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The combined effects of mechanical loading and maturation during adolescence are still
not well understood. The purpose of the study was to investigate the development of the
quadriceps femoris muscle-tendon unit from early adolescence (EA), late adolescence
(LA) to young adulthood (YA), and examine how it is influenced by athletic training in
a cross-sectional design. Forty-one male athletes and forty male non-athletes from
three different age groups (EA: 12–14 years, n = 29; LA: 16–18 years, n = 27; and
YA: 20–35 years, n = 25) participated in the present study. Maximum strength of the
knee extensor muscles, architecture of the vastus lateralis (VL) muscle and patellar
tendon stiffness were examined using dynamometry, motion capture, electromyography,
and ultrasonography. Muscle strength and tendon stiffness significantly increased
(p < 0.001) from EA to LA without any further alterations (p > 0.05) from LA to YA.
Athletes compared to non-athletes showed significantly greater (p < 0.001) absolute
muscle strength (EA: 3.52 ± 0.75 vs. 3.20 ± 0.42 Nm/kg; LA: 4.47 ± 0.61 vs.
3.83 ± 0.56 Nm/kg; and YA: 4.61 ± 0.55 vs. 3.60 ± 0.53), tendon stiffness (EA:
990 ± 317 vs. 814 ± 299 N/mm; LA: 1266 ± 275 vs. 1110 ± 255 N/mm; and YA:
1487 ± 354 vs. 1257 ± 328), and VL thickness (EA: 19.7 ± 3.2 vs. 16.2 ± 3.4 mm;
LA: 23.0 ± 4.2 vs. 20.1 ± 3.3 mm; and YA: 25.5 ± 4.2 vs. 23.9 ± 3.9 mm). Athletes
were more likely to reach strain magnitudes higher than 9% strain compared to non-
athlete controls (EA: 28 vs. 15%; LA: 46 vs. 16%; and YA: 66 vs. 33%) indicating an
increased mechanical demand for the tendon. Although the properties of the quadriceps
femoris muscle-tendon unit are enhanced by athletic training, their development from
early-adolescence to adulthood remain similar in athletes and non-athletes with the
major alterations between early and LA. However, both age and athletic training was
associated with a higher prevalence of imbalances within the muscle-tendon unit and a
resultant increased mechanical demand for the patellar tendon.

Keywords: adolescent athletes, tendon stiffness, muscle strength, muscle architecture, muscle-tendon
imbalances
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INTRODUCTION

Human maturation describes the tempo and timing of the
progress toward the mature state during growth (Mirwald et al.,
2002). It is well known that during maturation the muscle-
tendon unit is subjected to morphological and mechanical
alterations (Kanehisa et al., 1995a; O’Brien et al., 2010; Kubo
et al., 2014b). Muscle strength is increasing with age in line
with body height and mass (Beunen and Malina, 1988; Kanehisa
et al., 1995a; Degache et al., 2010), and increases markedly
between 13 and 15 years in both sexes (Kanehisa et al.,
1995a). Furthermore, Kanehisa et al. (Kanehisa et al., 1995a,b)
reported an increase of the muscle anatomical cross-sectional
area with age in parallel with muscle strength and, similarly,
a pronounced development between age 13 and 15 years in
untrained boys. The functional and morphological development
of the muscle seems to continue until adulthood (Kubo et al.,
2001, 2014b). On the other hand, there is evidence that the
muscle strength in athletes increases most between 12 and
13 years in boys (Degache et al., 2010) and, thus, potentially
earlier compared to untrained counterparts. Considering the
increased secretion of muscle hypertrophy-mediating hormone
levels, which occurs at that age (Vingren et al., 2010; Murray and
Clayton, 2013) and is promoted by physical activity (Kraemer
et al., 1992; Zakas et al., 1994; Tsolakis et al., 2004), it might
even be that morphological changes of the muscle contribute
to the adaptive response to increased mechanical loading. For
instance, mid-adolescent athletes can already feature adult-
like muscle morphology with only minor changes of muscle
volume thereafter (Mersmann et al., 2014, 2017b) as well
as greater muscle pennation angles compared to similar-aged
controls (Mersmann et al., 2016). Thus, it seems possible
that even early adolescent athletes already show indications
of loading-related hypertrophy and muscle remodeling and
that there is an interaction of maturation and superimposed
loading that influences the temporal development of muscle
during adolescence features (in terms of an earlier development)
compared to untrained individuals.

