found that the frequency of this male
pumping behaviour increased with number of copulations the
female recently had, and these authors hypothesised that this
pumping behaviour might indicate male removal of accessory
seminal fluids left behind by competing males. This correlation
of pumping behaviour and female mating history implies that
male E. tasmanicawere able to assess the amount of sperm stored
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by females. However, in this study the males also increased the
frequency of their pumps even when they had recently mated
with the same female, suggesting that they might not be able to
recognise their mates or whether the stored sperm was their own
(Squires et al., 2013).

Analysis of brood paternities in E. tasmanica revealed that
multiple paternity is very common (Squires et al., 2014) but
that paternity is frequently biased to the last males to mate with
the female (Squires et al., 2015). The spermatheca of female
E. tasmanica, the site of sperm storage, has been described as
“invaginated” and “highly pocketed” (Norman and Lu, 1997;
Squires et al., 2013), suggesting that females may be able to
partition different males’ sperm and use it selectively to fertilise
their eggs through CFC. Despite indications of a last-male sperm
bias and the potential capacity of females to partitionmale sperm,
evidence of female choice either in the forms of pre-copulatory
trade-up behaviour or CFC have not yet been observed in
this family.

4.5. Sperm Competition in Sepiidae
Sperm competition behaviours have been relatively well-
documented within cuttlefish taxa during observations in both
the laboratory and field. Cuttlefish males perform sperm removal
(Hanlon et al., 1999; Wada et al., 2005b, 2006, 2010), some degree
of sperm loading (Hall and Hanlon, 2002; Wada et al., 2006)
and non-random patterns of fertilisation have been observed
within females’ egg masses (Naud et al., 2005). As mentioned
in section 3.1.2, cuttlefish males compete for consort status with
females whom they guard from rival males and occasionally pass
more than one spermatophore (Corner andMoore, 1981; Adamo
et al., 2000; Hall and Hanlon, 2002). Copulating multiple times
with the same female and mate guarding suggests that relative
sperm contributions are likely important for fertilisation success
within these mating systems. Additionally, Hanlon et al. (1999)
observed three stages of copulation in Sepia officinalis. The first
stage, which is the longest, is spent using the siphon to flush
water over females’ buccal areas, likely attempting to remove
sperm from either the seminal receptacles or from spermatangia
left on females’ exterior. The second stage consisted of males
transferring new spermatophores to females’ buccal membranes,
and the third stage was spent breaking open the newly placed
spermatophores and ensuring spermatangia attachment.

Male sperm removal has also been indicated in S. apama
(Hall and Hanlon, 2002; Naud et al., 2004). However, Naud
et al. (2005) found that water flushing did not reduce the counts
of spermatangia found on females’ buccal areas in S. apama,
suggesting that males of at least this species possibly aim to
remove sperm specifically from within seminal receptacles. Male
S. lycidas use arm III to scrape old sperm masses from females’
buccal areas, and spend more time doing this if they are not
the last male to have copulated with the female (Wada et al.,
2010). This same study identified that larger males of this species
will also spend more time than smaller males removing sperm.
These authors suggest that smaller males might choose to pass
spermatophores sooner if copulation might be likely to get
interrupted by a larger male. Sepiella japonica has also been
observed to briefly remove previous males’ spermatangia using

arm IV (Wada et al., 2006). However, these authors suggest
that male Sepiella spp. might invest more time toward sperm
loading than removal compared to Sepia spp. In this study, S.
japonica males were observed to display intense mate guarding
and in most cases would transfer more than one spermatophore
to guarded females.

