
Frontiers in Physiology | www.frontiersin.org 1 September 2019 | Volume 10 | Article 1108

REVIEW
published: 04 September 2019

doi: 10.3389/fphys.2019.01108

Edited by: 
Rui Plácido,  

University of Lisbon, Portugal

Reviewed by: 
Francisco Altamirano,  

UT Southwestern Medical Center, 
United States
Bijan Ghaleh,  

Université Paris-Est Créteil Val de 
Marne, France

*Correspondence: 
Daphne Merkus  

d.merkus@erasmusmc.nl

†These authors have contributed 
equally to this work

Specialty section: 
This article was submitted to  

Clinical and Translational Physiology,  
a section of the journal  
Frontiers in Physiology

Received: 21 January 2019
Accepted: 12 August 2019

Published: 04 September 2019

Citation:
van de Wouw J, Broekhuizen M, 
Sorop O, Joles JA, Verhaar MC, 

Duncker DJ, Danser AHJ and 
Merkus D (2019) Chronic Kidney 

Disease as a Risk Factor for Heart 
Failure With Preserved Ejection 

Fraction: A Focus on Microcirculatory 
Factors and Therapeutic Targets.

Front. Physiol. 10:1108.
doi: 10.3389/fphys.2019.01108

Chronic Kidney Disease as a Risk 
Factor for Heart Failure With 
Preserved Ejection Fraction: A Focus 
on Microcirculatory Factors and 
Therapeutic Targets
Jens van de Wouw1†, Michelle Broekhuizen1,2,3†, Oana Sorop1, Jaap A. Joles4, 
Marianne C. Verhaar4, Dirk J. Duncker1, A. H. Jan Danser2 and Daphne Merkus1*

1 Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, 
Netherlands, 2 Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands, 3 Division of 
Neonatology, Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands, 4 Department of 
Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands

Heart failure (HF) and chronic kidney disease (CKD) co-exist, and it is estimated that about 
50% of HF patients suffer from CKD. Although studies have been performed on the 
association between CKD and HF with reduced ejection fraction (HFrEF), less is known 
about the link between CKD and heart failure with preserved ejection fraction (HFpEF). 
Approximately, 50% of all patients with HF suffer from HFpEF, and this percentage is 
projected to rise in the coming years. Therapies for HFrEF are long established and 
considered quite successful. In contrast, clinical trials for treatment of HFpEF have all 
shown negative or disputable results. This is likely due to the multifactorial character and 
the lack of pathophysiological knowledge of HFpEF. The typical co-existence of HFpEF 
and CKD is partially due to common underlying comorbidities, such as hypertension, 
dyslipidemia and diabetes. Macrovascular changes accompanying CKD, such as 
hypertension and arterial stiffening, have been described to contribute to HFpEF 
development. Furthermore, several renal factors have a direct impact on the heart and/
or coronary microvasculature and may underlie the association between CKD and HFpEF. 
These factors include: (1) activation of the renin-angiotensin-aldosterone system, (2) 
anemia, (3) hypercalcemia, hyperphosphatemia and increased levels of FGF-23, and (4) 
uremic toxins. This review critically discusses the above factors, focusing on their potential 
contribution to coronary dysfunction, left ventricular stiffening, and delayed left ventricular 
relaxation. We further summarize the directions of novel treatment options for HFpEF 
based on the contribution of these renal drivers.
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INTRODUCTION

Heart failure with preserved ejection fraction (HFpEF) is 
characterized by impaired relaxation of the left ventricle (LV) 
during diastole and accounts for over 50% of all patients 
with heart failure (HF) (Redfield et  al., 2003; Yancy et  al., 
2006). Both the proportion of HFpEF-patients and morbidity, 
mortality, and healthcare costs associated with this disease 
are rising (Bhatia et  al., 2006; Liao et  al., 2006; Owan et  al., 
2006; Steinberg et  al., 2012). Multiple processes including 
cardiomyocyte hypertrophy, interstitial fibrosis, impaired calcium 
handling, and increased passive cardiomyocyte stiffness 
contribute to the left ventricular stiffening characteristic for 
HFpEF (Borlaug, 2014; Gladden et  al., 2014; Sharma and 
Kass, 2014). Although ejection fraction is still normal, systolic 
dysfunction is present in HFpEF, as measured by tissue Doppler 
or strain imaging (Borlaug, 2014; Tadic et  al., 2017). In large 
population studies, the majority of the HFpEF patients are 
women (Masoudi et  al., 2003). Whereas men have more 
coronary artery disease indicative of macrovascular disease, 
women typically present with obesity, left ventricular 
hypertrophy, diastolic dysfunction and more often have 
microvascular angina (Gori et  al., 2014a; Crea et  al., 2017).

The current paradigm for HFpEF proposes that commonly 
present comorbidities such as diabetes mellitus (DM), obesity, 
and hypertension lead to a systemic pro-inflammatory state. 
This pro-inflammatory state causes coronary microvascular 
dysfunction, evidenced by an imbalance between nitric oxide 
(NO) and reactive oxygen species (ROS) leading to stiffening 
of the LV (Paulus and Tschope, 2013; Gladden et  al., 2014). 
Excessive ROS-production in the endothelium of the coronary 
microvasculature lowers NO bioavailability through scavenging 
of NO. Loss of NO reduces soluble guanylate cyclase (sGC) 
activity in the cardiomyocytes, thereby lowering cGMP levels 
and decreasing PKG activity. The latter results in 
hypophosphorylation of titin and induces cardiomyocyte 
hypertrophy (Paulus and Tschope, 2013; Franssen et al., 2016). 
Given the proposed central role for disruption of the NO 
pathway in pathogenesis of HFpEF, it is rather surprising 
that all large clinical trials, which targeted the NO-cGMP-PKG 
pathway failed to date. Organic and inorganic nitrates are 
therapeutic agents that can be metabolized to NO systemically 
and thus act as NO-donors. However, the NEAT-HFPEF trial 
showed that isosorbide mononitrate, a long working organic 
nitrate, tended to reduce physical activity and did not improve 
quality of life and exercise capacity (Redfield et  al., 2015). 
Inhaled  nebulized inorganic nitrate, also did not improve 
exercise  capacity, as recently shown in the INDIE-HFpEF 

trial (Borlaug  et  al., 2018). The phase 2b SOCRATES-
PRESERVED trial showed no reduction of NT-pro-BNP or 
left atrial dimensions at 12  weeks after treatment with the 
sGC stimulator Vericiguat. However, Vericiguat was well 
tolerated and increased quality of life, warranting further 
research (Pieske et al., 2017). Inhibition of the cGMP-degrading 
enzyme phosphodiesterase 5 with Sildenafil did not improve 
clinical status rank score or exercise capacity (Redfield et  al., 
2013), and failed to improve vascular and cardiac function 
(Borlaug et al., 2015). Therefore, new therapeutic targets need 
to be  identified that can interfere with the development and 
progression of HFpEF.