Similar to muscles, tendon properties are also affected by the
influence of maturation (O’Brien et al., 2009; Kubo et al., 2014b),
including its cross-sectional area, Young’s modulus (as a measure
of its material properties based on the stress-strain relationship)
and stiffness (as a measure of its mechanical resilience based on
the force-elongation relationship). Tendon stiffness is a crucial
mechanical property because it influences the transmission of
the muscle force to the skeleton and depends on its material
properties and dimensions (Butler et al., 1978). Patellar tendon
stiffness and its determinants cross-sectional area (CSA), rest
length and Young’s modulus were reported to increase during
maturation from 9 years to adulthood in humans (O’Brien
et al., 2009). In accordance with the previous study, Kubo et al.
(2014b) and Waugh et al. (2012) reported that Achilles tendon
Young’s modulus was lower in children (9–12 years) compared
to adults, and junior high school students (13–15 years) had
adult-like material properties. The mechanical changes observed
from child- to adulthood may partly be mediated by an
increase in the structural integrity of the collagenous network

(Rudavsky et al., 2017, 2018). During pubertal growth, tendon
length increases in a higher rate compared to the CSA, indicating
that increments of tendon stiffness are mainly governed by a
change of the material properties (Neugebauer and Hawkins,
2012; Waugh et al., 2012). Since tendons adapt to mechanical
loading (Bohm et al., 2015), the increase of mass and muscle
strength during maturation may increase the stiffness due to
increased tendon loading during the daily weight-bearing tasks
and the increased muscle force (Waugh et al., 2012). At the end
of adolescence, tendon tissue turnover becomes greatly reduced
(Heinemeier et al., 2013), yet the plasticity of the tendon is
maintained, mainly in terms of loading-induced changes of the
material properties (Bohm et al., 2015).

Irrespective of gains in body mass, superimposed mechanical
loading by sports activity further can increase tendon stiffness
in adolescence (Mersmann et al., 2017c), which suggests that the
development of tendon mechanical properties during maturation
might be different in athletes compared to adolescents that
do not train systematically. Similar to muscle strength, data
on the Achilles tendon of untrained adolescents suggest that
the maturation-related increases of tendon stiffness are most
pronounced early in adolescence (Kubo et al., 2014a; Mogi
et al., 2018). Yet a study of our laboratory on adolescent
volleyball athletes suggests that – under the twofold stimulus
of maturation and training – major changes of tendon CSA
and stiffness might occur later in adolescence compared to
the muscular development (Mersmann et al., 2017b). Since
there is little information considering muscle and tendon
development during adolescence, there is still great uncertainty
how maturation affects the muscle-tendon unit, especially in
interaction with superimposed loading by means of athletic
training. The increase of our understanding regarding this
interplay might be of particular importance in terms of recent
evidence, which lends support to the idea that an imbalanced
development of muscle strength and tendon stiffness might
increase the risk of overuse tendon injury (see Mersmann
et al., 2017a for a review). An adequate strain applied to the
tendon is important and necessary for tendon healthiness and
adaptability (Bohm et al., 2015; Wiesinger et al., 2015). For
example, mechanical tendon loading that introduce low strain
values (∼3%) cannot improve tendon properties (Arampatzis
et al., 2007a, 2010). However, if a tendon is repeatedly subjected
to very high levels of strain, this might induce overload.
In a rodent model, Wang et al. (2013) demonstrated that
cyclic application of 9% tendon strain acts degenerative on
the tissue and weakens its structural integrity. As ultimate
tendon strain is irrespective of species (LaCroix et al., 2013)
and considering the average levels of maximum in vivo tendon
strain observed in humans using ultrasound (e.g., Hansen et al.,
2006; Couppé et al., 2009; Mersmann et al., 2016, 2018),
strain magnitudes higher than 9.0% during maximum isometric
contractions might be indicative for imbalances within the
muscle-tendon unit, characterized by the tendon stiffness being
too low compared to the strength of the associated muscle
(Bohm et al., 2019).

The purpose of this research was to investigate the
musculotendinous development during adolescence and how

Frontiers in Physiology | www.frontiersin.org 2 August 2019 | Volume 10 | Article 1082

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-01082 August 24, 2019 Time: 16:23 # 3

Charcharis et al. Muscle-Tendon Adaptation During Adolescence

it is influenced by athletic training by means of comparing
athletes and non-athletes in three different age groups (i.e., early
adolescents: 12–14 years, late adolescents: 16–18 years and adults)
under the reasonable assumption that these groups would also
substantially differ in terms of maturation. We focused on the
quadriceps femoris muscle-tendon unit due to its important
contribution to movement performance and susceptibility to
overuse injury (Zwerver et al., 2011; Simpson et al., 2016;
Nikolaidou et al., 2017). We hypothesized to find higher muscle
strength, muscle thickness, pennation angle, and tendon stiffness
in athletes compared to non-athlete controls in all age groups.
Moreover, we expected to find in athletes the major development
of tendon stiffness between late adolescence (LA) and adulthood,
yet more timely clear increases of muscle strength (Degache
et al., 2010; Mersmann et al., 2017b), which may increase the
mechanical demand for the tendon.