Currently, cuttlefish fertilisation patterns have been
investigated only within wild populations of S. apama.
Naud et al. (2004) found that males of all sizes and mating
strategies had equal fertilisation success among eggs sampled
from spawning areas. However, paternity comparisons within
individual females’ egg clutches were biased to spermatangia left
on females’ mantles and buccal areas in Naud et al. (2005). This
suggests that it might be advantageous for males to copulate
with females shortly before egg deposition and to place sperm
externally on females rather that in the seminal receptacle. This
pattern is supported in a study by Hanlon et al. (2005), in which
a female-mimicking sneaker male that achieved a copulation
with a female directly prior to egg deposition, was observed
to fertilise that egg. If there is a last-male paternity bias to egg
fertilisation in S. apama this would emphasise the importance
of male sperm removal behaviour, and the monopolisation
of access to females by consort males near and at egg-laying
sites (Hall and Hanlon, 2002).

It is also noteworthy that Naud and Havenhand (2006)
discovered that sperm, stored within intact spermatophores,
can have longevities up to 2 months. As Sepia spp. are
intermittent terminal spawners (Rocha et al., 2001), this
suggests that females might be able to use stored sperm for
future egg fertilisations, and might possibly do so outside
of spawning aggregations. Future studies investigating which
males’ sperm are stored in seminal receptacles versus placed
externally as spermatangia might yield further information about
sperm competition in this species. Also, the combination of
female pre-copulatory choice of males (section 3.1.2) with the
suggestion of a last-male paternity bias, presents a question
of whether females might assess potential male partners
differently based on the types of males they have recently
copulated with. Future studies observing female receptivity
to sequential males, either in the field or laboratory, might
elucidate whether female trade-up behaviour occurs in cuttlefish
mating systems.

4.6. Sperm Competition in Octopodidae
Themechanisms of sperm competition are much less understood
within octopus mating systems. It is probable that males of
several species perform sperm loading and sperm removal.
However, this has only been formally addressed within one
laboratory study (Cigliano, 1995), and currently very few
controlled paternity experiments have allowed fertilisation
success to be compared among different males (cf. Morse,
2008; Morse et al., 2018a; Ylitalo et al., 2019). Copulation
durations are generally much longer in octopuses than in
decapods (Joll, 1976; Morse et al., 2018a). Copulations have
been observed to last more than an hour in most studied
taxa, with the longest copulation being reported as 360min
in laboratory observations of Octopus tetricus (Joll, 1976).
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Field observations of Abdopus aculeatus also report males to
guard and copulate repeatedly with certain females (Huffard
et al., 2008), and laboratory studies with Hapalochlaena
maculosa have observed males of this species to mate for
longer with both unfamiliar females and females that had
recently mated with another competing male (Morse et al.,
2015). Prolonged copulation durations, mate guarding and
multiple copulations with the same females suggest that sperm
loading might be an important factor for male fertilisation
success. However, it is currently not known whether longer
copulation times allow males to pass more spermatophores
to females, and/or also might allow males to remove more
sperm from previous males, or whether increased copulation
time might also be a form of mate guarding whereby the
males could be monopolising female opportunities to mate with
competing males.

One study, assessing sperm transfer in an unidentified pygmy
octopus, found that this species had three phases of copulation,
similar to sepiids (Cigliano, 1995). This author suggested that
males might use their ligulae to remove competing sperm from
females’ oviducts during an initial phase of copulation, prior
to transferring new spermatophores. Males were also observed
to spend more time with the ligula inserted in the female’s
mantle cavity prior to spermatophore transfer if the female had
recently copulated with a different male. However, males spent
less time doing this if they were the last males to copulate with
the same female. Males could apparently assess females’ recent
mating history based on the presence or absence of sperm in
either the distal portion of females’ oviducts or the oviducal
glands (Cigliano, 1995). However, it is impressive that males
were able to determine if that sperm was their own, as the
mechanism enabling them to do this is currently unknown and
evidence for mate recognition among octopuses is very limited
(Boal, 2006; but cf. possible cases in Caldwell et al., 2015; and
Morse et al., 2015).

