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As an example of applying the evidential approach to statistical inference, we address
one of the longest standing controversies in ecology, the evidence for, or against,
a universal metabolic scaling relationship between metabolic rate and body mass. Using
fish as our study taxa, we curated 25 studies with measurements of standard metabolic
rate, temperature, and mass, with 55 independent trials and across 16 fish species and
confronted this data with flexible random effects models. To quantify the body mass –
metabolic rate relationship, we perform model selection using the Schwarz Information
Criteria (1SIC), an established evidence function. Further, we formulate and justify the
use of 1SIC intervals to delineate the values of the metabolic scaling relationship that
should be retained for further consideration. We found strong evidence for a metabolic
scaling coefficient of 0.89 with a 1SIC interval spanning 0.82 to 0.99, implying that
mechanistically derived coefficients of 0.67, 0.75, and 1, are not supported by the
data. Model selection supports the use of a random intercepts and random slopes by
species, consistent with the idea that other factors, such as taxonomy or ecological or
lifestyle characteristics, may be critical for discerning the underlying process giving rise
to the data. The evidentialist framework applied here, allows for further refinement given
additional data and more complex models.

Keywords: likelihood, evidence functions, SIC, standard metabolic rate, mixed effects models, metabolic scaling,
evidentialist statistics

INTRODUCTION

One of most contentious controversies in ecology is the scaling relationship between an organism’s
body mass and metabolic rate (Agutter and Wheatley, 2004; Isaac and Carbone, 2010; Glazier,
2018). Kleiber (1932) popularized the idea that contrary to a century of theory, a mammal’s
metabolic rate (MR) scales with body mass (BM) not as a power law with an exponent of β = 0.67,
but as a power law with an exponent of β = 0.75. This relationship takes the form

ln(MR) = β × ln(BM)+ c (1)

where β is the scaling relationship and c is an intercept from a liner regression. As a cornerstone
of the metabolic theory of ecology (Brown et al., 2004), this 0.75 scaling relationship is used to link
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individual physiology to the observed patterns of communities
and energy flows across landscapes. The 0.75 value has been
mechanistically justified through hypotheses that maximize
energy delivery to tissue in animals (West et al., 1997) and
from xylem and phloem networks that transport water and
nutrients in plants (Enquist and Niklas, 2001). However,
the universality of the 0.75 value is eagerly disputed, with
alternative hypotheses and empirical studies putting the scaling
relationship commonly between 0.5 and 1 (Bokma, 2004;
Glazier, 2018).

Intraspecific (within species) scaling has been proposed to
differ from interspecific (between species) scaling and also
different mechanisms may be responsible for different scaling
relationships. Metabolic rates vary 2–3 fold across individuals of
the same population and this variation is repeatable (Burton et al.,
2011; Norin and Malte, 2011; Boldsen et al., 2013). Intraspecific
scaling has received less attention than interspecific scaling,
while even fewer studies have investigated scaling relationships
within each tested individual as it grows (but see Norin and
Gamperl, 2018). Both intraspecific and interspecific scaling are
critical for linking species physiology to projections of population
abundance (Kooijman, 1993) and predicting the impacts of
climate change on species distributions (Sunday et al., 2010;
Lindmark et al., 2018).

While the implications of deviations from the 0.75 scaling
exponent are large, there is limited data available to accurately
estimate the exponent. This is because measuring the metabolic
rate of an individual is not a trivial experiment, let alone across
a 10-fold range of body sizes from a population, at different
temperatures, and/or across species (Lighton, 2018). To date,
most studies have relied on either a limited study design (one
species, many individuals, with fixed treatments of temperature;
Table 1) or meta-analysis of mean metabolic rate data across
studies using variable methods of measurement (Glazier, 2005).
While the former can suffer from insufficient sample sizes,
measurement error, and unaccounted for factors influencing the
general relationship, the latter treats all studies equally and both
approaches have ultimately been inconclusive as to the evidence
supporting or refuting competing hypotheses (Glazier, 2018)
with some concluding there is not a universal scaling constant
(Bokma, 2004).

In this Frontiers Research Topic devoted to evidential
statistics, model identification, and science, multiple contri-
butions (Dennis et al., 2019) show how standard statistical
approaches (such as Fisherian significant tests, Neyman-Pearson
hypothesis testing, Akaike Information Criterion for multi-
model inference) are misleading when models used for inference
are misspecified. Model misspecification is arguably the case for
most analyses, including ours, that seek to evaluate the evidence
of a universal scaling relationship across a broad range of fish
species, at different temperatures, and using studies, that have
reliable data, but that were not necessarily designed to have a large
range of body masses across which to regress metabolic rate. Here
we demonstrate how an evidentialist approach can be applied
to gain novel insight to the question, “What is the evidence for
an intraspecific universal scaling relationship between fish body
mass and metabolic rate?”

Scaling Relationships as Hypotheses
for Fish
Multiple mechanisms have been put forth to justify β = 0.67, 0.75,
and 1 scaling relationships. If the primary limitation for resources
or waste removal is transport of chemicals across surfaces, then
metabolic rate is predicted to scale with surface area with a
relationship of 0.67. For example, Killen et al. (2010) found that
highly active, pelagic fishes had a scaling relationship of 0.7 (SE
0.04), close to 0.67, which they attributed to a constraint in
oxygen or fuel acquisition or waste removal across surface areas
in these metabolically active fishes. However, the 0.67 scaling
exponent is more commonly found in endotherms, mammals
and birds, but rarely in ectotherms (White and Seymour, 2003;
White et al., 2005).

If metabolic rate is primarily limited by the fractal nature
of distribution networks (e.g., the internal transport networks
of resources and wastes), then a scaling relationship of 0.75
is predicted (West et al., 1997). Previous synthesis of teleost
fish found a scaling relationship of 0.79 (SE 0.11) (Clarke and
Johnston, 1999), and with sufficient variability as to not exclude
the 0.75 value used by Metabolic Theory of Ecology to explain
broad ecological patterns (Brown et al., 2004). Similarly, Moses
et al. (2008) showed metabolic scaling during ontogeny for seven
fish species was 0.78 (SE 0.02), with some variability in slope
estimates between species.

Metabolic rate is predicted to be directly proportional to body
size (i.e., β = 1) when maintenance and routine activity costs are
low and these demands can easily be met by both surface area and
internal transport mechanisms. In the case of less active fish or
those occupying deeper waters, individual metabolism has been
demonstrated to scale nearly proportionally to body mass [i.e.,
scaling exponents approach 1 (Killen et al., 2010)].