MATERIALS AND METHODS

Experimental Design
Eighty-one male participants comprised of athletes (n = 41)
and untrained controls (n = 40) in three age groups [EA: early
adolescence (n = 29), 12–14 years; LA: late adolescence (n = 27),
16–18 years; and YA: young adulthood (n = 25), 20–35 years]
were included in the study (Table 1). The athletes were recruited
from the disciplines American football, volleyball, handball,
basketball, judo, kick-boxing, fencing, gymnastics, dancing,
hockey, vaulting, track and field, acrobatics, decathlon, and
trained at least three times per week for at least 75 min per session.
Athletes from endurance sports were excluded, because the
sport-specific low-intensity loading is unlikely to be a sufficient
stimulus to significantly change the mechanical properties of
the muscle-tendon unit (Karamanidis and Arampatzis, 2006;
Arampatzis et al., 2007b). The sport activity of the untrained
adolescent controls was limited to school sports and a maximum
of one session of recreational sports per week, while in adults
only the latter applied. None of the participants suffered from any
orthopedic abnormality or injury at the lower extremities.

The study was carried out in accordance with the
recommendations of the Ethics Committee of the Humboldt-
Universität zu Berlin. All participants (and their respective
legal guardians in the adolescent groups) gave written informed

consent in accordance with the Declaration of Helsinki. The
measurements of muscle strength (i.e., knee extension moments),
vastus lateralis (VL) architecture and patellar tendon mechanical
properties were carried out on the dominant leg (i.e., leg used for
kicking a ball) following a standardized warm-up consisting of 2–
3 min ergometer cycling, ten submaximal isometric contractions,
and three maximum voluntary isometric contractions (MVC).

Measurement of Maximum Knee Joint
Moment
For the assessment of the muscle strength of the knee
extensor muscles, the participants performed isometric MVCs
on a dynamometer (Biodex Medical System 3, Shirley, NY,
United States) at 65◦, 70◦, and 75◦ knee joint angle (i.e., values
at rest measured by the dynamometer; 0◦ = full knee extension).
In our earlier work (e.g., Mersmann et al., 2017c), we found
that using these resting angles, the participants reach their
approximate optimum angle for force generation during the
contractions. The trunk angle was set to 85◦ (neutral full hip
extension = 0◦) and the hip was fixed to the dynamometer seat
using a non-elastic strap.

Since there are differences between the resultant knee joint
moment and the moment measured by the dynamometer due
to the changes of the knee joint axis relative to the axis
of the dynamometer during the MVC induced by soft tissue
deformation and dynamometer compliance, we followed the
inverse dynamics approach introduced by Arampatzis et al.
(2004). Kinematic data were recorded using a Vicon motion
capture system (version 1.7.1; Vicon Motion Systems, Oxford,
United Kingdom) integrating eight cameras operating at 250 Hz.
Six reflective markers were captured, which were fixed on
the following positions: lateral and medial malleolus, the most
prominent points of the lateral and medial femoral condyles,
trochanter major, and lateral aspect of the iliac spine. Passive
knee joint moments due to gravity were recorded as a function
of knee joint angle in an additional trial. The participants were
instructed to relax the muscles of their dominant leg and then
the joint was passively rotated at 5◦/s through the full range
of motion by the dynamometer. Further, we accounted for the
contribution of antagonistic muscle activity to the resultant
moment by establishing a linear electromyographic (EMG)-
activity – knee flexion moment relationship during submaximal
isometric contractions (Mademli et al., 2004). For this purpose,

TABLE 1 | Anthropometrical characteristics of the non-athletes and athletes in the three age groups (EA, early adolescence; LA, late adolescence; YA, young adulthood;
means ± standard deviation).

Non-athletes Athletes

EA (n = 14) LA (n = 13) YA (n = 13) EA (n = 15) LA (n = 14) YA (n = 12)

Age [years] 12.8 ± 0.6b,c 17.3 ± 0.8a,c 29.0 ± 3.6a,b 13.0 ± 0.8b,c 17.2 ± 0.8a,c 26.3 ± 3.0a,b

Body height [cm]∗# 159.6 ± 11.0b,c 175.1 ± 5.3a 179.4 ± 9.6a 168.6 ± 12.0b,c 183.1 ± 8.4a 182.1 ± 8.1a

Body mass [kg]∗ 45.4 ± 10.3b,c 70.1 ± 15.0a,c 80.7 ± 16.5a,b 56.2 ± 11.2b,c 72.7 ± 10.4a,c 79.5 ± 9.1a,b

Femur length [cm]∗# 38.7 ± 2.2b,c 41.0 ± 1.9a 40.6 ± 3.8a 39.8 ± 4.1b,c 43.8 ± 3.8a 42.9 ± 2.9a

#Statistically significant effect of activity (p < 0.05). ∗Statistically significant effect of age (p < 0.05). aStatistically significant difference to EA (p < 0.05). bStatistically
significant difference to LA (p < 0.05). cStatistically significant difference to YA (p < 0.05).
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we recorded two additional knee flexion trials featuring an EMG-
activity that was slightly lower and higher, respectively, compared
to the activity registered during the maximum knee extension
trials. The EMG activity of the lateral head of the biceps femoris
was recorded using two bipolar surface electrodes (Blue Sensor
N, Ambu GmbH, Bad Nauheim, Germany) placed over the mid-
portion of the muscle belly with an inter-electrode distance
of 2 cm after shaving and cleaning the skin to reduce skin
impedance. EMG data was captured at 1000 Hz (Myon m320RX;
Myon, Baar, Switzerland) and transmitted to the Vicon system via
a 16-channel A-D converter.