Four molecular studies within the Octopodidae have so
far confirmed multiple paternities within egg clutches of O.
tetricus (Morse, 2008), O. vulgaris (Quinteiro et al., 2011), H.
maculosa (Morse et al., 2018a) and O. oliveri (Ylitalo et al.,
2019). It has so far been postulated that female octopuses might
benefit from polyandry due to increased genetic diversity of
their offspring (Quinteiro et al., 2011) and the likelihood of
reducing fertilisation to related males (Morse et al., 2018a).
However, these hypotheses have not yet been empirically tested.
As copulation durations are markedly longer in octopuses
than decapods (Joll, 1976; Morse et al., 2018a), it remains
an interesting question whether female octopuses might be
able to influence male fertilisation success by controlling the
duration of copulations with different males. Studies of two
octopus species have observed females to consistently be the
terminating member of copulations, suggesting that they might
have control over the length of their copulation time (O.
digueti, Voight, 1991; and H. lunulata, Cheng and Caldwell,
2000). Additionally, a combination of male mating order and
whether or not a copulation was ended by the female had a
strong effect on paternal success in H. maculosa (Morse et al.,
2018a). Therefore, female control of copulation time could

be a possible form of intra-copulatory mate choice in some
species. However, where studied, there is mixed support for the
correlation of copulation duration and male fertilisation success
(Morse, 2008; Morse et al., 2018a).

Although not yet empirically demonstrated, the reproductive
system of female octopuses suggests that CFC may also occur
in this family. Female octopuses possess paired, muscular and
innervated oviducal glands (Froesch and Marthy, 1975), which
they could theoretically use to selectively pump, or block
access of sperm to the egg during fertilisation. Additionally,
chemoattractant peptides have been found in egg capsules of
O. vulgaris, that can influence the chemotaxis of male sperm
(De Lisa et al., 2013). This suggests that both mechanical and
chemical processes might potentially be used by some female
octopuses in manipulating the storage or fertilisation success
of different males’ sperm in their oviducal glands. However, at
present there is very little evidence that female octopuses do
this (Morse et al., 2018a).

5. CONCLUSIONS AND NEW DIRECTIONS
FOR RESEARCH

5.1. A Summary of Pre- and
Post-copulatory Behaviours Warranting
Further Investigation Among Well-Studied,
Coastal Cephalopods
Currently, the mechanisms of sexual selection are more
thoroughly understood within some decapod mating systems
than in those of octopuses. The coastal spawning aggregations
of Sepia apama and loliginid squid have enabled much more
detailed investigations within natural settings. Within loliginid
mating systems, females of most studied species appear receptive
to copulations with every attempting male (cf. Sepioteuthis
lessoniana, Wada et al., 2005a). However it is strongly suggested
that females might be selective of which sperm they use to
fertilise egg capsules (Naud et al., 2016). As copulations are
usually very quick in these taxa (2–39 s in Hanlon et al., 2002),
it might be more parsimonious for females to avoid potential
male aggression and the time or energy spent on rejecting males,
by being receptive to every copulation and then to control
egg capsule paternities post-copulation. Continued observations
in the field might be able to further identify the context of
both spermatophore rejections and varying intervals between
copulation and egg deposition. If females eject spermatophores
more or less often with and/or can adjust the timing of egg
capsule deposition after copulating with different males that have
varying displays, mating strategies or morphologies, then females
might use these mechanisms as a form of CFC to bias paternity to
genetically fitter and/or more compatible males (Eberhard, 1996;
Tregenza and Wedell, 2000).

Within cuttlefish mating systems, females appear highly
selective of male partners. It is presently unknown what cues
females might use to discriminate between potential males,
whether certain males get preferential spermatophore placement
in females’ seminal receptacles or buccal areas, whether the
suggestion of a last-male paternity bias is accurate and whether
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this consistently leads to increased female selectivity with
successive males. It is suggested here that further studies of
cuttlefish taxa, either in the field or in large aquaria with male-
biased OSR, might provide this information if they can asses
the context of different spermatophore placements, compare egg
paternities to the order of copulation with genotyped males
and compare female-male rejection rates between the first and
subsequent males that attempt to copulate with females within
egg-laying intervals.