Two more recent hypotheses work with the common
observation that scaling exponents vary (e.g., Glazier, 2018).
The metabolic-level boundaries (MLB) hypothesis of scaling
(Glazier, 2008) states that any observed scaling exponent varies
within the limits of 0.67 and 1, representing whether the
mechanisms or processes that underlay the scaling relationship
are predominantly limited by surface area constraints on fluxes
of resources, waste and heat (0.67; e.g., gill surface area,
internal transport limitation) or by volume (mass) constraints
on energy demand or production of tissue (1; assuming
energy demand is proportional to tissue size). Therefore, MLB
also provides an explanation to variable scaling exponents of
animals at different physiological states, or routine requirements.
Alternatively, Dynamic Energy Budget (DEB) theory (Kooijman,
1993) provides a more recent approach predicting metabolic
scaling relationships in all species irrespective to taxonomical
classification; this approach is based solely on physical principles,
and uses storage of nutrients (reserves increase with increasing
structure) as a central mechanism explaining both intra- and
inter species-specific scaling relationships (Maino et al., 2014).
While both MLB and DEB would seemingly make the case
that a universal scaling exponent does not exist and should
consequently not be expected, they do not preclude a mean
universal scaling exponent.
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TABLE 1 | Overview of metabolic studies.

Citation Species n Temp. (Min, Max) Regression Trial

(◦C) weight (g) coefficient β̂, (SE)

(1) Norin and Gamperl, 2018 Cunner (Tautogoabrus adsperus) 68 15 0.45, 4.61 0.92 (0.035) 1

Norin and Gamperl, 2018 Cunner (Tautogoabrus adsperus) 68 15 0.97, 7.94 0.98 (0.028) 2

Norin and Gamperl, 2018 Cunner (Tautogoabrus adsperus) 68 15 1.24, 13.2 0.89 (0.024) 3

Norin and Gamperl, 2018 Cunner (Tautogoabrus adsperus) 68 15 1.56, 15.56 0.83 (0.024) 4

Norin and Gamperl, 2018 Cunner (Tautogoabrus adsperus) 68 15 1.71, 19.46 0.79 (0.026) 5

(2) Auer et al., 2015 Brown Trout (Salmo trutta) 120 11.5 5.48, 16.12 0.61 (0.068) 6

(3) Behrens et al., 2017 Round Goby (Neogobius melanostomus) 8 15–17 43, 73 1.031 (0.24) 7

Behrens et al., 2017 Round Goby (Neogobius melanostomus) 8 15–17 35, 78 1.38 (0.16) 8

Behrens et al., 2017 Round Goby (Neogobius melanostomus) 8 15–17 36, 72 0.9 (0.17) 9

(4) Killen, 2014 Common Minnow (Phoxinus phoxinus) 13 10 0.72, 2.03 0.78 (0.27) 10

(5) Norin and Clark, 2017 Barramundi (Lates calcarifer) 24 29 23.1, 37.6 0.91 (0.17) 11

(6) McLean et al., 2018 Common Minnow (Phoxinus phoxinus) 123 13 0.68, 7.44 0.72 (0.07) 12

(7) Boldsen et al., 2013 European Eel (Anguilla anguilla) 24 20 184, 507 1.44 (0.25) 13

Boldsen et al., 2013 European Eel (Anguilla anguilla) 24 20 171, 504 1.05 (0.21) 14

(8) Kunz et al., 2016 Polar Cod (Boreogadus saida) 5 0 18.5, 27.4 0.81 (0.35) 15

Kunz et al., 2016 Polar Cod (Boreogadus saida) 5 3 16.1, 48.6 0.96 (0.1) 16

Kunz et al., 2016 Polar Cod (Boreogadus saida) 5 6 22.7, 32.8 1.06 (0.41) 17

Kunz et al., 2016 Polar Cod (Boreogadus saida) 6 8 11.4, 29.1 1.03 (0.3) 18

Kunz et al., 2016 Atlantic cod (Gadus morhua) 12 3 21.2, 105 0.97 (0.15) 19

Kunz et al., 2016 Atlantic cod (Gadus morhua) 10 8 45.7, 173.6 0.9 (0.15) 20

Kunz et al., 2016 Atlantic cod (Gadus morhua) 7 12 54.5, 149.1 1.1 (0.13) 21

Kunz et al., 2016 Atlantic cod (Gadus morhua) 5 16 83.2, 156.2 1.05 (0.18) 22

(9) Norin et al., 2016 Barramundi (Lates calcarifer) 60 29 23.08, 48.96 1.03 (0.13) 23

(10) Collins et al., 2016 Barramundi (Lates calcarifer) 20 30 153.9, 453.7 1.07 (0.14) 24

Collins et al., 2016 Barramundi (Lates calcarifer) 20 30 196.3, 390 1.19 (0.28) 25

(11) Khan et al., 2014 Hapuku Wreckfish (Polyprion oxygeneios) 8 12 88.2, 131.2 0.93 (0.45) 26

Khan et al., 2014 Hapuku Wreckfish (Polyprion oxygeneios) 8 15 105.3, 164.5 0.64 (0.44) 27

Khan et al., 2014 Hapuku Wreckfish (Polyprion oxygeneios) 8 18 146.1, 203.2 −0.21 (0.48) 28

Khan et al., 2014 Hapuku Wreckfish (Polyprion oxygeneios) 8 21 130.3, 188.6 0.61 (0.26) 29

Khan et al., 2014 Hapuku Wreckfish (Polyprion oxygeneios) 8 24 97.7, 131.6 1.2 (0.36) 30

(12) Khan et al., 2018a Rainbow Trout (Oncorhynchus mykiss) 16 16 69.9, 120.2 0.87 (0.32) 31

(13) Khan et al., 2018b Atlantic Salmon (Salmo salar) 25 14 39.1, 70.7 0.57 (0.22) 32

(14) Khan et al., 2015 Hapuku Wreckfish (Polyprion oxygeneios) 12 15 196.1, 324 0.84 (0.15) 33

(15) Khan et al., 2015 Hapuku Wreckfish (Polyprion oxygeneios) 12 21 114.5, 191 0.6 (0.2) 34

(16) Cooper et al., 2018 Three Spine Stickleback (Gasterosteus aculeatus) 31 12 0.46, 1.19 1.43 (0.39) 35

(17) McArley et al., 2017 Common Triplefin (Forsterygion lapillum) 20 15 1.59, 3.38 0.67 (0.19) 36

McArley et al., 2017 Common Triplefin (Forsterygion lapillum) 20 18 1.52, 3.81 0.82 (0.19) 37

McArley et al., 2017 Common Triplefin (Forsterygion lapillum) 23 21 1.54, 3.42 0.78 (0.15) 38

(18) McArley et al., 2018 Twister (Bellapiscis medius) 10 21 1.53, 3.98 0.94 (0.1) 39

McArley et al., 2018 Common Triplefin (Forsterygion lapillum) 10 21 1.27, 2.97 0.45 (0.16) 40

(19) Eliason et al., 2007 Rainbow Trout (Oncorhynchus mykiss) 24 8–14 381, 652.7 0.64 (0.74) 41

Eliason et al., 2007 Rainbow Trout (Oncorhynchus mykiss) 5 11–16 564.8, 3233.6 1.33 (0.3) 42