It is important to note that the impact of microvascular 
dysfunction on cardiac structure and function is not limited 
to dysfunction of the NO-cGMP-PKG pathway. Indeed, 
upregulation of VCAM-1 and E-selectin on the coronary 
microvascular endothelium induces transendothelial leucocyte 
migration and activation, increased transforming growth factor 
β (TGF-β) levels, thereby promoting pro-fibrotic pathways and 
differentiation of fibroblast to myofibroblasts (Westermann et al., 
2011; Paulus and Tschope, 2013) and increasing interstitial 
fibrosis (van Heerebeek et  al., 2012; Sharma and Kass, 2014). 
Secretion of autocrine and paracrine factors, such as apelin, 
TGF-β, and endothelin-1, by dysfunctional coronary microvascular 
endothelial cells can also directly induce left ventricular 
hypertrophy (Kamo et  al., 2015). Finally, capillary rarefaction 
and inadequate angiogenesis could contribute to a decreased 
oxygen supply and subsequent left ventricular myocardial stiffening 
(Gladden  et  al., 2014).

The so-called cardio-renal syndrome describes the 
co-existence of HF and chronic kidney disease (CKD). 
Approximately 50% of the patients with HFpEF also suffer 
from CKD (Ter Maaten et al., 2016). Although this co-existence 
is partially due to shared risk factors, such as hypertension, 
DM and obesity, it has also been proposed that HF directly 
impacts kidney function, and vice versa, CKD worsens cardiac 
function (Brouwers et  al., 2013). Interdependence of the heart 
and kidneys, similarities between their microvascular networks, 
and the coexistence of CKD and HF further imply a role for 
microvascular dysfunction in development and progression of 
both diseases (Ter Maaten et  al., 2016).

Given the co-incidence of HFpEF and CKD, the present 
review aims to provide a mechanistic link between CKD and 
HFpEF, by describing potential pathways through which CKD 
can induce or aggravate coronary microvascular dysfunction 
and thereby contribute to the development and progression 
of left ventricular hypertrophy and diastolic dysfunction. These 
include mechanical effects, neurohumoral activation, systemic 
inflammation, anemia and changes in mineral metabolism 
as induced by CKD (Figure 1). As some of these CKD-induced 
effects may induce HFpEF and contribute to cardiovascular 
disease in general, they may provide targets to intervene 
with the development of diastolic dysfunction and/or its 
progression towards HFpEF. Hence, this review will also 
describe the (potential) druggable therapeutic targets within 
these pathways, and where applicable, clinical trials intervening 
with these pathways.

Abbreviations: AGE, advanced glycation endproduct; BNP, brain natriuretic 
peptide; cGMP, cyclic guanosine monophophate; CKD, chronic kidney disease; 
CRP, C-reactive protein; DM, diabetes mellitus; eGFR, estimated glomerular 
filtration rate; EPO, erythropoietin; FGF-23, fibroblast growth factor 23; HF, heart 
failure; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure 
with reduced ejection fraction; LV, left ventricle; NO, nitric oxide; NT-proBNP, 
N-terminal prohormone of brain natriuretic peptide; PKG, protein kinase G; 
PTH, parathyroid hormone; RAAS, renin-angiotensin-aldosterone system; ROS, 
reactive oxygen species; TGF-β, transforming growth factor β.
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CLINICAL ASSOCIATIONS BETWEEN 
CHRONIC KIDNEY DISEASE, 
CORONARY MICROVASCULAR 
DYSFUNCTION, AND HEART FAILURE 
WITH PRESERVED EJECTION 
FRACTION

CKD is defined as a progressive decline of renal function and 
is associated with hypertension, proteinuria, and the loss of 
nephron mass (Noone and Licht, 2014). CKD is an independent 
risk factor for the development of HF, with increasing 
cardiovascular risk and mortality as renal function declines 
(Tonelli et  al., 2006; Ronco et  al., 2008). Additionally, HF is 
the major cause of death among patients with CKD (Kottgen 
et  al., 2007; Bansal et  al., 2017). Although renal dysfunction 
is present in about half of the patients with HF in general 
(Hillege et  al., 2006; Smith et  al., 2013), and is an important 
prognostic marker for adverse outcomes (Yancy et  al., 2006; 
Ahmed et  al., 2007; McAlister et  al., 2012), particularly the 
association between HFpEF and CKD is very strong. In a cohort 
comparing patients with heart failure with reduced ejection 
fraction (HFrEF), HF with mid-range ejection fraction and 
HFpEF, renal dysfunction was associated with increased mortality 
in all HF subtypes, but was most prevalent in HFpEF (Streng 
et  al., 2018). Gori et  al. showed that 62% of the patients with 
HFpEF display abnormalities in at least one marker of renal 
insufficiency, with different markers correlating with different 
HFpEF phenotypes (Gori et  al., 2014b). Further evidence for 
a causal relationship between CKD and HFpEF comes from a 
rat model, in which CKD was mimicked by nephrectomy of 
one whole kidney and two-third of the remaining kidney. Loss 
of nephron mass in these rats resulted in a cardiac HFpEF-like 
phenotype, with LV hypertrophy and diastolic dysfunction, but 
critical HFpEF features such as lung congestion and exercise 
intolerance were not reported (Sarkozy et al., 2019). In accordance 
with CKD as a causative factor for HFpEF, the majority of 
patients on hemodialysis display diastolic dysfunction and left 

ventricular hypertrophy, whereas overt systolic dysfunction and 
HFrEF are visible in only a minority of these patients (Hickson 
et  al., 2016; Antlanger et  al., 2017). In a prospective cohort 
study, 74% of the patients admitted for dialysis displayed left 
ventricular hypertrophy. In contrast, systolic dysfunction and 
left ventricular dilatation were present in only 15% and 32% 
of the patients, respectively (Foley et  al., 2010). Left ventricular 
hypertrophy is not restricted to end stage CKD, but is already 
highly prevalent in the general CKD population (Collins, 2003). 
Indeed, the first visible myocardial alteration in patients with 
CKD is left ventricular hypertrophy (London, 2002), developing 
early in the progression of kidney dysfunction (Levin et  al., 
1996; Pecoits-Filho et  al., 2012) and often co-occurring with 
myocardial fibrosis and diastolic dysfunction (Silberberg et  al., 
1989). Hypertension is an important predictor for development 
of left ventricular hypertrophy and HFpEF in patients with 
CKD (Levin et al., 1996; Thomas et al., 2008), while blood pressure 
reduction is associated with a lower cardiovascular  risk (Blood 
Pressure Lowering Treatment Trialists Collaboration et al., 2013).