Measurement of Vastus Lateralis Muscle
Architecture
For the assessment of the VL architecture, ultrasound images
were captured at 60◦ knee joint angle, which has been reported
by Herzog et al. (1990) to be the approximate optimum angle of
the VL for force production. A 10 cm linear ultrasound probe
(7.5 MHz; My Lab60; Esaote, Genova, Italy; probe: linear array
(LA923), depth: 7.4 cm, focal point: 0.9 and 1.9, no image filter)
was placed over the belly of the inactive muscle in its longitudinal
axis at 60% thigh length, which is the assumed location of the
maximum anatomical cross-sectional area (Mersmann et al.,
2015). The ultrasound images were analyzed offline using a
custom written MATLAB interface (version R2012a; MathWorks,
Natick, MA, United States). The upper and deeper aponeuroses
were defined by setting three reference points along each
aponeurosis and a linear least-squares-fit through these points.
Subsequently, the visible features of multiple fascicles were
marked manually and a reference fascicle was calculated based on
the average inclination of the fascicle portions and the distance
of the aponeuroses (Marzilger et al., 2017). The pennation angle
refers to the angle between the reference fascicle and the deeper
aponeurosis. Fascicle length was normalized to femur length
(measured from the greater trochanter to the lateral epicondyle,
identified by palpation, by means of a measuring tape).

Mechanical Properties of the Patellar
Tendon
To investigate the force-elongation relationship of the patellar
tendon, the ultrasound probe (i.e., similar probe and settings as
described previous) was fixed by means of a custom-made knee
brace overlying the patellar tendon in the sagittal plane. The
participants performed 5 isometric ramp contractions, gradually
increasing their effort from rest to maximum in ∼5 s and
simultaneously the elongation of the tendon was captured by
means of the ultrasound at 25 Hz. The resting knee joint angle
for the ramp contractions was set according to the MVC trial
in which the highest moment was achieved by the respective
participant. The knee joint moments were calculated according
the same consideration as described above, applying the inverse
dynamics approach and correction for antagonistic activity.
Tendon force was calculated by dividing the knee extension
moment by the tendon moment arm.

The moment arms were predicted using the regression
equation reported by Mersmann et al. (2016) based on sex,

body height, and mass. Since the moment arm of the patellar
tendon is significantly influenced by the knee joint angle, it was
adjusted to the respective knee joint angle position based on
the polynomial regression equation suggested by Herzog and
Read (1993). The ultrasound images were synchronized with the
kinematic and analog data using an externally induced voltage
peak. Patellar tendon elongation during the contractions was
determined by manually tracking the deep insertion of the tendon
at the patellar apex and the tibial tuberosity frame-by-frame
using a custom-written MATLAB interface. In order to achieve
a high reliability (≥0.95), the force-elongation relationship of
the 5 trials of each participant was averaged using the highest
common force of the single trials as a peak force (Schulze
et al., 2012). Tendon stiffness was calculated between 50 and
100% of the peak tendon force based on a linear regression.
As stiffness is influenced by the resting length of the tendon
(Butler et al., 1978; Arampatzis et al., 2005), we further
calculated the normalized tendon stiffness (i.e., the product of
stiffness and rest length) that represents the slope of the force-
strain curve.

STATISTICS

The statistical analysis was conducted in SPSS (version 20.0; IBM,
Armonk, NY, United States). A two–way analysis of variance
(ANOVA) was performed with the fixed factors activity (i.e., non-
athletes, athletes) and age (i.e., EA, LA, and YA) The Shapiro–
Wilk Test was performed to verify the normal distribution of the
data and Levene’s test to assess the homogeneity of variances.
A Bonferroni-corrected post hoc analysis was conducted in the
case of a significant age effect or interaction of the factors
activity and age. The alpha level for all tests was set to 0.05.
The effect size f for significant observations were calculated in
G∗Power (Version 3.1.6; HHU, Düsseldorf, Germany; Faul et al.,
2007), based on the partial eta squared or means and pooled
standard deviation for non-parametrically tested parameters. The
subscript Activity and Age indicates if the effect size refers to
differences between athletes and controls or between age groups,
respectively. Effect sizes of 0.1 ≤ f < 0.25 will be referred to as
small, 0.25 ≤ f < 0.5 as medium and f ≥ 0.5 as large (Cohen,
1988). Using the whole sample, we calculated the Pearson’s r for
the correlation of tendon force and stiffness. We further predicted
tendon stiffness by tendon force using a linear regression model
with group-specific y-intercept and slope constants for each age
and activity group, respectively, and compared the residuals
of the model prediction with a two-way ANOVA to analyze
differences in the association of tendon force and stiffness. The
model equation was:

yi = c0 + β0Fi + c1gi + β1giFi + c2li + β2lFi + c3gili + β3giliFi

+ c4ai + β4aiFi + c5giai + β5giaiFi + εi

where i is index for participant (1,. . ..,81); g is the activity-
group variable (non-athlete = 0; athlete = 1); l is late adolescent
age variable (EA = 0; LA = 1; YA = 0); a is young adult
age variable (EA = 0; LA = 0; YA = 1); c are the intercept
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constant, β are the slope constants; F is tendon force ε

is the residual.
We further examined the frequency of individuals that

reached strain values greater than 9%, since it has been reported
that repetitive strains above 9% can induce catabolic tendon
matrix damage (Wang et al., 2013). Though the exceedance of
the threshold does not necessarily imply injury, it provides a
classification if the mechanical demand for the tendon and risk
for fatigue is comparatively high.

RESULTS

Considering the anthropometric data (Table 1), there was a
significant effect of age on body mass (p < 0.001, f Age = 1.04),
but no effect of activity group or activity-by-age interaction
(p > 0.05). Post hoc analysis revealed significantly greater body
mass with increasing age of the respective group (p < 0.05). There
was a significant effect of activity group (p = 0.003, f Activity = 0.36)
and age (p < 0.001, f Age = 0.83) on body height. Athletes
were taller compared to non-athlete controls and EA showed
significantly smaller height compared to LA and YA (p < 0.001),
but there were no significant differences between YA and LA
(p = 1.0). There was a significant main effect of age and activity
(p = 0.002, f Age = 0.43; p = 0.007 f Activity = 0.32, respectively) but
no activity-by-age interaction (p = 0.608) on femur length. EA
had smaller femur lengths compared to YA and LA (p = 0.002 and
p = 0.028, respectively), but there were no significant differences
between YA and LA (p = 1.0).

Considering absolute and normalized muscle strength
(normalized to body mass) of the knee extensors, athletes
had higher strength compare to non-athletes (p < 0.001,
f Activity = 0.53 for absolute strength and p < 0.001, f Activity = 0.59
for normalized strength). There was a significant age effect
(p < 0.001, f Age = 1.13 for absolute strength, and p < 0.001,
f Age = 0.64 for normalized strength) but no activity-by-age
interaction (p = 0.770 and p = 0.129 for the absolute and
normalized strength, respectively; Table 2). EA had lower
absolute strength compared to YA and LA (p < 0.001, f = 1.14,
and f = 0.93, respectively) and normalized muscle strength
(p < 0.001, f = 0.51, and f = 0.61), but there were no statistically
significant differences between YA and LA (p = 0.395 and

p = 1.0). There was no significant effect of age (p = 0.743),
activity (p = 0.370) or activity-by-age interaction (p = 0.532
Table 2) on antagonistic co-activation (i.e., antagonistic moment
normalized to maximal resultant moment) and tendon resting
length (p = 0.290, p = 0.930, and p = 0.505, respectively). We
found greater VL muscle thickness in athletes compared to
non-athletes (p = 0.001, f Activity = 0.4) and a significant effect
of age (p < 0.001, f Age = 0.79), but no effect of age-by-activity
interaction (p = 0.545, Figure 1A). EA and LA had lower
(p < 0.001, f = 0.86, and p = 0.001, f = 0.48) muscle thickness
compared to YA, and EA lower thickness than LA (p = 0.007,
f = 0.41). There was no effect of activity (p = 0.473) or age-by-
activity interaction (p = 0.407) on pennation angle (Figure 1B).
However, there was a significant effect of age (p < 0.001,
f Age = 0.6) on pennation angle (Figure 1B). EA, LA both had
lower pennation angles compared to YA (p < 0.001, f = 0.65,
and p = 0.001, f = 0.51), but there were no statistically significant
differences between EA and LA (p = 0.707). On normalized
fascicle length (normalized to femur length), there were no
significant effects of age (p = 0.903), activity (p = 0.299) or
age-by-activity interaction (p = 0.935; Figure 1C).