(20) Norin and Malte, 2011 Brown Trout (Salmo trutta) 33 15 20.7, 45.7 1.5 (0.18) 43

Norin and Malte, 2011 Brown Trout (Salmo trutta) 33 15 27.4, 55.1 1.19 (0.14) 44

Norin and Malte, 2011 Brown Trout (Salmo trutta) 33 15 37.7, 64.9 0.98 (0.18) 45

Norin and Malte, 2011 Brown Trout (Salmo trutta) 33 15 38.4, 68.2 1.11 (0.17) 46

(21) Norin and Malte, 2012 Brown Trout (Salmo trutta) 66 15 20.5, 57.7 1.09 (0.094) 47

(22) Nadler et al., 2016 Blue Green Puller (Chromis viridis) 16 29 1.3, 2.1 0.63 (0.3) 48

(23) Collins et al., 2013 Barramundi (Lates calcarifer) 9 26 172, 205 0.18 (1.03) 49

Collins et al., 2013 Barramundi (Lates calcarifer) 10 26 186, 221 2.06 (1.28) 50

Collins et al., 2013 Barramundi (Lates calcarifer) 10 26 169, 215 1.49 (0.78) 51

Collins et al., 2013 Barramundi (Lates calcarifer) 11 26 139, 244 0.65 (0.43) 52

Collins et al., 2013 Barramundi (Lates calcarifer) 9 26 184, 233 0.71 (0.54) 53

(24) Zhang et al., 2017 European Sea Bass (Dicentrarchus labrax) 11 16.5 48.1, 100.7 1.01 (0.18) 54

(25) Zhang et al., 2016 Atlantic Salmon (Salmo salar) 87 12 23.4, 57 1.15 (0.11) 55
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Temperature and Other Factors
Temperature plays a critical role regulating individual metabolic
rate in ectotherms such as fishes (Brett and Glass, 1973;
Johnston and Dunn, 1987). The effects of temperature on the
metabolic scaling relationship has been studied mechanistically
(Gillooly et al., 2001) with syntheses showing low temperature
sensitivity from resting measures of metabolism and a consistent
metabolic scaling relationship (Clarke and Johnston, 1999, but
see Lindmark et al., 2018).

Numerous ecological, physiological and lifestyle characteri-
stics can influence metabolic rate and potentially affect scaling
relationships. Metabolic rate in ectotherms is strongly dependent
on physical and chemical characteristics of the water they live
in, and consequently shows context-dependent variation (Killen
et al., 2016). Therefore, habitat (abiotic factors), predation risk,
activity level, food availability, and social status and behavioral
traits, all can affect metabolic rates (for a review on variation of
fish standard metabolic rate (SMR), see Metcalfe et al., 2016), thus
also likely scaling parameters, especially intercept. For example,
food availability affects growth rates and is linked to SMR
variation in fish (Killen, 2014; Auer et al., 2015). Auer et al. (2018)
demonstrated a strong dependence of SMR on individual ecology
underlined by predation level, reproductive age and investment,
longevity, and maximum body size (life-history traits). Many of
these factors vary in unique combinations across populations of
the same species (Eliason et al., 2011; Auer et al., 2018), therefore
even within species we may expect variation in metabolic rate and
its dependence on size.

Sources of Uncertainty and
Measurement Error
Misspecification is a model that does not account for variables
(i.e., temperature) or structural forms (i.e., random effects)
that can lead to biased coefficients, misleading error terms,
and unlimitedly wrong inferences about the generating process
giving rise to the data (White, 1982). While temperature has
been identified as a critical covariate for fish (Brett and Glass,
1973), other necessary covariates are less clear, but one should
assume there is likely something missing. Additionally, as any
model expands its inferential breadth beyond a single species,
the model will become more complex either by adding fixed
effects to measure species-level coefficients or by treating species
as a random effect of the model from which to make inference
across all fish. The advantage of using random effects to make
broader inferences has been well recognized across ecology
(Bolker et al., 2009). Such is the case when making population
level inferences in resource selection functions from location data
from multiple individuals (Gillies et al., 2006). However, more
information on the species level traits may lead to better models
and improved inferences.

The quality of the data will also impact inferences. One known
source of uncertainty is measurement error – that is the errant
measurement of observations, such as body mass. Farrell-Gray
and Gotelli (2005) clearly showed that errant measurement of the
predictor variable of mass biased the estimated slope parameter
of the metabolic relationship and speculated that allometric
exponents lower than 0.75 may be due simply to measurement

error. The magnitude of the effect of measurement error in a
predictor variable on the estimated slope of a linear regression
is well known: E(β̂) = λβ , where λ, the reliability coefficient, is
the proportion of variation in the predictor variable not due to
measurement error (Taper and Marquet, 1996; Cheng and Van
Ness, 1999). The lower reliability the more biased the estimate.
In Box 1, we evaluated the influence of measurement error for
California spiny lobster (Panulirus interruptus), albeit not a fish,
but find very little evidence for any bias due to measurement error
from retained residual water. We assume going forward, that for
fish, measurement error is not biasing our parameter estimates.

Measurement error in the response variable, metabolic rate in
our study, leads to greater residual variability but no bias in the
slope parameter. However, the added variability in the residual
error can inflate our uncertainty surrounding the slope parameter
leaving us unable to distinguish between potential hypotheses
(competing models). Metabolic rate (MR) represents a sum of
all chemical reactions that take place in an organism, and this
may change drastically upon any intrinsic and extrinsic change,
e.g., spontaneous activity, physiological disturbance, feeding,
and even just circadian rhythms. To refine how MR varies as
function of mass, it is a necessity that the data originate from
animals at the same physiological states. Standard metabolic
rate, SMR is defined as the subsistence metabolism to support
body maintenance in a post-absorptive, resting state under
thermally acclimated conditions (Chabot et al., 2016). True SMR
is often impractical and challenging to measure in fishes, and
so data often reflects routine metabolic rates, which alternatively
may be perceived as a measurement error (in the response, Y
axis) around individual SMR, which increases variability but
does not bias the slope parameter. With a goal to minimize
such variation, we developed specific experimental criteria for
data to be included (see section “Data”). For a good overview
of methods and approaches to metabolic scaling in animals
see White and Kearney (2014).

MATERIALS AND METHODS

The general approach we implemented for this study is to:
(1) include reliably collected SMR data based on recently
published studies (200-present), (2) apply flexible, mixed effect
linear models, and (3) employ an evidence function, the
Schwarz Information Criterion (SIC), to evaluate the evidence
for specified mechanistic hypotheses of the scaling relationship
of β = 0.67, 0.75, 1, and β as an estimated, free parameter (β̂).