It should be  noted however, that in addition to decreased 
diastolic function, both hemodialysis and pre-dialysis CKD 
patients show impaired regional systolic function measured 
by longitudinal, circumferential, and radial strain while 
ejection fraction was preserved (Yan et  al., 2011). Similarly, 
patients with HFpEF can also display signs of systolic 
dysfunction defined by decreased global longitudinal strain 
and S′ velocity measured with tissue Doppler. Unger et  al. 
showed in a large group of HFpEF patients that not only 
diastolic dysfunction, but also the severity of systolic 
dysfunction and mortality increased in parallel with CKD 
stage (Unger et  al., 2016).

VASCULAR CONSEQUENCES OF 
CHRONIC KIDNEY DISEASE

Arterial remodeling in CKD patients is characterized by arterial 
stiffening, increasing pulse pressure, as a consequence of premature 

FIGURE 1 | Schematic overview of the risk factors that can contribute to the development of heart failure with preserved ejection fraction (HFpEF) in patients with 
chronic kidney disease (CKD).
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aging, and atherosclerosis of the arteries (Laurent et  al., 2006; 
Briet et  al., 2012). Premature vascular aging is common in 
both CKD and HFpEF. Increased aortic stiffness has been 
strongly associated with both left ventricular dysfunction, and 
markers of renal dysfunction (Bortolotto et  al., 1999; Borlaug 
and Kass, 2011), which precede and increase cardiovascular 
risk in patients with CKD (Kendrick et  al., 2010; Middleton 
and Pun, 2010). Stiffer arteries result in an increased pulse 
pressure, as well as an increased pulse wave velocity, which 
cause the increased pulsatility to be  transmitted into the 
microvasculature (Mitchell, 2008). Renal and coronary 
microvascular networks are very vulnerable to pulsatile pressure 
and flow, thus failure in decreasing pulsatility can result in 
damage of the capillary networks (Mitchell, 2008; Safar et  al., 
2015), and thereby contribute to coronary microvascular 
dysfunction. Fukushima et  al. showed an impaired global 
myocardial flow reserve in CKD patients, even with a normal 
regional perfusion and function of the LV (Fukushima et  al., 
2012). Furthermore, coronary microvascular dysfunction was 
shown to be  present in patients with end stage CKD (Bozbas 
et  al., 2009), and was associated with an increased risk of 
cardiac death in patients with renal failure (Murthy et al., 2012).

Hypertension in CKD is thought to be mainly a consequence 
of volume overload due to increased sodium reabsorption by 
the kidneys (Charra and Chazot, 2003; Judd and Calhoun, 
2015). Increased sodium loading might also contribute to HFpEF 
development independent of hypertension, through inducing 
a systemic pro-inflammatory state, which is detrimental to the 
coronary microvasculature (Yilmaz et  al., 2012). Indeed, 
empagliflozin, a sodium glucose co-transporter-2 (SGLT2) 
inhibitor, initially developed as an anti-diabetic drug, resulted 
in decreased cardiovascular mortality in an initial type 2 diabetes 
cohort (Zinman et  al., 2015). Interestingly, these effects seem 
to, at least for some part, be  specific for empagliflozin as 
canagliflozin protected less against cardiovascular death (Neal 
et  al., 2017). Although the mechanisms of action have not 
completely been elucidated yet, multiple pre-clinical studies 
are being conducted to investigate the myocardial effects of 
SGLT2-inhibitors (Uthman et  al., 2018a,b). Currently, three 
mechanisms have been proposed to contribute to reduced 
cardiovascular mortality in patients receiving SGLT2-inhibitors 
in general and/or empagliflozin in particular (Bertero et  al., 
2018); (1) osmotic diuresis and natriuresis lower blood pressure 
and subsequently reduce left ventricular afterload; (2) 
empagliflozin may instigate a shift to cardiac ketone body 
oxidation, increasing mitochondrial respiratory efficiency and 
reducing ROS production; (3) empagliflozin can lower 
intracellular Na+ by inhibition of the cardiac Na+/H+ exchanger 
(NHE) and induce coronary vasodilation (Uthman et al., 2018a). 
The latter effect is especially promising as increased intracellular 
Na+, as present in failing cardiomyocytes, results in altered 
mitochondrial Ca2+ handling and subsequent ROS production, 
which may be  ameliorated by SGLT2-inhibitors (Bertero et  al., 
2018). SGLT2-inhibitors, therefore, seem promising in the 
cardiorenal field as they are both cardio- and reno-protective 
(Butler et al., 2017). The effect of empagliflozin on cardiovascular 
mortality in HFpEF specifically, regardless of diabetic status, 

is being investigated in the ongoing EMPEROR-Preserved trial 
(ClinicalTrials.gov NCT03057951).

NEUROHUMORAL CONSEQUENCES OF 
CHRONIC KIDNEY DISEASE

CKD is associated with hyperactivation of the renin-angiotensin-
aldosterone system (RAAS) in response to renal hypoxia resulting 
in volume overload (Nangaku and Fujita, 2008), which may 
contribute to the development and/or progression of HFpEF. 
Interestingly, testosterone can increase, whereas estrogen can lower 
renin concentrations (Fischer et al., 2002). Such protective effects 
of estrogen would especially be relevant in pre-menopausal women, 
and be lost in the typically older, post-menopausal female HFpEF 
population. Consistent with a detrimental effect of RAAS activation 
on HFpEF progression, RAAS activation can increase myocardial 
workload, by elevating systemic vascular resistance and left 
ventricular afterload, through vasoconstriction of systemic blood 
vessels in response to angiotensin II or by causing volume 
expansion due to increased sodium and water reabsorption in 
response to increased aldosterone levels (Brown, 2013; Forrester 
et  al., 2018). It is not clear if angiotensin II can also induce 
myocardial cell hypertrophy and fibrosis independently of 
hypertension. Although in vitro studies have shown that there 
is a hypertension-independent effect of angiotensin-II on 
cardiomyocytes, multiple in vivo studies could not confirm these 
findings, suggesting that the effect of angiotensin II is blood 
pressure-dependent (Reudelhuber et  al., 2007; Qi et  al., 2011). 
Furthermore, RAAS-activation induces coronary microvascular 
endothelial dysfunction, through NADP(H)-oxidase activation 
and subsequent ROS formation (Bongartz et  al., 2005; Wong 
et  al., 2013). Myocardial perfusion might also be  impaired by 
the vasoconstrictor effects of angiotensin II. During prolonged 
exercise, vasoconstriction occurs within metabolically less active 
tissues, mediated by angiotensin II and endothelin-1. Such response 
is inhibited in metabolically active tissues by NO and prostanoids, 
resulting in an efficient distribution of blood (Merkus et  al., 
2006). In a state of systemic inflammation, locally decreased NO 
bioavailability in the coronary microvasculature might result in 
disinhibition of angiotensin II-mediated vasoconstriction, resulting 
in reduced blood delivery to the heart.