There is still much that can be learned about the processes
of mate choice and sperm competition among the octopuses.
Further observational studies and/or laboratory choice trials
in species where visual courtship displays and female-male
rejection are common might unveil whether cues such as ligula
morphology or visual displays influence pre-copulatory mate
choice in these taxa. Additionally, further paternity comparisons
with genotyped candidate fathers (e.g., Morse et al., 2018a)
across additional taxa could reveal whether certain types of males
gain higher fertilisation success within octopus mating systems,
and also whether female brood paternities might be biased
toward longer copulation durations, indicating sperm loading, or
toward recent males, suggesting the influence of sperm-removal.
If sperm loading is identified as an important factor in male
fertilisation success, then it will be worthwhile investigating
differential copulation durations in species where copulations are
frequently terminated by females. This might determine whether
females can influence their brood paternities by adjusting
copulation times with males that display different morphology
or behaviour.

As females of at least two octopus species are suggested to
be capable of conspecific sex recognition based on odour cues
(Walderon et al., 2011; Morse et al., 2017), it is worthwhile
continuing to investigate the role of both distance- and tactile
chemoreception within octopus mating systems. Two interesting
follow-up questions that could be investigated within laboratory
experiments are a) Whether males respond differently to
touch or odours from sexually mature vs. immature females;
and b) Whether either sex responds differently to touch or
odours from novel vs. familiar conspecifics. Answering these
questions could help to define the role of chemosensory
in octopus social recognition and mate choice behaviours.
Additionally, as mentioned in section 3.3.1, visual displays
have been reported as part of pre-copulatory behaviour of
all loliginids, cuttlefish and octopuses studied in the field
(Corner and Moore, 1981; Hanlon et al., 1994; Hall and
Hanlon, 2002; Huffard, 2007; Huffard and Godfrey-Smith, 2010;
Schnell et al., 2015). However, in order to make sense of
these behaviours it is necessary to interpret how these displays
are perceived by receiving conspecifics. As most cephalopods
are polarisation-sensitive (Moody and Parriss, 1961), yet
colour-blind (Mäthger et al., 2009), the further integration of
imaging polarimetry into field studies and laboratory mate
choice trials is suggested to reveal valuable information about
the way cephalopods might communicate within spawning
assemblages or in a context of sex identification and/or
courtship (Table 4).

5.2. Addressing Widespread Polyandry
Among the Cephalopod Class
A common theme amongst all studied cephalopod mating
systems is the extremely high level of both male and female
promiscuity (Hall and Hanlon, 2002; Hanlon et al., 2002; Huffard
et al., 2008; Arnold, 2010; Squires et al., 2013; Morse et al., 2015).
Male promiscuity is common within animal mating systems,
and can develop easily as an evolutionarily stable strategy
(see Smith, 1982) because promiscuity directly increases male
reproductive success (Bateson, 1983). Female promiscuity is less
commonly reported among species where females do not receive
material resources or parental care from the males they mate
with, because females have a finite number of eggs they can
lay in a lifetime and therefore their reproductive success is
typically not limited by the numbers of males they can copulate
with (Kodric-Brown and Brown, 1987). Additionally, copulating
with lots of different males can be potentially quite costly to
females due to the increased risk of injury during copulations
(Adamo et al., 2000; Hoving et al., 2010), decreased foraging time
(Huffard et al., 2008), increased risk of disease transfer (Thrall
et al., 2000), increased energy expenditure (Franklin et al., 2012)
and decreased life expectancy (Franklin and Stuart-Fox, 2017).
As polyandry appears to be an evolutionarily stable strategy
among cephalopods, it is inferred that promiscuous females must
achieve some type of selective advantage over non-promiscuous
females in order to offset the inherent costs of multiple mating
described above.