Patellar tendon maximal force was greater in athletes
compared to non-athletes (p < 0.001, f Activity = 0.52) and there
was a significant effect of age (p < 0.001, f Age = 1.12), but no
significant age-by-activity interaction (p = 0.772, Figure 2A). EA
had significant smaller patellar tendon force compared to LA and
YA (p < 0.001, f = 0.93, and f = 1.13, respectively), but there
were no significant differences between LA and YA (p = 0.602).
Athletes had stiffer patellar tendons compared to non-athletes
(p = 0.013, f Activity = 0.31, Figure 2B) and there was a significant
effect of age (p < 0.001, f Age = 0.61). EA had statistically lower
patellar tendon stiffness compared to YA (p = 0.015, f = 0.66) and
LA (p < 0.001, f = 0.42), but there were no significant differences
between YA and LA (p = 0.104). There was a significant effect
of age (p < 0.001, f Age = 0.66) and a significant effect of
activity (p = 0.01, f Activity = 0.32) on normalized patellar tendon
stiffness (Table 2), but no statistically significant activity-by-
age interaction (p = 0.956). EA had smaller normalized patellar
tendon stiffness compared to LA (p = 0.001, f = 0.55) and YA
(p < 0.001, f = 0.70) but no significant differences between LA
and YA (p = 0.592). There was a significant effect of age on patellar
tendon maximum strain (p = 0.028, f Age = 0.33; Figure 2C). EA

TABLE 2 | Knee joint moments, co-activation (i.e., antagonistic moment normalized to the resultant knee joint moment), tendon resting length, and normalized stiffness
of the non-athletes and athletes in the three age groups (EA, early adolescence; LA, late adolescence; YA, young adulthood; means ± standard deviation).

Non-athletes Athletes

EA (n = 14) LA (n = 13) YA (n = 13) EA (n = 15) LA (n = 14) YA (n = 12)

MVC [Nm]∗# 145.2 ± 34.6b,c 267.0 ± 72.3a 288.2 ± 61.0a 202.0 ± 65.7b,c 327.3 ± 69.4a 367.0 ± 64.7a

Normalized MVC [Nm/kg]∗# 3.20 ± 0.42b,c 3.83 ± 0.56a 3.60 ± 0.53a 3.52 ± 0.75b,c 4.47 ± 0.61a 4.61 ± 0.55a

Antagonistic co-activation [%] 8.4 ± 4.3 11.1 ± 6.3 8.9 ± 6.1 8.5 ± 6.3 8.1 ± 5.1 8.5 ± 4.5

Tendon resting length [mm] 49.2 ± 8.5 52.0 ± 4.4 51.0 ± 8.4 50.6 ± 6.9 53.0 ± 7.6 48.1 ± 5.9

Tendon normalized stiffness [kN/strain]∗# 41.5 ± 11.6b,c 57.2 ± 11.1a 63.3 ± 15.7a 51.0 ± 15.1b,c 65.9 ± 14.7a 70.5 ± 14.5a

#Statistically significant effect of activity (p < 0.05). ∗Statistically significant effect of age (p < 0.05). aStatistically significant difference to EA (p < 0.05). bStatistically
significant difference to LA (p < 0.05). cStatistically significant difference to YA (p < 0.05).
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FIGURE 1 | Mean values and standard error (error bars) of vastus lateralis (VL)
muscle thickness (A), pennation angle (B), and normalized fascicle length (C;
normalized to femur length) of non-athletes (black) and athletes (white) in early
adolescence (EA), late adolescence (LA), and young adulthood (YA).
#Statistically significant effect of activity (p < 0.05). ∗Statistically significant
effect of age (p < 0.05).

had lower tendon strain compared to YA (p = 0.039, f = 0.33),
but there were no statistically significant differences between EA
and LA (p = 0.120), or LA and YA (p = 1.0). There was a tendency
toward an effect of activity on patellar tendon strain (p = 0.072,
f Activity = 0.22), but no age-by-activity interaction (p = 0.389).

There was a significant correlation between tendon force
and tendon stiffness (r = 0.631, p < 0.001, Figure 3A) for
the whole investigated group of participants. The residuals
of the regression model that included group-specific terms

FIGURE 2 | Mean values and standard error (error bars) of patellar tendon:
tendon force (A), tendon stiffness (B), and tendon strain (C) of non-athletes
(black) and athletes (white) in EA, LA, and YA. #Statistically significant effect of
activity (p < 0.05). ∗Statistically significant effect of age (p < 0.05).
(#)Tendency for an effect of activity, p = 0.072.

showed a tendency for an activity effect (p = 0.098) and no
effect of age (p = 0.524) or age-by-activity interaction (0.536,
Figure 3B). Examining the individual tendon strain values during
the maximum isometric contractions, it is notable that athletes
were more likely to reach strain magnitudes higher than 9% strain
compared to non-athlete controls (frequency in athletes: 28–66%
and in non-athletes: 15–33%, Figure 4). Further, the frequency
of individuals that reach strain values greater than 9% increased
from EA to YA in both athletes and non-athletes (Figure 4).
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FIGURE 3 | (A) Correlation of tendon force and stiffness of non-athletes (black) and athletes (white) in early adolescence (EA, triangles), late adolescence (LA,
circles), and young adulthood (YA, squares). (B) Means and standard error (error bars) of the residuals of the group-specific linear regression model (see section
“Materials and Methods”) of non-athletes and athletes in EA, LA, and YA. (#)Tendency for an effect of activity, p = 0.098.