Downstream from angiotensin II in the RAAS, aldosterone 
regulates blood pressure and sodium/potassium homeostasis 
through the mineralocorticoid receptor in the kidneys, by 
enhancing sodium reabsorption, thereby contributing to 
hypertension and high plasma sodium levels. Besides the renal 
effects, aldosterone has been shown to directly promote 
myocardial fibrosis, left ventricular hypertrophy, and coronary 
microvascular dysfunction, acting through endothelial and 
myocardial mineralocorticoid receptors, independently of 
angiotensin II (Brown, 2013).

RAAS inhibition is the preferred therapeutic strategy to slow 
down progression of renal failure and reduce proteinuria in CKD 
(Levin and Stevens, 2014). Despite the fact that most data show 
RAAS overactivation in HFpEF, clinical trials in HFpEF with 
drugs acting on the RAAS, have failed to improve (all-cause) 
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mortality so far (Pitt et  al., 2014; Zhang et  al., 2016). It is, 
however, important to note that AT1-blockade with Irbesartan 
reduced mortality and improved outcome on cardiovascular 
endpoints in patients with natriuretic peptides below the 
median, but not in patients with higher natriuretic peptide levels 
(Anand  et  al., 2011), suggesting that RAAS inhibition may 
be  beneficial in early HFpEF. Furthermore, post hoc analysis of 
the TOPCAT trial demonstrated geographically different effects 
of the mineralocorticoid receptor blocker spironolactone, with 
small clinical benefits in patients from America (Pfeffer et  al., 
2015). However, these patients were generally older, had a higher 
prevalence of atrial fibrillation and diabetes, were less likely to 
have experienced prior myocardial infarction, had a higher ejection 
fraction and had a worse renal function (Pfeffer et  al., 2015), 
suggesting that a benefit of spironolactone was associated with 
a more HFpEF-like phenotype. A more recent post hoc analysis 
of this trial further showed that spironolactone did show an 
improvement in primary endpoints in patients with lower levels 
of natriuretic peptides and hence less advanced disease (Anand 
et  al., 2017). Consistent with this suggestion, a recent meta-
analysis showed that mineralocorticoid receptor antagonists do 
improve indices of diastolic function and cardiac structure in 
HFpEF patients (Kapelios et  al., 2019). Interestingly, treatment 
of DM type 2 with mineralocorticoid receptor antagonists also 
improved coronary microvascular function (Garg et  al., 2015). 
Altogether, these data suggest that intervening with the RAAS 
is beneficial in patients with less advanced HFpEF, whereas 
beneficial effects are lost in patients with more advanced disease. 
Therefore, clinical studies investigating HFpEF progression and 
clinical trials focusing on reducing or preventing progression of 
early HFpEF into advanced HFpEF need to be  conducted.

Another approach intervening with the RAAS is the use of 
Entresto, an angiotensin receptor and a neprilysin inhibitor (ARNI), 
which is a combination of valsartan (AT1 receptor blocker) and 
sacubitril (neprilysin inhibitor). Neprilysin inhibition exerts its 
beneficial effects through inhibition of the breakdown of natriuretic 
peptides. Entresto was superior to the standard therapy, enalapril, 
in patients with HFrEF in reducing mortality and number of 
hospitalizations for HF (McMurray et  al., 2014). In hypertensive 
rats with diabetes, ARNI reduced proteinuria, glomerulosclerosis, 
and heart weight more strongly than AT1 receptor blockade, and 
this occurred independently of blood pressure (Roksnoer et  al., 
2015, 2016). In a phase 2 double-blind randomized controlled 
trial in HFpEF patients, Entresto reduced NT-pro-BNP plasma 
levels and left atrial diameters to a greater extent than valsartan 
(Solomon et  al., 2012). These findings led to the ongoing 
PARAGON-HF trial (ClinicalTrials.gov NCT01920711), which 
investigates the long-term effect (26 months) of Entresto compared 
to valsartan in HFpEF (Solomon et  al., 2017).

Both CKD and HFpEF are accompanied by autonomic 
dysregulation (Salman, 2015). Sympathetic hyperactivity has a 
detrimental effect on both the heart and the kidney and 
aggravates hypertension and proteinuria. Furthermore, HFpEF 
patients show attenuated withdrawal of parasympathetic tone 
and excessive sympathoexcitation during exercise that cause 
β-adrenergic desensitization, chronotropic incompetence, and 
may thereby contribute to the limited exercise tolerance of 

these patients (Phan et  al., 2010). A critical role for CKD in 
this process was suggested by Klein et  al. (Klein et  al., 2015), 
showing a clear correlation between CKD, decreased heart rate 
variability, chronotropic incompetence in HFpEF, and decreased 
peak VO2. Unfortunately, neither the SENIORS trial (van 
Veldhuisen et  al., 2009), nor the OPTIMIZE-HF registry 
(Hernandez et  al., 2009) showed a beneficial effect of beta-
adrenoceptor blockade on all-cause mortality or cardiovascular 
hospitalizations. Furthermore, beta-adrenoceptor blockade failed 
to improve LV systolic or diastolic function in patients with 
ejection fraction >35%, as measured in the SENIORS 
echocardiography sub-study (Ghio et  al., 2006). It should 
be  noted that in the SENIORS trial ejection fraction cutoff 
was set at 35%, which is lower than current consensus about 
the cutoff of reduced and preserved ejection fraction. Additionally, 
in these studies, beta-adrenoceptor blockade was administered 
on top of existing medication, which often included RAAS-
inhibitors. Conversely, in patients with treatment resistant 
hypertension, renal sympathetic denervation did improve diastolic 
function and reduce left ventricular hypertrophy, besides reducing 
blood pressure (Brandt et  al., 2012), suggesting that there is 
indeed an interaction between CKD, sympathetic hyperactivity 
and diastolic cardiac function.

SYSTEMIC INFLAMMATORY 
CONSEQUENCES OF CHRONIC KIDNEY 
DISEASE

A pro-inflammatory state is already present in early stages of 
CKD (Stenvinkel et  al., 2002), and is likely an important risk 
factor for cardiovascular morbidity and mortality on the long 
term (Ruggenenti et  al., 2001; Sarnak et  al., 2003). In HFpEF, 
a systemic pro-inflammatory state has been proposed to be  a 
critical causal factor in coronary microvascular dysfunction as 
inflammatory cytokines can directly induce endothelial cell 
dysfunction, cause upregulation of adhesion molecules on coronary 
microvascular endothelial cells, and reduce NO bioavailability, 
resulting in impaired vasodilation and pro-fibrotic signaling 
(Figure  2; Rosner et  al., 2012; Paulus and Tschope, 2013).