Data
The approaches and technology used to measure fish metabolism
have become more accurate, precise, and robust within the
last 20 years (Nelson, 2016). We curated published data
sets of individual fish metabolism comprised of fish that
were: 1) post larval life stages, 2) in a post-absorptive state,
meaning they were unfed for a minimum of 20 h prior
to taking metabolic rate measurements, 3) with overnight
metabolic rates (>12 h of automatic measurement), 4) with
an acclimated water temperature for at least 7 days prior
to the experiment, and 5) were at calm resting states.
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BOX 1 | Measurement error in body mass of lobsters.

Photo: Co-authors Krista Kraskura
(left) and Samantha Csik (right)
collect measurement error data on
California spiny lobster.

California spiny lobster (Panulirus interruptus) is commercially highly valued, and is ecologically important having a large
effect on trophic dynamics and ecosystem resilience in kelp forests and rocky reef beds (Dunn et al., 2017; Caselle
et al., 2018). Metabolic rate in ectotherms directly depends on animal’s body size and temperature and represents the
pace of nearly all biological processes. Meanwhile, MR varies within and among individuals (Glazier, 2005; White and
Kearney, 2013; Norin and Gamperl, 2018). Lobsters are cumbersome to weigh, thus making them a good candidate
to explore how measurement error in body mass may affect metabolic scaling.

Lobsters were collected by divers via SCUBA (CDFW Scientific Collection Permit #13746) and maintained in 110-
gallon flow-through seawater tanks divided in half with perforated PVC. One individual was held in each half tank
(24”L × 30”W × 18”H), and provided with 10” PVC cut in half to create structure and habitat. Lobsters were
fed mussels (Mytilus spp.) ad libitum when not being used in respirometry trials. Animals were held at ambient
temperatures and exposed to natural light.

To estimate measurement error, 45 lobsters were weighed three consecutive times. Before weighing, individual’s
dorsal side and tail were dried with a microfiber towel. The mass was measured to the nearest gram. Lobsters were
fully submerged between repeat trials.

From the log transformed mass measurements (n = 45), the pooled error variance is 1.2 × 10−5 (SD 0.0035). We
regressed the within individual standard deviation against the mean log(weight), but the slope was not different from
zero and Levene’s test did not indicate there is any heterogeneity. From inspection of the pooled error variance, there
is very little variability in the individual measurements of body mass. Furthermore, regression revealed no trend in error
variance as function of mean body mass.

For six lobsters, ranging in body mass from 175 to 2426 g, we conducted a more thorough drying by carefully removing water from the leg joints, carapace, and
underside of the lobster abdomen, spending approximately double the time drying than the standard protocol called for. We regressed the mean log(weight) against
the thoroughly dried log (weight) for the six lobsters. Expectedly, the intercept (0.05, SE 0.008) and slope (0.994, SE 0.0001) were statistically significant (p < 0.001),
but the residual standard was very small (0.0033), indicating that measurement error in mass is negligible. Thus, for all regressions with log(weight) as a predictor
variable, the reliability ratio will be effectively 1 and there will be no bias in estimated slopes due to measurement error.

Studies where species were manipulated, such as treatments
to measure the effects of starvation on SMR, or where the
study’s authors noted substantial spontaneous activity were not
included. Further, we ensured robust data analysis methods
were used to calculate SMR following Chabot et al. (2016) and
where SMR was measured at ecologically relevant temperature
ranges for each species. Studies were not considered if they
included surgical manipulations with the exception of non-
invasive tagging (e.g., using passive integrated transponder
(PIT) and visible implant elastomer tags). Data were not
included if the study’s methods lacked sufficient detail in any
of the above criteria, the Supplementary Data online were
not clear, or appeared to contain errors. All fish included
were lab residents for at least 2 weeks before the SMR
measurement took place.

Our database includes 25 studies, with 55 independent trials,
across 16 fishes (Figure 1). Table 1 details the sources of the data,
species, trials identification, temperature under which the SMR
measurements were collected, and sample sizes per trial. A total of
n = 1456 observations are used in the study. Some studies where
not designed or conducted to estimate the scaling relationship
between individual fish SMR and body mass – a notable point
we will return to in later sections.

Models
Linear Regression
Each trial (Table 1; n = 55) is an experiment of the metabolic
scaling relationship of SMR to body mass. We applied linear
regression to the log transformed SMR and body mass data for
each trial. Because some of these studies were not designed to
test this relationship, we expect the regression slope estimates
to be variable and have large standard errors for those data sets
with low sample size. Additionally, it is recommended to have

a 4 to 10-fold range of fish body mass, but many trials and
studies do not meet this recommendation. However, the data
in totality has a range from 0.45 to 3233.6 g. We expect the
distribution of slopes from trials to largely mirror the results
found by Clarke and Johnston (1999).

Linear Mixed Effects Models
Using the lme4 package in the R statistical programing language
(Bates et al., 2015), we tested four unique suites of model forms
with combinations of fixed and random effects. For all models
we included temperature (but see Box 5) and body mass as
a fixed effect, and we treated trials within species as a nested
effect. The first model suite allows intercepts to randomly vary
among species. The second model suite, has fixed intercepts for
each species with common slope, but does not assume a normal
distribution of species’ intercepts. With 16 unique species, this
second approach adds significantly more parameters to estimate,
but allows for inferential insights into the differences between
species. The third model suite uses a random slope and random
intercept by species. The correlation between the slope and
intercept is estimated and not assumed to be independent. The
fourth model suite uses a random slope with estimated intercepts
for each species. The random slopes are interpreted as by-species
deviations from the fixed effect slope.

For each of the four approaches, we evaluate the fixed effect
slope of body mass as a free parameter and then constrained the
slope to equal each of our underlying mechanistic hypotheses of
0.67, 0.75, and 1.

Analysis
All models were fit using Maximum Likelihood Estimation
(MLE) and all analyses were conducted in the R statistical
programing language (R Core Team, 2015).
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FIGURE 1 | Diversity of species used in this study. (A) Cunner
(https://commons.wikimedia.org/wiki/File:Cunner.jpg; to Flickr, by Vhorvat),
(B) Brown Trout (https://commons.wikimedia.org/wiki/File:Brown_trout.JPG;
Zouavman Le Zouave), (C) Round Goby (https://www.michigan.gov/invasives/
0,5664,7-324-68002_73845-368437--,00.html; David Copplestone),
(D) Common Minnow (Subaqueous Vltava, Prague 2011, Czechia; Provided
by Karelj), (E) Barramundi (https://commons.wikimedia.org/wiki/File:
Barramundi.jpg provided by Nick Thorne), (F) European Eel
(https://commons.wikimedia.org/wiki/File:Anguilla_anguilla.jpg; GerardM),
(G) Hapuku Wreckfish (https://commons.wikimedia.org/wiki/File:Hapuka.jpg;
Nholtzha), (H) Rainbow Trout (https://digitalmedia.fws.gov/digital/collection/
natdiglib/id/2151 Eric Engbretson), (I) Common Triplefin (https://commons.
wikimedia.org/wiki/File:Forsterygion_lapillum_(Common_triplefin).jpg; Ian
Skipworth), (J) Twister (https://commons.wikimedia.org/wiki/File:Bellapiscis_
medius_2.jpg; A.C. Tatarinov), (K) Atlantic Salmon (https://commons.
wikimedia.org/wiki/File:CSIRO_ScienceImage_8062_Atlantic_salmon.jpg;
Peter Whyte, CSIRO), (L) Three-spined Stickleback (https://commons.
wikimedia.org/wiki/File:Three-spined_Stickleback_(Gasterosteus_aculeatus)_
at_the_Palo_Alto_Junior_Museum_and_Zoo.jpg; Evan Baldonado/
AquariumKids.com).