So far, polyandry in cephalopods has been suggested to
benefit females by either helping to overcome potential sperm-
limitation (van Camp et al., 2004), increasing the genetic
diversity of females’ offspring (Quinteiro et al., 2011), and/or
optimising offspring quality (Squires et al., 2012; Naud et al.,
2016; Morse et al., 2018a). Sperm limitation might be an
important factor to female reproductive success in species that
have high egg-laying capacities and that might have infrequent
encounters with opposite sex conspecifics (e.g., Architeuthis
spp., Hoving et al., 2004). However sperm limitation probably
cannot explain polyandrous behaviour in female cephalopods
that have smaller fecundities and that would have the capacity
to fertilise all their offspring to one male (e.g., Sepiolidae or
Hapalochlaena spp.). Offspring diversity probably does increase
the fitness of promiscuous females. However, this mechanism
alone being the drive for cephalopod polyandry is not consistent
with observations of female-male rejections in many taxa, or
with observed paternities consistently biased toward particular
males (Iwata et al., 2005; Naud et al., 2005, 2016; Morse,
2008; Buresch et al., 2009; Squires et al., 2015; Morse et al.,
2018a; Ylitalo et al., 2019) rather than shared more equally
between candidate fathers as would be expected in a bet-
hedging strategy.

The optimisation of offspring quality appears to be a robust
hypothesis for the evolution of polyandry in cephalopod mating
systems (Squires et al., 2012; Naud et al., 2016). However,
the exact processes for how female promiscuity might lead to
enhanced offspring quality still remain unclear. It has been
previously hypothesised that nutritional benefits provided from
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TABLE 4 | New directions for the research of sexual selection in cephalopods are summarised below. Ten questions warranting further investigation in the near future are

presented alongside summaries of potential methodology for addressing them.

Theme 10 questions worth continued investigation Examples of methodology

Precopulatory

Behaviour

How do females of some cuttlefish and octopus

species discriminate among male visual displays?

Compare rates of female rejection/receptivity to varying intensities of

display. Ideally incorporate imaging polarimetry to quantify and simulate

how displays are perceived by the female.

Do female cuttlefish perform trade-up[1] mate

choice behaviour?

Compare rates of female-male rejection among controlled sequential

laboratory pairings. Additionally, confirm prevalence of last male

paternity using genotyped candidate fathers.

What are the roles of chemoreception in social

recognition and mate choice?

In spp. that cannot visually recognise individuals, assess whether

subjects can recognise individuals through distance or tactile

chemoreception. Compare ventilatory and/or retreat response to

odours and/or touch of familiar vs. novel conspecifics.

How do males of some octopus species recognise

if they were the last male to mate with a female?

Assess whether male octopuses can distinguish the

spermatophores/spermatozoa of other males from their own using

tactile chemoreception.

Is sexual selection for sophisticated reproductive

behaviours partially responsible for the evolution of

complex cognition among cephalopods?

Make a comparative study examining performance on tasks assessing

cognitive attributes such as object permanence, working memory, and

theory or mind among cephalopod taxa with a variety of reproductive

strategies. Use principal component analyses to identify whether

particular reproductive dynamics, such as spawning in assemblages, is

a predictor of cognitive performance.

Postcopulatory

Processes

What criteria influences CFC in cephalopods with

external fertilisation?

In controlled laboratory conditions, further identify what factors and/or

context (e.g., male phenotype or mating order) lead to higher rates of

spermatophore removal and/or delay in egg deposition in spp. where

CFC is easily observable (e.g., D. pealei).

How might sperm-attractant peptides influence

fertilisation patterns of octopuses?

Use laboratory pairings of genotyped candidate parents, and compare

(A) resulting paternity; (B) allelic signatures of sperm remaining in

oviducal glands after egg deposition; and (C) concentrations of

sperm-attractant peptides in the female reproductive tract at different

intervals between copulation with each male and egg deposition.

Is CFC more common in species where either

female-male rejections are rare, or copulations are

often forced by males?

Use a meta-analysis to compare presence of CFC behaviour with rates

of female rejection and forced copulations among studied cephalopod

species.

Can a “good sperm” hypothesis[2] help to explain

widespread polyandry among cephalopods?

Identify whether copulatory rates and/or fertilisation success are

correlated among fathers and sons (e.g., heritable) within each

laboratory-amenable family.

Does polyandry help to facilitate inbreeding

avoidance?