Targeting this pro-inflammatory state with 14  days of 
treatment with the recombinant human IL-1 receptor antagonist 
Anakinra, increased peak VO2, which correlated with a 
reduction in C-reactive protein (CRP) in the D-HART trial 
including 12 patients (Van Tassell et al., 2014). Unfortunately, 
prolonged treatment (12  weeks) in the follow-up D-HART2 
trial in 28 patients did not increase VO2, despite small 
improvements in exercise duration and quality of life, as well 
as reductions in CRP and NT-pro-BNP compared to baseline 
values (Van Tassell et  al., 2018).

It is possible that targeting systemic inflammation in general 
to ameliorate HFpEF is too broad to be successful. In the subsequent 
paragraphs, the contribution of the individual systemic factors: 
anemia, proteinuria, and reduced excretion of so-called uremic 
toxins as consequences of renal dysfunction and possible contributors 
to systemic inflammation, development of microvascular 
dysfunction, and HFpEF will be  considered in more detail.
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Anemia
Anemia is an independent risk factor for development of HFpEF 
(Foley et al., 2010; Gori et al., 2014b), and is strongly associated 
with CKD (Thomas et  al., 2008). Although hemoglobin levels 
decreased with worsening of kidney function in both patients 
with HFpEF and HFrEF, hemoglobin levels were slightly lower 
in patients with HFpEF as compared to HFrEF (Lofman et  al., 
2017). The main causes for anemia are iron deficiency and 
deficient erythropoietin (EPO) production in the renal tubular 
cells. In addition, urinary loss of red blood cells through enlarged 
fenestrations of endothelial cells in diseased glomeruli, hemolysis, 
vitamin B12 deficiency, hyperparathyroidism, and hemodilution 
may contribute to anemia in CKD patients (Westenbrink et al., 
2007; van der Putten et  al., 2008). Furthermore, the bone 
marrow erythropoietic response to EPO is impaired in CKD 
patients (van der Putten et al., 2008). Finally, the pro-inflammatory 
cytokine Il-6 can impair erythroid development, by inducing 
production of the iron regulatory peptide hepcidin by hepatocytes, 
increasing degradation of iron exporter ferroportin, and 
decreasing iron delivery to developing erythrocytes (Fraenkel, 
2015). Hence, the systemic inflammatory state in CKD, but 
also in HFpEF, can aggravate anemia.

It is unknown whether anemia, iron deficiency, and/or 
reduced EPO are causal factors in the development of HFpEF 
or mere markers of CKD. The most obvious effect of anemia 

is a general reduction in O2 transport. In 75% of the HFpEF 
patients, peripheral oxygen consumption was impaired due to 
impaired diffusive oxygen transport and utilization (Dhakal 
et  al., 2015). Hence, cardiac output needs to be  increased to 
maintain systemic oxygen delivery. Both the consequent increase 
in myocardial work, and the reduced oxygen-carrying capacity 
of the blood may contribute to an impaired myocardial O2 
balance. Such a disbalance between myocardial oxygen demand 
and supply is also present in ischemia with no obstructive 
coronary artery disease (INOCA), in which myocardial oxygen 
supply is limited by coronary microvascular dysfunction. Indeed, 
INOCA is increasingly being recognized as a risk factor for 
development of HFpEF (Crea et al., 2017; Obokata et al., 2018).

Anemia can also directly affect microvascular function as 
red blood cells can modulate microvascular tone (Cosby et  al., 
2003; Singel and Stamler, 2005). Red blood cells release NO, 
which is produced, particularly at low oxygen tensions, from 
deoxygenated hemoglobin and nitrite, to stimulate vasodilation, 
cGMP formation in smooth muscle cells and cardiomyocytes, 
and to inhibit mitochondrial respiration (Crawford et al., 2006). 
Thus, low levels of red blood cells simulate a condition of 
coronary microvascular dysfunction, with increased ROS and 
reduced NO, thereby inducing true coronary microvascular 
dysfunction and cardiomyocyte damage, which eventually can 
contribute to progression of HFpEF (Figure  2).

FIGURE 2 | A proposed schematic overview of the pathological mechanisms that underlie the progression of CKD to HFpEF. Blue box depicts renal factors; green 
box depicts coronary microvascular factors; and red box depicts myocardial changes contributing to HFpEF. AGEs, advanced glycation products; CKD, chronic 
kidney disease; EC, endothelial cell; FGF-23, fibroblast growth factor 23; HFpEF, heart failure with preserved ejection fraction; LV, left ventricle; NO, nitric oxide; 
RAAS, renin-angiotensin-aldosterone system; ROS, reactive oxygen species; VSMC, vascular smooth muscle cell.
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CKD patients on EPO therapy have shown signs of 
cardiovascular improvement and reversal of left ventricular 
hypertrophy (Goldberg et al., 1992; Frank et al., 2004), suggesting 
that correction of anemia may prevent progression of HFpEF. 
In addition to promoting red blood cell formation and correction 
of anemia, EPO can protect cardiomyocytes against ischemic 
injury and induce NO production by endothelial cells, thereby 
improving microvascular function (van der Putten et al., 2008). 
EPO can also have tissue protective properties by activating 
the EPO receptor and β common receptor, which are found 
in multiple peripheral tissues and are present on endothelial 
cells. EPO sensitivity can be increased by hypoxia but is decreased 
by a pro-inflammatory state, which is considered a hallmark 
of HFpEF; therefore, lower eNOS expression due to lower EPO 
or lower EPO receptors on the endothelium can contribute to 
the lower NO-bioavailability in the coronary microcirculation 
(Congote et  al., 2010). Interestingly, in patients, EPO resistance 
is shown to be  present in early CKD prior to the decrease in 
EPO levels that occurs in later stages of CKD (Mercadal et  al., 
2012). However, in a randomized controlled trial conducted 
in older adults with HFpEF, EPO supplementation with epoetin 
alfa did not improve left ventricular geometry or exercise 
capacity despite increases in hemoglobin levels (Maurer et  al., 
2013). One potential explanation would be  that the 1.5  g/dl 
increase in hemoglobin in the treatment group was insufficient, 
particularly since the placebo-treated patients also showed a 
0.8  g/dl increase in hemoglobin. Alternatively, decreased 
endothelial and/or cardiomyocyte sensitivity to, rather than too 
low levels of EPO and/or anemia are important in the progression 
of HFpEF (van der Putten et al., 2008). If so, it would be more 
beneficial to restore EPO sensitivity of specific cells rather than 
changing its levels. Reducing the pro-inflammatory phenotype 
of endothelial cells could potentially be  beneficial in increasing 
endothelial EPO sensitivity. Alternatively, although not specific 
an enhancer of EPO sensitivity, targeting the protective tissue-
specific effects of EPO might prove a viable therapeutic target, 
although to date, this was mostly evaluated in neurological 
disorders (Leist et  al., 2004).