Strategy of Scientific Inference and Statistical Tactics
Classical hypothesis testing has been the backbone of scientific
inference for nearly a century. Both the Fisherian and the
Neyman-Pearson variants of hypothesis testing turn on the
axle of a counterfactual argument. The argument stripped of
probabilistic uncertainty runs like this: If we assume a particular
model (generally called the null) is true then we can predict
that a specific pattern should occur in our data. If the predicted
pattern does not occur, then the null hypothesis cannot be true
and something else must be.

This argument has worked well for science in tightly
controlled situations where the predicted patterns are clear

and the nature of the “something else” is unequivocal. But in
more open situations, with more experiments, more models,
more questions and variable amounts of data, the chain
of hypotheses (multiple models) becomes harder to follow
and the statistical adjustments required to maintain even the
illusion of control of error rates become more cumbersome.
Paradoxically, considering more models and asking more
questions makes it harder to find support for any model or to
answer any question.

One common approach to multimodal inference is the
application of information criterion (Burnham and Anderson,
2004). Akaike’s Information Criterion (AIC) is one such
inductive inferential approach that is both widely recognized and
applied (Akaike, 1981). The appeal of such an approach is to
simultaneously assess competing hypotheses based on how well
the models perform relative to each other through the likelihood
function, but then discount the potential overfitting of models
that have a large number of parameters.

User-defined thresholds demark 1AIC values that constitute
weak, strong, or very strong evidence for one model over the
other. If parameters are estimated, the likelihood becomes a
biased estimate of how close a model is to the generating process.
The more parameters estimated, the greater this over optimism.
Akaike (1973) initiated the use and study of information criteria,
which correct for this bias. Information criteria have been
enormously useful in analyzing biological data (see Burnham
and Anderson, 2002). Many information criteria (the consistent
criteria) fully meet all the criteria listed in Box 2 and are
evidence functions.

Evidence for one model over another is a function of the
estimated relative discrepancy of any two models from the
generating process and is measured by evidence functions.
Evidence functions (Box 2) can take many forms (see Lele
(2004), and Taper and Lele (2011) for technical and philosophical
discussions, and Taper and Ponciano (2016) for a more general
discussion). The Schwarz Information Criterion (SIC) often
referred to as the Bayesian Information Criterion (BIC), when
used to compare differences between competing models (1SIC)
is an evidence function (Dennis et al., 2019). Similar to AIC, the
SIC (Eq. 2) uses the maximum likelihood function (L) to evaluate
the fit of the model to the data and uses a function of the amount
of data (n) and the number of parameters (k) to penalize for
overfitting (Burnham and Anderson, 2004).

(2)

The SIC penalizes for model complexity more heavily than
AIC and the error properties are aligned with the concept of
evidence functions, whereas the AIC error properties are not
(Dennis et al. this research topic). SIC is also commonly available
in R packages (named the BIC). The criterion (Eq. 2) can be
derived either in a Bayesian context (Schwarz, 1978) or in a
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BOX 2 | What is an evidence function?
Evidence functions are based on nine desiderata (i.e., something that is
desired or wanted) for statistical and philosophical properties with desirable
and meaningful characteristics for scientific applications (Lele, 2004; Taper
and Lele, 2011; Taper and Ponciano, 2016). Here, we attempt to translate
those desired properties (D0 to D8) for scientists with emphasis on
implications to applications.

D0: Evidence is measurable, does not require information about
beliefs, and is made from confronting at least two models that
represent scientific hypotheses with the data.

D1: Evidence functions measure how possible data under each
model (at least two) match or are comparable to the observed
data. Neither model may completely describe the process that
generated the observed data, but the function can discriminate
if one of the models is more likely to have generated
the observed data.

D2: Evidence is continuous from virtually none to very strong, and
measuring evidence should likewise be a continuous and not
have a threshold like using α levels for hypothesis testing.

D3: Evidence must be arrived at in a reproducible way. If I do not
describe processes by which I arrive at a conclusion, then it
becomes difficult for someone else to follow the logic to get to
that conclusion or challenge the underlying approach.

D4: Personal opinions, beliefs, or intentions cannot influence the
evidence function in a hidden way and the process should be
accessible to everybody. If a broader scientific audience does
not understand what constitutes evidence, then the function
cannot be used as evidence.

D5: Evidence functions do not change person to person (in contrast
to Bayesian approaches with different personal priors).

D6: Evidence does not need to come from a single critical test
(experiment). Evidence functions should have an explicit way of
combining data sets to confront hypotheses and the process
should be inherently dynamic with reevaluation as more data or
better data are collected.

D7: The evidence should not change depending on the scale the
data was collected and analyzed. Nor should evidence be
sensitive on transformation of parameters. To give an example
related to the metabolic scaling relationship research, if we
allowed the appearance of plots to be evidence for the slope,
then we could change our evidence by making one plot with
one x-axis scale and another plot with different scale. One of the
interests of this paper is how much difference there is among
species in β. It should not make a difference to the evidence if
this dispersion is parameterized as a variance or as a
standard deviation.

D8: More data results in better inferences, but will only be as good
as the completeness of the models/hypotheses tested. The
model selected in any given analysis will, with more and more
data collected, be the model closest to describing the process
from which the data are observed. You can do no better in
understanding the underlying process than the models
contained within your suite of models evaluated.

frequentist context (Nishii, 1988) We adopt the SIC terminology
throughout for model selection and evaluation of parameter
uncertainty using 1SIC intervals to avoid confusion of the
evidentialist approach with Bayesian analysis and inference. The
model with the lowest value of SIC is considered the best model
and the evidence function, 1SICij, is the pairwise difference
formed by subtracting the SIC of a reference model i from
the SIC of a competing model j. As an evidence function,
1SICij is continuous from negative infinity to infinity with the
strength of evidence for the reference model over the competing

model growing larger as the 1SIC becomes positive and large.
Commonly, when information criteria are used for model
selection, the model in the model set with the lowest IC value is
used as the reference model, and all1IC are therefore positive.