DISCUSSION

The present cross-sectional study investigated the development
of quadriceps femoris muscle strength, VL architecture and
patellar tendon mechanical properties during adolescence and
how it is influenced by athletic training. The results show that,
both muscle and tendon were affected by athletic training,
demonstrating greater muscle strength, tendon stiffness and VL
thickness in athletes compared to non-athlete controls. However,
although the absolute values were different between athletes and
controls, the development of muscle strength, tendon stiffness
and VL thickness from early adolescent to adulthood did not
differ significantly, indicating a similar effect of maturation on
muscle-tendon properties in both groups.

There was a marked increase in muscle strength of the
knee extensors from early to late adolescents in both athletes
(62%) and non-athletes (86%) and no differences between late
adolescent and young adults. These findings are in agreement
with earlier studies reporting the effect of maturation on the
muscle strength development (Kanehisa et al., 1995a,b; Landi
et al., 2017). In all investigated age-groups, athletes demonstrated
greater muscle strength and VL muscle thickness compared to
non-athletes, evidencing a training-induced adaptation in the
knee extensor muscles. Furthermore, the increased VL muscle
thickness indicates muscle hypertrophy even in the EA as a
consequence of intensive athletic training. Similarly, a marked
increase from EA to LA without any differences between LA
and YA and a clear effect of athletic training was found in
patellar tendon stiffness and normalized patellar tendon stiffness.
In a previous study (Mersmann et al., 2017c), we reported
greater patellar tendon stiffness in late-adolescent Volleyball
athletes compared to untrained controls, demonstrating the
tendon’s responsiveness to mechanical loading in this age. Our
current study provides additional evidence that tendons adapt to
increased mechanical loading and enhance their stiffness already

in EA. In our EA participants, the average enhancement in
patellar tendon stiffness due to training was ∼25%, which can be
interpreted as clear and functionally relevant adaptation.

The main alteration in muscle strength and tendon stiffness
due to maturation seems to occur between EA and LA. In this
stage also the main changes in the femur length, body height and
body mass occurred, which indicates an analogous development
of the functional and mechanical muscle-tendon properties
with the skeletal system. Further, normalized fascicle length
(fascicle length/femur length) was similar between all age groups
and without any athletic training effect, indicating that during
maturation fascicle length development is proportional to bone
growth. To our knowledge, this is the first study investigating
the interaction between athletic training and age in both muscle
and tendon properties during adolescence. We hypothesized an
effect of athletic training on the development in muscle and
tendon properties during adolescence because the level of the
androgenic hormones (e.g., testosterone), which promote protein
synthesis and, thus, muscle hypertrophy (Murray and Clayton,
2013; Lundberg, 2017), is different in each stage of maturation
and can additionally be affected by athletic training (Kraemer
et al., 1992; Zakas et al., 1994; Tsolakis et al., 2004). The absence
of any age-by-activity interaction indicates that, irrespective of
the marked differences in the average levels of muscle strength
and tendon stiffness, the course of the development of these
muscle-tendon unit properties with maturation is similar in
athletes compared to non-athletes. This is somewhat in contrast
to our earlier assumptions (Mersmann et al., 2017a) and the
conclusion of earlier meta-analyses (Behringer et al., 2010;
Moran et al., 2017) that the trainability of muscle strength
and the anabolic response of muscles to mechanical stimuli
would increase during adolescent maturation, which we thought
would affect the course of muscle-tendon development with
increasing differences between the athletes and controls with age.
Though the systemic basal levels of sex and growth hormones
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FIGURE 4 | Individual patellar tendon strain values during maximal isometric contractions of non-athletes (squares) and athletes (triangles) in early adolescent (A;
EA), late adolescent (B; LA) and young adulthood (C; YA), and frequency of cases with strain values greater than 9% for each group (D).

(Murray and Clayton, 2013) and the endocrine response to
exercise increase with maturation and influence muscle and
tendon protein metabolism (Rooyackers and Nair, 1997; Hulthén
et al., 2001; Doessing et al., 2010; Hansen and Kjaer, 2014), the
local responses of the muscle-tendon unit to training seems not
to be a simple function of the maturation-related changes of the
basal levels and load-induced secretion of systemic hormones.
For instance, research that directly compared the effects of
training in states of high or low concentrations of circulating
endogenous hormones found no differences in the intramuscular
anabolic signaling (Spiering et al., 2008), acute protein synthesis
(West et al., 2009), or the local functional and morphological
response to repeated training sessions (West et al., 2010).