Iron deficiency, even without anemia, was also shown to 
be  detrimental to the functional capacity of advanced HFpEF 
patients (Nunez et  al., 2016), while diastolic dysfunction was 
not associated with functional iron deficiency (Kasner et  al., 
2013). Functional iron deficiency is detrimental to cardiomyocyte 
function as it reduces antioxidant capacity and limits oxidative 
phosphorylation thereby limiting energy production, potentially 
impairing energy-dependent Ca2+ reuptake during diastole 
(Anand and Gupta, 2018). Currently, iron supplementation 
with IV ferric carboxymaltose is being investigated in both 
anemic and non-anemic HFpEF patients in the FAIR-HFpEF 
trial (ClinicalTrial.org NCT03074591).

Proteinuria
Proteinuria, an abnormal high protein concentration in urine, 
is present in up to 26% of CKD patients with an eGFR below 
30  ml/min/1.73  m2 (Garg et  al., 2002; Agrawal et  al., 2009). 
Not only proteinuria, but also, more specifically, elevated urinary 
levels albumin, were associated with declining renal function 

(Klahr et  al., 1994; GISEN Group, 1997; Brenner et  al., 2001). 
Proteinuria is not just a marker of CKD, but also contributes 
to the exacerbation of CKD, by aggravating renal interstitial 
inflammatory cell influx resulting in interstitial fibrosis (Figure 2; 
Abbate et  al., 2006; Ruggenenti et  al., 2012).

In 1989, Deckert et al. already introduced the Steno hypothesis, 
which implies that albuminuria is not just reflecting local renal 
disease, but indicating more general endothelial microvascular 
dysfunction (Deckert et  al., 1989). Indeed, large population 
based studies have shown that microalbuminuria correlates 
with a decrease in flow-mediated endothelium-dependent 
vasodilation in brachial arteries (Stehouwer et  al., 2004), as 
well as in coronary arteries of diabetic patients (Cosson et  al., 
2006). In patients with essential hypertension, microalbuminuria 
was shown to correlate with levels of circulating von Willebrand 
factor, a marker for endothelial damage (Pedrinelli et al., 1994). 
Multiple studies have shown that (micro)albuminuria is highly 
prevalent in HFpEF, being associated with LV remodeling, and 
is a prognostic marker for further disease development (Miura 
et  al., 2012; Brouwers et  al., 2013; Katz et  al., 2014; Gori 
et  al., 2014b; Nayor et  al., 2017). Consistent with a role for 
microalbuminuria as a prognostic marker for HFpEF, women 
with HFpEF are less likely to have albuminuria, while their 
eGFR is similar to that of men (Gori et  al., 2014a), potentially 
explaining the better prognosis (±20% less likely to reach a 
MACE) in women with HFpEF (Lam et al., 2012). Furthermore, 
presence of CKD increased the risk for an all-cause event in 
women, to a similar risk present in men (Lam et  al., 2012).

Currently, it is unclear, whether microalbuminuria simply 
reflects a more generalized microvascular endothelial dysfunction 
or may act as a causal contributing factor to HFpEF development 
by inducing coronary microvascular endothelial damage.

Uremic Toxins
Insufficient glomerular filtration results in the retention of a 
variety of biologically active compounds in the blood, called 
uremic toxins. The accumulation of uremic toxins can have 
a deleterious effect on multiple organs, of which the 
cardiovascular system is most severely affected (Vanholder 
et  al., 2008). Increased levels of uremic toxins are associated 
with an increased cardiovascular morbidity and mortality 
(Moradi et  al., 2013). Moreover, blood urea nitrogen was 
shown to be  an independent predictor for the progression 
from preclinical diastolic dysfunction to HFpEF, but not HFrEF 
(Zhang et  al., 2017).

The mechanisms mediating the detrimental effects on the 
vascular system are multiple. The elevated uremia-associated 
pro-inflammatory cytokine levels, together with the associated 
chronic inflammatory state, can inhibit proliferation and enhance 
apoptosis of endothelial cells (Figure  2; Moradi et  al., 2013). 
Furthermore, uremic toxins can increase von Willebrand factor 
levels, decrease NO bioavailability by inhibition of endothelial 
nitric oxide synthase (eNOS), and increase circulating endothelial 
microparticles (Brunet et  al., 2011). Additionally, chronic low 
grade inflammation increases expression of adhesion molecules 
on endothelial cells and induces leukocyte activation with 
differentiation of fibroblasts to myofibroblasts, with subsequent 
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production of collagen in the extracellular matrix, and migration 
and proliferation of vascular smooth muscle cells (Jourde-Chiche 
et  al., 2011; Paulus and Tschope, 2013). Tryptophan-derived 
toxins can specifically activate the aryl hydrocarbon receptor 
pathway, and thereby induce endothelial dysfunction, and activate 
pro-fibrotic pathways in the myocardium, further enhancing 
inflammation and increasing vascular oxidative stress (Sallee 
et  al., 2014). All these processes contribute to (coronary) 
microvascular dysfunction and remodeling.

Uremic toxins might also directly affect the left ventricular 
relaxation. Exposure of cardiomyocytes to uremic serum of 
CKD patients elicited inhibition of Na+/K+-ATPase, increased 
contractile force, impaired calcium re-uptake, and delayed 
relaxation (Figure  2; Periyasamy et  al., 2001).

Elevated circulating and cellular levels of advanced glycation 
end products (AGEs) have been measured in patients with 
CKD (Stinghen et  al., 2016). This is the result of impaired 
renal clearance of AGEs together with their increased formation 
resulting from oxidative stress and/or diabetes mellitus. Elevated 
circulating AGEs are linked to development and progression 
of both HFpEF and HFrEF (Hartog et  al., 2006, 2007) and 
correlated positively with increased diastolic dysfunction in 
patients with diabetes mellitus type 1 (Berg et  al., 1999).

In the LV, AGEs are particularly prominent in the coronary 
microvasculature, where their presence induces a pro-inflammatory 
phenotype (van Heerebeek et al., 2008), endothelial dysfunction 
by increasing oxidative stress and decreasing NO bioavailability 
and vascular stiffening by crosslinking of extracellular matrix 
(ECM) proteins (Smit and Lutgers, 2004; Hartog et  al., 2007). 
In the myocardium, AGE-induced crosslinking of ECM proteins 
increases myocardial stiffness (Smit and Lutgers, 2004; Hartog 
et  al., 2007). Furthermore, AGEs impair calcium handling in 
cardiomyocytes (Petrova et  al., 2002). The latter is mediated 
by carbonylation of SERCA2a, which impairs its activity (Shao 
et  al., 2011), as well as by enhancing calcium leakage from the 
sarcoplasmic reticulum through the ryanodine receptor (RyR2), 
thereby promoting mitochondrial damage and oxidative stress 
(Ruiz-Meana et  al., 2019). Hence, reducing production and 
enhancing breakdown of AGEs could be  a therapeutic option 
in HFpEF patients (Paulus and Dal Canto, 2018), particularly 
in patients with diabetes and CKD.