Given the hierarchical nature of mixed models several
alternative effective sample sizes can be calculated (Jones, 2011);
these methods adjust the sample size (n), used in the SIC
calculation (Eq. 2) to the effective samples size to account
for assumptions of non-independence in data. Which is most
appropriate depends on the level in the hierarchy of inferential
interest. Because the parameter of primary interest in this study
is the fixed effect of body mass, the total sample size is the correct
effective sample size to use (Lorah and Womack, 2019).

Instead of attempting to reject false models, the evidential
approach seeks to assess which models are closer to the unknown
natural generating process than other competing models. The
support for one model does not in itself diminish support for
other models. However, scientists may find themselves in the
situation where several distinct models appear nearly as good.
Given the data in hand, the scientist cannot strongly differentiate
between the models in this set. In this case, all of these models
should be retained in the scientist’s thinking.

1SIC Intervals
SIC values can also be used to define uncertainty surrounding a
parameter estimate – thus linking model selection to measures
of uncertainty directly through the use of 1SIC. Discussion
of evidential intervals based on the likelihood ratio can be
found in Royall (1997), while Bandyopadhyay et al. (2016)
discuss 1SIC evidential intervals. As with 1AIC, there are some
guidelines (suggestions) on what constitutes weak evidence or
strong evidence for one model over another based on the value of
1SIC. Raftery (1995) suggested that a 1SIC (i.e., 1BIC) values
less than 2, 2 to 6, 6 to 10, and greater than 10 constitute weak,
positive, strong, and very strong evidence, respectively. Such
verbal partitioning of any information criterion is often desirable
for interpretation, but rarely justified.

Box 3 provides a more intuitive probabilistic approach to
selecting a value. From our more detailed example in Box 3
using binomial probability model, it can be shown that at five
consecutive heads, the probability of this occurring by chance is
∼0.03 with a 1IC∼7. Building an uncertainty bound around a
parameter value requires choosing a1SIC value, we use seven as
our threshold for intervals,1SIC(7).

A 1SIC interval for the metabolic scaling relationship (slope
parameter) can be built for each trial or for the best selected
model by calculating 1SIC across the parameter space of the
slope parameter. The 1SIC is the difference of the SIC of the
best model and the SIC of the same model with a fixed value of
the slope parameter. The upper and lower bound of the 1SIC
interval occurs when 1SIC = 7. Figure 2 visually captures the
process, where the parameter space of the slope parameter is on
the x-axis and the 1SIC is a function of this slope parameter.
Expectedly, 1SIC values greater than 7 would result in broader
intervals. If we consider 1SIC(7) as strong evidence, then the
bound can be interpreted as there is strong evidence that values
of the scaling relationship outside of this range do not give rise to
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BOX 3 | Intuitions about evidence.
Fisherian significance tests (think p-values) and Neyman-Pearson hypothesis test (think α levels) rely on critical values. The confusion and convolution of these two
statistical approaches have led applied scientists to misinterpretations of the strength of evidence against the null hypothesis. As Hubbard and Bayarri (2003) so
state it, “This mass confusion, in turn, has rendered applications of classical statistical testing all but meaningless among applied researchers.”

Multi-model inference using Information Criteria (IC) (e.g., AIC, SIC) have a continuous measure of evidence found in the difference (i.e., 1AIC, 1SIC) in values
between the best model (hypothesis) and the reference model. However, communicating this strength of evidence has resulted in vagueness emerging from linguistic
uncertainty (Elith et al., 2002). This is to say, applied scientists have created guidelines to discuss the strength of evidence. Maybe the most popular
recommendation was provided by Burnham and Anderson (2002) for 1AIC (AICi – AICj), where 0 > 1AIC > 2, 4 > 1AIC > 7, 1AIC > 10, represent “substantial,”
“considerably less,” and “essentially none” levels of evidence to support for retaining model i in the model set along with the best model j. Never minding the
absence of what a value of 3 might indicate, some scientists have suggested different discretization of intervals (i.e., Burnham et al., 2011) adding to the apparent
vagueness of what constitutes evidence on a continuous scale rather than a discrete critical test provided by p-values (Murtaugh, 2014).

To a certain extent that different scientists recognize different 1IC levels as strong evidence represents differences in attitude about science as a whole and their
specific research problem. This variation is no different from one scientist choosing a critical value of 0.05 for a hypothesis test and another scientist choosing 0.01.
The clearest exposition for developing an intuition for evidence on a continuous scale (Box 2, D2) for an evidence function is in Royall (1997), which we recast here in
terms of coin tosses.

Imagine that you are gambling with someone on their flipping of a coin and wonder if you are being cheated with a double-headed coin, or if the coin is fair. After the
first coin toss results in a head you are not worried, yes there is a small amount of evidence for a double-headed coin, but it is just a single coin toss. Two heads in a
row still happens frequently. With three heads in a row your suspicions are peaked. By four heads in a row you are having serious doubts. Five heads in a row pretty
well convinces you that you are being cheated. And, after seeing eight heads in a row you are reaching for the derringer in your boot.

We can augment this example with calculations of the p-value of so many heads under the null model of a fair coin. Fisherian significance testing is generally the first
inferential tool that we are taught so many of us will have developed intuitions on p-values. In the calculation of the p-values, the null model is the fair coin model.
Evidence is often measured as a likelihood ratio. The table shows the ratio of the likelihood of the double headed coin model given the data to the likelihood of the
fair coin model given the same data. We can scaffold these intuitions into greater understanding of the evidence contained in differences in information criteria,
1IC = (2∗Log(Likelihood ratio)). Selecting a specific IC, such as AIC or SIC, would introduce a penalty term for the number of parameters and amount of data (Eq. 2).

Consecutive heads p-value Likelihood ratio 1IC Evidence intuition

1 0.5 2 1.39 Very weak

2 0.25 4 2.77 Weak

3 0.125 8 4.16 Marginal

4 0.063 16 5.55 Moderate

5 0.031 32 6.93 Strong

6 0.016 64 8.32 Very strong

7 0.008 128 9.70 Extremely strong

8 0.004 256 11.09 Overwhelming

Expectedly, there is a common trend between the p-value and 1IC. As the evidence grows for a two-headed coin, the p-value gets smaller, while the 1IC value
increases. In Fisherian p-value testing, we would have selected a threshold for the observed data (say 0.05) that beyond which we would reject the null model
(hypothesis) in favor of the alternative. Interpretation of p-values is generally not condoned as a strength of evidence. With the 1IC, we have a gradient from which to
draw our inferences.

We see at a p-value of 0.031, the 1IC is 6.93. For our study, we selected 1SIC(7) for our intervals – meaning models and values of the slope parameter within this
bound should be retained for further consideration with more data. Models and values of the slope parameters outside this bound have strong evidence against
those models giving rise to the observed data (relative to the best model) and can therefore be subsequently dismissed.

the observed data. For purpose of our study, we provide 1SIC(7)
intervals for each trial and for the best model. In practice, models
with parameter values falling within the 1SIC interval are cases
where, given the data in hand, the scientist cannot strongly
differentiate between the models within the bound, and all of
these models should be retained and further scrutinized with
additional data (Box 2, D6).