In spp. with limited dispersal (e.g., Euprymna spp. or H. maculosa)
compare paternal success among genotyped candidate parents

having variable but known relatedness to the female.

1 (Pitcher et al., 2003); 2(Yasui, 1997).

accessory seminal fluids, obtained either through spermatophore
consumption or absorption within the female reproductive
tract, can help to increase metabolic resources females have
available toward producing healthy offspring (Squires et al.,
2012; Wegener et al., 2013). A controlled study of Euprymna
tasmanica has indicated that females of this species, which
mated multiply, laid eggs with a higher hatchling to egg
mass ratio than females that were only allowed to mate once
(Squires et al., 2012). These authors suggested that the added
nutritional benefit of receiving extra spermatophores might
enable females of some species, particularly ones with internal
sperm storage, to maximise their reproductive output relative
to maternal investment. However, Squires et al. (2012) also
advocated that nutritional benefits likely coincide with indirect,
genetic benefits of female promiscuity to provide selective
advantages for the widespread polyandry observed among
cephalopod taxa.

Postcopulatory fertilisation bias to either reproductively
successful males or genetically compatible males are two indirect
mechanisms that could also lead to selective advantages for
polyandry (Zeh and Zeh, 1996, 1997; Yasui, 1997). However,
at present neither scenario has yet been investigated within a
cephalopod mating system. Postcopulatory mechanisms might
be especially applicable if females either cannot accurately
assess male fitness or relatedness during pre-copulatory choice,
and/or have limited control of which males they copulate
with. In these contexts, polyandrous females could theoretically
benefit from accepting sperm from multiple males if differential
sperm fertilisation ability, or CFC consistently bias brood
paternities to either the fittest or least related males. In the
former scenario, if females’ offspring are disproportionately
sired to males that are innately capable of obtaining a higher
fertilisation success, then promiscuous females are also likely
to have sons with higher fertilisation success and therefore

Frontiers in Physiology | www.frontiersin.org 20 August 2019 | Volume 10 | Article 1035

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Morse and Huffard Sexual Selection Among the Cephalopoda

more grandchildren than non-promiscuous females (Yasui,
1997). This mechanism could potentially be investigated within
laboratory paternity comparisons over several generations, and
might be supported if copulatory rates and/or fertilisation
success are correlated between fathers and their sons. In
the case of post-copulatory mechanisms biasing paternity
to genetically compatible males, it is possible that female
promiscuity is a form of ensuring inbreeding avoidance
(see Tregenza and Wedell, 2002). A recent molecular study
assessing the relatedness of populations in a holobenthic
octopus with limited dispersal revealed high frequencies
of close relatives within spawning sites (up to 78% half-
half sibling pairs in H. maculosa, Morse et al., 2018b).
Genomic studies within wild populations across additional
cephalopod taxa, and paternity comparisons with known
relatedness between mothers and candidate fathers could
explain whether inbreeding avoidance might be one of the
evolutionary drives for promiscuous behaviour in cephalopods
(Table 4).

5.3. The Mating Behaviour of Most
Cephalopods Is Still Unknown
Finally, it is worth noting again that the bulk of current
knowledge for cephalopod sexual selection is still confined
to the five families: Loliginidae, Idiosepiidae, Sepiidae,
Sepiolidae and Octopodidae. The extreme depths, pelagic
environments and specialised nutritional requirements of
pelagic and/or deep-sea cephalopod taxa make it difficult
to observe them in their natural habitats or maintain them
for robust laboratory studies (Hoving et al., 2013). However,
at least nautilids appear amenable to aquarium settings
(Mikami and Okutani, 1977; Arnold, 2010), and hopefully
methods will become available in the future for maintaining
other deep-sea or pelagic cephalopod species successfully

in the laboratory. Investigating pre-copulatory behaviour
and fertilisation patterns of additional cephalopod taxa,
either through laboratory rearing or ROV voyages, can likely
provide valuable context to the current understanding of
sexual selection and behavioural ecology in this unique class
of animals.
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