Besides glycemic control, there are three classes of drugs 
that can reduce AGEs: inhibitors of de novo AGE synthesis, 
drugs that break pre-existing AGE crosslinks and AGE receptor 
blockers (Zieman and Kass, 2004). Although, to our knowledge, 
none of these have been tested in HFpEF patients, treatment 
with aminoguanidine, a small hydrazine-like molecule capable 
of inhibiting AGE formation through interaction with and 
quenching of dicarbonyl compounds, resulted in a decrease 
of diabetes mellitus associated myocardial stiffening in rats, 
albeit without altering fibrosis (Norton et al., 1996). Furthermore, 
in DM type 2 patients, benfotiamine, a transketolase activator 
that blocks several hyperglycemia-induced pathways, prevented 
microvascular endothelial dysfunction and oxidative stress after 
an AGE rich meal (Stirban et  al., 2006). Similarly, treatment 
with the AGE crosslink breaker alagebrium, improved endothelial 
function in patients with isolated systolic hypertension, which 

was associated with reduced vascular fibrosis and vascular 
inflammation (Zieman et  al., 2007). For an overview of trials 
conducted with AGE-lowering therapies in CKD patients we refer 
to Stinghen et al. (2016). Some of these therapies which reduced 
AGEs in CKD patients might also be a viable chronic treatment 
option, to prevent or reverse AGE-associated microvascular 
dysfunction and subsequent diastolic dysfunction in HFpEF.

Lowering uremic toxin levels in general might also provide 
a viable, but challenging treatment option for HFpEF. The 
main challenges are to identify the specific uremic toxins 
that play a role in the pathogenesis of HFpEF, and to target 
a large variety of uremic toxins with just one class of drugs. 
Clinical trials with allopurinol, a therapy to decrease uric 
acid levels, resulted in slower disease progression and a 
decreased cardiovascular risk in patients with CKD (Goicoechea 
et  al., 2010; Sezer et  al., 2014). Even asymptomatic 
hyperuricemic patients may benefit from allopurinol treatment, 
as they showed improvements in endothelial function and 
eGFR (Kanbay et  al., 2011).

CONSEQUENCES OF CHRONIC KIDNEY 
DISEASE ON MINERAL METABOLISM

Vitamin D Deficiency
Declining renal function results in a reduced capacity to 
perform 1α-hydroxylation and in progressive loss of active 
vitamin D (Schroeder and Cunningham, 2000). Loss of active 
vitamin D subsequently leads to increased parathyroid hormone 
(PTH) production, so-called secondary hyperparathyroidism, 
eventually contributing to increased calcium, phosphate, and 
FGF-23 levels. In patients on hemodialysis, an association 
was reported between low vitamin D levels, systemic 
inflammation, and myocardial hypertrophy (Bucharles et  al., 
2011). Furthermore, low levels of vitamin D in these patients 
were related to increased cardiovascular mortality (Wolf et al., 
2007; Drechsler et  al., 2010; Bucharles et  al., 2011). In 
non-dialysis CKD patients, lower vitamin D levels were shown 
to be  associated with decreased flow mediated dilatation in 
the brachial artery, reflecting systemic endothelial dysfunction 
(Chitalia et  al., 2012). Low vitamin D correlates with reduced 
coronary flow reserve in patients with atypical chest pain, 
suggesting that vitamin D also affects coronary microvascular 
function (Capitanio et  al., 2013). Recently, in a large cohort 
of patients with diastolic dysfunction or HFpEF, lower vitamin 
D levels were associated with increased cardiovascular 
hospitalizations but not with 5-year mortality (Nolte et  al., 
2019). Furthermore, in a univariate analysis, calcidiol, but 
not its active metabolite, calcitriol, was associated with new 
onset HFpEF in the PREVEND study, but the association 
disappeared after adjustment for confounding variables (Meems 
et  al., 2016). However, in patients with established HFpEF, 
vitamin D levels were lower as compared to healthy, sex-, 
race-, and age-matched controls, and inversely correlated with 
exercise capacity (Pandey et  al., 2018).

In a trial of vitamin D supplementation by cholecalciferol 
therapy, reductions were observed in the left ventricular mass, 
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inflammatory markers and brain natriuretic peptide levels of 
CKD patients on hemodialysis (Matias et al., 2010). In contrast, 
in the PRIMO-trial, 48  weeks of treatment with paricalcitol in 
a CKD cohort with preserved systolic function neither resulted 
in improved diastolic function, nor reduced left ventricular mass 
(Thadhani et  al., 2012). However, cardiac MRI unveiled that 
just a minority of the included patients had left ventricular 
hypertrophy at baseline, possibly explaining the lack of a beneficial 
effect. Although the administration of vitamin D has positive 
effects through inhibition of PTH secretion, it also results in 
increased serum phosphate levels, with opposing effects (see 
next paragraph for details). When modulating vitamin D status, 
one should consider the use of vitamin D analogues, such as 
paricalcitol, which inhibit PTH synthesis, without substantially 
inducing hyperphosphatemia, providing promising therapies for 
restoration of vitamin D levels (Cozzolino et  al., 2012).

Phosphate and Parathyroid Hormone
In large cohorts of patients on hemodialysis, strong  
associations were found between serum phosphate, calcium, 
hyperparathyroidism, and an increased risk for overall cardiac 
mortality, elevated levels of cardiac injury markers, and a worse 
systolic and diastolic cardiac function (Block et al., 2004; Wang 
et  al., 2014). Additionally, in a cohort of hospitalized patients 
with CKD, serum phosphate was related to elevated left 
ventricular concentric remodeling and diastolic dysfunction 
(Zou et al., 2016). Furthermore, in late stage CKD patients—on 
peritoneal dialysis—phosphate was independently associated 
with impairment of left ventricular diastolic function (Ye et al., 
2016). At the structural level, elevated levels of phosphate 
(hyperphosphatemia) and PTH have been associated with the 
presence of hypertrophy and fibrosis of the LV specifically 
(Rostand and Drueke, 1999; Block et  al., 2004). In addition, 
in a small cohort of patients on chronic hemodialysis, higher 
levels of calcium phosphate product were associated with higher 
CRP levels, and thus with a pro-inflammatory state. In this 
cohort, intensive lowering of phosphate levels resulted in lower 
CRP levels, and a significantly improved inflammatory status 
(Movilli et  al., 2005).