RESULTS

Using the slopes estimated for each trial (Table 1), the
distribution of values with fitted normal curve is shown in
Figure 3. The mean slope parameter value is 0.94 (SE 0.04),
which is unexpectedly different than the 0.79 slope estimated
from the synthesis provided by Clarke and Johnston (1999). One
explanation for this difference is because many of the studies used

in our analysis were initially conducted to test the SMR of similar
body sized fish at different temperatures. As indicated by trial
28 (Table 1), small sample size (n = 8) can result in biologically
unrealistic estimates (β̂ = −0.21).

The best model selected using 1SIC came from model suite
3 with a random intercept and random slope, but with a
common slope parameter of β̂ = 0.89 (SE 0.021). However, a
common slope and random intercept model had a 1SIC = 1.5,
and is thus not strongly distinguishable from the best model.
The correlation of random slope with random intercept was
−0.86, indicating that as the intercept increases in value,
the slope decreases in value. This correlation is likely due
to noise.

The value of universal slope is consistent (0.87–0.89) across
all model suites and there is strong evidence (1SIC > 7) against
fixed mechanistic based values of the metabolic scaling rate of
0.67, 0.75, and 1 across all modeling suites. Figure 2, along with
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FIGURE 2 | SIC interval formulation. The black line is the 1SIC as a function of the slope parameter space. The reference model is always the model with the
estimated slope parameter. When 1SIC = 7 (solid gray horizontal line intersects the 1SIC), this defines the lower 1SIC(7)LB and upper 1SIC(7)UB of the information
criterion interval. Values of the 1SIC near the MLE can be negative values due to the penalization term (Eq. 2). This example is drawn from the best fit model of our
study with an MLE for the slope parameter of β̂ = 0.89 with 1SIC(7) = (0.82, 0.99). When the 1SIC is negative, that is below the dashed line, the fixed slope models
are favored, but weakly. When the 1SIC is positive but less than 7, fitted slope model is favored, but weakly.

FIGURE 3 | Distribution of slopes estimated in Table 1 for all 55 trials. Mean
of the distribution is 0.94 (SE 0.04).

being a conceptualization of an 1SIC(7) interval, is generated
under the best model and the interval spans 0.81 to 0.99.

Figure 4 shows the 1SIC(7) interval for each trial ordered
by n∗VAR(ln(weight)), from smallest values at the bottom to
larger values at the top. This ordering is a regression experimental
design component where few data points and/or small ranges in
body mass result in small values indicating the lower precision
of the slope parameter estimate. With exception of Cunner (Trial
3) where the 1SIC(7) interval spans 0.81 to 0. 98, all other trials
span at least one of the mechanistic hypotheses of 0.67, 0.75, or 1.

As outlined in the data section, all observations included in
this study were collected under conditions to ensure data quality.
However, not all studies were designed to estimate metabolic
scaling relationship (a slope parameter) and some had few data
points and/or did not cover a large breadth of fish body masses.
The trials of Cunner, however, were designed for testing the
metabolic scaling relationship and could potentially drive the
overall value observed by the best model. As such, we conducted
an additional analysis after removing the Cunner data and found
the same estimate of the metabolic scaling relationship. See
Box 4 for more details. The metabolic scaling relationship of
β̂ = 0.87− 0.89 for fish has very little uncertainty, is robust
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FIGURE 4 | 1SIC(7) intervals for all trials ordered by n∗VAR (Log(weight)). Trials with small n∗VAR(Log(weight)) are expected to have wide intervals because the lack
coverage of fish mass or have small samples sizes. As studies have larger n∗VAR(Log(weight)), the 1SIC(7) intervals become smaller and have the ability to exclude
hypotheses of the slope, β = 0.67, 0.75, and 1. With the exception of the Cunner(3) trial, all other trials capture at least one of the hypotheses, the most common
being β = 0.75, the dashed line in the figure. The zoom inset shows trials with relatively narrow 1SIC(7) and dashed lines at β = 0.67, 0.75, and 1.0.

across models, and emerges when any trial or species is dropped
from the analysis.

DISCUSSION

The evidence function (1SIC) approach we implemented here
has led to selecting a best model; a mixed effect model with
random slope and random intercept by species and an estimated
correlation between random effects (Table 2, Model 9). However,
we cannot dismiss the possibility that the model structure
may only have a random species intercepts and common slope
as witnessed by this alternative model having a 1SIC = 1.5
(Table 2, Model 1). Models across all suites that represent
mechanistic hypotheses of a scaling relationship of 0.67, 0.75,
and 1 are dismissed with very strong evidence, 1SIC > 8.4
(Table 2, Box 2). As such, our inference is that surface
area limitations (β = 0.67), distribution network limitations
(β = 0.75), and low cost demands on maintenance and routine
activity (β = 1) are not exclusively driving the metabolic scaling
relationship in fish.

However, the evidence for a β̂ = 0.87 to 0.89 universal scaling
relationship is strong and presumably robust as indicated by
similarity of the MLE for this parameter across all modeling
suites and narrow bound of the 1SIC(7) interval (Figure 2).
Both fixed values are more than five standard deviations
from the estimated common slope, and thus the chances
are less than 1 in 1,000,000 that the common slope would
have a β as small as 0.75 or as great as 1. If the data do
come from the random slopes model, then it would be an
extraordinary event for any species to have a β as low as 0.75,
but perhaps as much as 6% of species might have a β as
great 1. Accordingly, both DEB and MLB hypotheses warrant
further consideration to determine the mechanism of metabolic
scaling in fishes.

In many ways, the evidentialist approach is not that different
from what is being applied in the multi-model literature,
albeit with the meaningful caveat that an evidence function
(Box 2) is being applied. The SIC is well studied, familiar
to many, and also extractable from all the analyses we
conducted in the R programing language. As such, the 1SIC
is readily accessible to scientists wishing to implement an
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BOX 4 | Is it just cunner?
The Cunner study (Norin and Gamperl, 2018; n = 66 per trial for five trials) and the Common Minnow (McLean et al., 2018; n = 122 for one trial) both have large
sample sizes compared to the other studies and were intentionally designed to estimate the metabolic scaling. Consequently, when we look at the span of 1SIC(7)
interval estimated for each trial as a function of the regression experimental design measure n ∗ the variance of Log(weight) (Figure 4), we see the Cunner and the
Common minnow studies have distinctly smaller 1SIC(7) intervals. This raises the question, would our conclusion about the value of intraspecific scaling coefficient if
the cunner study or the Common Minnow study were not included in our analysis.

We estimated the slope parameter under the best fit model and then calculated the resulting 1SIC(7) interval by systematically withholding data by trial and then by
species. For trials (Figure Box 4.1), they are ordered by value of n ∗ the variance of Log(weight) from largest to smallest. For species (Figure Box 4.2), the ordering
is alphabetical.