In our study, we found an effect of age on tendon strain
during maximum contractions with significantly higher tendon
strain in adults compared to EA, indicating a disproportionate
increase of tendon force compared to stiffness with increasing
age. Further, although statistically not significant, the strain

values during the maximum isometric contractions as well as the
residuals of the regression model predicting tendon stiffness by
tendon force were in tendency greater in athletes (p = 0.072 and
p = 0.098, respectively). When examining the individual strain
values reached during the maximum isometric contractions in all
investigated age groups, it is notable that it was more likely in
athletes that individuals reached strain magnitudes higher than
9%, which is indicative of imbalances within the muscle-tendon
unit and resultant high mechanical demand for the tendon.
Further, the frequency of strain values over 9% increased from
EA to YA independent of activity status. These observations lend
support to the idea that both athletic training and maturation
can lead to an increased prevalence of imbalances between
muscle strength and tendon stiffness. Several studies (Lian et al.,
2005; Zwerver et al., 2011; Cassel et al., 2015; Simpson et al.,
2016) reported a similar phenomenon for the prevalence of
tendinopathy with regard to maturation and athletic training
(i.e., increased prevalence from EA to YA and in athletes). An
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increase of overall tendon strain has been shown to increase
local tissue strains at the common site of structural degeneration
in patellar tendinopathy (Lavagnino et al., 2008). Further, we
recently found an association of tendon strain and its structural
integrity in adolescent basketball players as well as increased
strain and impaired tendon microstructure in a subgroup
with tendinopathy (Mersmann et al., 2019). Thus, imbalances
between muscle strength and tendon stiffness developing during
maturation and with athletic training, repetitively subjecting the
tendon to high levels of strain, might be a risk factor in the
etiology of overuse-induced tendinopathy as well as the common
background tendinosis or the, rather rare, tendinitis. Further,
one might speculate that an increase of tendon strain during
muscle contraction might lead to a maltracking of the patellar,
redistribution of loads at the patellofemoral contact area and,
in consequence, patellofemoral pain (Powers et al., 2017), which
is also common in adolescents (Rathleff, 2016). Though the
association of musculotendinous imbalances to mechanisms of
overuse injury warrants experimental evidence, from a preventive
point of view, the integration of a specific training that increases
tendon stiffness and facilitates a balanced adaptation between
muscle and tendon might be an important approach for the
athletic practice. Previous research of our group indicates that an
effective training stimulus for tendon adaptation is a combination
of high loading magnitude, an appropriate loading duration in
every repetition (i.e., 3 s) and repetitive loading (Arampatzis et al.,
2007a, 2010; Bohm et al., 2014). In children, the development of
resistance training competency should precede the application
of high loads (Lloyd et al., 2014), yet it has already been
shown that specific tendon training in accordance to the exercise
recommendations above can be successfully applied in children
to increase their tendon stiffness (Waugh et al., 2014). A more
comprehensive discussion of tendon training in children and
adolescents for the prevention of muscle-tendon imbalances
and tendinopathy and specific exercise recommendations can be
found elsewhere (Mersmann et al., 2017c).

A limitation of the present study is the lack of control
for biological age. However, the assessment of skeletal age
involves exposure to radiation and, in addition to the perceived
invasiveness, the accuracy of grading the secondary sex
characteristics is rather low (Schlossberger et al., 1992; Taylor
et al., 2001; Slough et al., 2013), which is a particular problem
for small sample comparisons. Estimations of maturity based
on anthropometric data are a tempting alternative, yet these
predictions cannot account for the considerable variation in
anthropometry at a similar stage of maturity. As we included
athletes from sports in which body height is a selection
criterion (e.g., basketball and volleyball) and, as a result,
our athletes were significantly taller compared to the non-
athlete controls, any anthropometry-based prediction would
also suggest a higher level of maturity in athletes. Even if
that might not reflect actual differences in biological age,
we cannot rule out differences in maturity. While maturity-
related differences in physical characteristics have been reported
to be largely eliminated in non-athletes and athletes aged
16–18 (Malina et al., 2004, 2013), the differences observed
between athletes, and non-athletes need to be interpreted

with care considering the EA group. On the other hand, it
seems very unlikely that the clear differences in calendric age
between age-groups would not be representative for different
stages of maturity. Therefore, we do not believe that our
conclusions considering the effects of maturation are affected
by the lack of an assessment of actual maturity. Finally, due
to the inherent limitations of cross-sectional studies, further
longitudinal research is needed to confirm the development of
the musculotendinous system and its interaction with mechanical
loading indicated by our data.

CONCLUSION

In conclusion, the present study provides evidence that aside
from higher levels of muscle strength, muscle thickness
and tendon stiffness in athletes, the development of the
properties of the knee extensor muscle-tendon unit from
early-adolescence to adulthood is similar in athletes and non-
athlete controls, with the major alterations occurring between
early and LA. The frequency of imbalances in the quadriceps
femoris muscle-tendon unit seem to increase with both age
and athletic training during the adolescence-to-adulthood
development and result in an increased mechanical demand
for the patellar tendon. Therefore, we recommend to introduce
specific intervention protocols in the athletic training practice
in order to support a balanced adaptation between muscle
and tendon.
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