Hyperphosphatemia can also directly induce coronary 
endothelial dysfunction (Di Marco et  al., 2013), and also act 
directly on human vascular smooth muscle cells (VSMC), 
resulting in VSMC calcification (Jono et al., 2000). Furthermore, 
hyperphosphatemia can contribute to microvascular dysfunction 
and HFpEF pathogenesis by reducing prostaglandin synthesis 
(Ter Maaten et  al., 2016). Prostaglandins synthesized in the 
blood vessel wall act as autocrine or paracrine factors and 
play a pivotal role in regulation of coronary microvascular 
function by exerting strong vasodilator effects and by inhibiting 
platelet aggregation. In clinical practice, supplementation of 
prostanoids is mostly used in patients with pulmonary 
hypertension. Prostacyclin analogues are available, such as 
Selexipag, an oral prostacyclin receptor agonist, which has 
vasodilator, antiproliferative, and antifibrotic effects. Currently, 
there is one trial ongoing, which investigates oral Treprostinil, 
a prostacyclin analogue, in pulmonary hypertension caused by 
HFpEF (ClinicalTrials.org NCT03037580).

PTH can cause left ventricular interstitial fibrosis and coronary 
microvascular dysfunction, via its inflammatory effects on 
monocytes and interstitial fibroblasts (Amann et  al., 2003). 
Interestingly, primary hyperparathyroidism resulted in coronary 
microvascular dysfunction, which was restored after 
parathyroidectomy, underlining the effect of PTH on coronary 
microvascular function (Osto et  al., 2012). In hemodialysis 
patients with secondary hyperparathyroidism, 20  weeks of 
treatment with cinacalcet ameliorated endothelial dysfunction, 
diastolic dysfunction, and cardiac hypertrophy by decreasing 
oxidative stress and increasing nitric oxide production (Figure 2; 
Choi et  al., 2012).

Fibroblast Growth Factor 23
Fibroblast growth factor-23 (FGF-23) is a hormone produced 
by osteoblasts and osteocytes, which inhibits phosphate 
reabsorption in the kidneys and suppresses circulating calcitriol, 
effectively lowering plasma phosphate levels in physiological 
conditions (Martin et  al., 2012). In CKD, FGF-23 is no longer 
able to reduce phosphate levels due to loss of renal Klotho-FGF 
receptor 1 complex, resulting in both high phosphate and high 
FGF-23 levels (Komaba and Fukagawa, 2012). Elevated levels 
of FGF-23 are associated with an increased cardiovascular risk 
in patients with CKD (Negri, 2014), and with left ventricular 
hypertrophy in a cohort of CKD patients (Tanaka et al., 2016). 
These findings were confirmed in rats, where FGF-23 could 
directly induce left ventricular hypertrophy while ejection 
fraction was preserved (Faul et al., 2011). Furthermore, FGF-23 
is associated with new-onset HFpEF in a large cohort study 
of people, who were free of cardiovascular disease at baseline 
(Almahmoud et  al., 2018). Interestingly, in a cohort of HFpEF 
patients, FGF-23 was not associated with increased mortality, 
while this was the case for a cohort of HFrEF patients (Koller 
et  al., 2015), suggesting that FGF-23 may be  linked to disease 
onset rather than progression in HFpEF.

Mechanistically, FGF-23 induces chronic inflammation by 
stimulating cytokine secretion from the liver, but is also locally 
produced by M1 macrophages, and can thereby further modulate 
inflammation in the heart (Figure  2; Leifheit-Nestler and 
Haffner, 2018). FGF-23 inhibits ACE2, resulting in reduced 
degradation of angiotensin I  and II into their vasodilator 
metabolites angiotensin-(1-9) and angiotensin-(1-7), (Leifheit-
Nestler and Haffner, 2018) and consequently increased 
stimulation of AT1 receptors by angiotensin II. High levels 
of FGF-23 were further shown to cause endothelial dysfunction, 
increase superoxide formation, and decrease NO bioavailability 
in mouse aortas (Silswal et  al., 2014). Finally, FGF-23 causes 
inhibition of 1α-hydroxylase, and can thereby contribute to 
microvascular damage and cardiac dysfunction due to vitamin 
D deficiency (Leifheit-Nestler and Haffner, 2018). Hence, 
elevated FGF-23 levels can contribute to development of HFpEF 
by attenuating coronary microvascular function and by 
enhancing angiotensin II induced vascular and myocardial 
fibrosis. Indeed, preliminary data of Roy et  al., suggest that 
FGF-23 levels correlated with interstitial fibrosis in HFpEF 
(Roy et  al., 2018). Furthermore, FGF-23 counteracted the 
beneficial effect of paricalcitol on left ventricular hypertrophy, 
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by modulation of the calcineurin/nuclear factor of activated 
T cell (NFAT) pathway in a rat model of CKD (Czaya et  al., 
2019). FGF-23 inhibition with KRN23, an anti-FGF antibody, 
in open label phase 1/2 studies for X-linked hypophosphatemia, 
showed an increase in serum inorganic phosphate and active 
vitamin D in all subjects (Imel et  al., 2015). Further research 
into a potential causal role of FGF-23  in HFpEF development 
is required, prior to embarking on therapeutic interventions.

CONCLUSION

The kidneys and heart are interdependent organs that are highly 
connected through multiple systems on both macrovascular 
and microvascular level. Unfortunately, many studies on the 
cardiorenal connection have not been conducted in specific 
HFpEF populations. Pathological processes which are present 
in CKD, such as vascular changes, deficiencies in kidney 
produced factors, and impairments in renal filtration can cause 
and/or contribute to development of HFpEF via several processes, 
as summarized in Figure 2. Elevated levels of phosphate, PTH, 
FGF-23, AGEs and uremic toxins, but also anemia and proteinuria 
can induce a systemic pro-inflammatory state. This state can 
lead to left ventricular stiffening and coronary microvascular 
dysfunction by initiating endothelial cell dysfunction, oxidative 
stress, and vascular smooth muscle cell proliferation. Arterial 
stiffening, volume expansion, hypertension and RAAS activation, 
as consequences of CKD, increase left ventricular workload 
and hypertrophy.

The complexity and multitude of connections between the 
heart and kidney make it unlikely that there is a single causal 
contributor for progression from CKD to HFpEF. In addition, 
although HFpEF is more prevalent in women, and the effect 
of sex on cardiovascular disease is increasingly recognized 
(Regitz-Zagrosek, 2006), the specific role of sex in HFpEF 

pathology still needs to be  identified. Multiple large trials 
have been conducted with treatments for HFpEF, targeting 
different pathophysiological processes, but unfortunately failed 
to show clinical benefit. Therefore, current guidelines on 
treatment of HFpEF focus on lifestyle interventions and the 
management of comorbidities such as diabetes mellitus, 
hypertension, obesity and CKD. In addition, it has been 
proposed that different HFpEF phenotypes exist that should 
be  targeted with different therapeutic strategies. Both male 
and female CKD patients are interesting and easily identifiable 
subgroups of HFpEF patients, warranting further investigation 
both in pathogenesis, as in clinical trials to further investigate 
cardiorenal connection in HFpEF specifically, and to identify 
the unique mechanistic pathways involved in various phases 
of the disease.
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