As expected, Cunner trials and the Common Minnow trial indeed do influence the MLE and the 1SIC(7) intervals (Figure Box 4.1), but not so much as to capture
the mechanistic hypotheses of 0.75 and 0.67 (dashed lines). However, the full model inference that the mechanistic hypothesis of metabolic scaling = 1 can be
excluded from further consideration is sensitive to inclusion of some trials and species (Figure Box 4.1 and Figure Box 4.2). In all trials, the value of β̂ = 0.89 is
captured. Other trials with smaller values of n ∗ the variance of Log(weight) have virtually no influence on the either the point estimate or the uncertainty measure.

The story is similar if we aggregate trials by species (Figure Box 4.2) and then systematically withhold all data from a species. Notably, withholding species data
generally broadens the 1SIC(7) interval with slight variation in the MLE that ranges from 0.89 to 0.9. Yet withholding a species from the analysis does not change the
conclusion of the statistical inference that the slope of the metabolic scaling relationship is not 0.75 or 0.67. However, absence of Barramundi, Common Triplefin,
Cunner, Hapuku Wreckfish, or Rainbow Trout results in a wider 1SIC(7) interval that just captures the metabolic scaling of 1, and would, in the absence of any of
these species, motivate further consideration of this mechanistic hypothesis.

While some of the trials were designed to test the metabolic scaling relationship, they do not unduly drive the conclusion. But maybe more importantly, the effect of
many studies that are less suited to individually test the relationship (Table 1), together can provide meaningful insights into the metabolic scaling relationship.

FIGURE BOX 4.1 | MLE of the slope parameter and 1SIC(7) interval estimated by systematically withholding each trial. FULL is the MLE and interval with all data
considered. Absence of any one data set does not drive our conclusion. However, absence of trial 4, 5, 11, 40, or 41 would suggest keeping the mechanistic
hypothesis of metabolic scaling at 1 in the suite of models to be considered further.

evidentialist approach. While additional coding is required
to produce 1SIC intervals, this effort takes only elementary
coding to automate. It must be noted, that the SIC for
large sample sizes makes it difficult for new parameters to
enter the model. In this analysis, our primary conclusion is
that a model with β estimated as an extra free parameter
is better than any of the models with β specified at any

of the values of 0.67, 0.75, or 1.0. Thus the use of the
SIC as a criterion as opposed to the AIC makes our
conclusions conservative.

The other major contribution of the evidentialist approach
underscored in this is the imperative to combine data sets
such that evidence does not come from a single critical
test, but rather from the accumulation of trials and critical
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FIGURE BOX 4.2 | MLE of the slope parameter and 1SIC(7) interval estimated by systematically withholding each species. FULL is the MLE and interval with all
data considered. Absence of any one data set does not drive our conclusion. However, absence of Barramundi, Common Triplefin, Cunner, Hapuku Wreckfish, or
Rainbow Trout would suggest keeping the mechanistic hypothesis of metabolic scaling at 1 in the suite of models to be considered further.

tests (See D6 of Box 2). Here we combined 55 trials across
16 species comprising 1456 observations. While this would
normally form the basis of meta-analysis, this breadth of
diverse data is desirable by allowing for a random effect
of species to make our inferences across the population
of fish species. If we look at each trial individually, we
see that all but one trial (Cunner 4), captures one of the
mechanistic hypotheses of 0.67, 0.75, or 1. In contrast when
we look at the aggregate, none of these hypotheses are
supported (Box 4).

Both the quantity and quality of metabolic rate data
included in the metadata are important and can shape
the conclusions of the study. Several extensive metadata
analyses include mean metabolic rate values from close to
a 100 or more species (e.g., Clarke and Johnston, 1999;
White and Seymour, 2003; Glazier, 2005; Killen et al.,
2010); however, the methods and quality of the data is
not always rigorously considered. Metabolic rate is one of
the most commonly investigated whole animal physiological
performance metrics (Nelson, 2016), but different methods
are more or less time and resource-intensive and can over-
estimate SMR (Chabot et al., 2016). Furthermore, it is
logistically challenging to obtain robust SMR measurements
on many fish species, for example, large-bodied open ocean
pelagic species or deep-sea fishes. Our study is unique
because we only included standard metabolic rate data
following specific and stringent criteria with each data point
representing individual standard metabolic rate instead of
reported species mean values. Future work could address how

our (and others) conclusions change if the quality control
criteria are relaxed.

There are many covariates that may be important
predictors for species-specific scaling slopes and intercepts.
While we tried to capture fishes across a broad latitudinal
range with varying life histories, we did not examine life
history factors such as species ecological activity (athletic
vs. sedentary; Killen et al., 2010), growth rate, reproductive
investment or strategy (e.g., fecundity), maximum body
size, maximum age, or even environmental factors such
as habitat (e.g., benthic vs. pelagic; freshwater vs. marine;
Killen et al., 2010), or latitude (e.g., tropic vs. temperate
vs. polar). Furthermore, temperature governs metabolism
in ectotherms such as fish. Given this, all our models
included temperature as an independent significant predictor
of metabolic rates in fish (1SIC = 8.1 for best model
compared to best model without temperature; Box 5).
Recently, Lindmark et al. (2018) presented temperature-
dependent intraspecific metabolic allometry, where MR
increased with temperature to a lesser extent in larger fish.
Furthermore, these effects scale to higher levels of organization,
including from populations (population response-models),
to ecosystems (MTE; Brown et al., 2004). We evaluated
temperature effects and an interaction with log(weight) (See
Box 5) with a 1SIC = 7.2 compared to the best model.
We can dismiss further consideration of an interaction of
temperature with weight under the model suites evaluated.
However, these temperature-size dependent effects on MR
are mixed across and within species, and require more
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TABLE 2 | Application of evidence functions using the Schwarz Information
Criterion (SIC).

Model Description k Log(L) SIC 1 SIC

Model Suite 1: Random Intercept models.

Fixed effect: Weight, Temp; Random effect: Species; Nested effect: Trial

1 β = Free∗ 6 73.9 −104.1 1.5

2 β = 0.67 5 −15.5 67.4 173

3 β = 0.75 5 42.1 −47.7 57.9

4 β = 1 5 35.7 −35 70.6

Model Suite 2: Estimated species intercept models

Fixed effect: Weight, Temp and Species, Nested effect: Trial

5 β = Free∗ 20 −69.8 −69.8 35.8

6 β = 0.67 19 96.8 96.8 202.4

7 β = 0.75 19 −16.3 −16.3 89.3

8 β = 1 19 −0.4 −0.4 105.2

Model Suite 3: Random intercepts with random slopes

Fixed effect: Weight and Temp; Random effect: Species and Slope;
Nested effect: Trial

9 β = Random, Free∗ 8 81.9 −105.6 0

10 β = Random, 0.67 7 50.1 −49.2 56.4

11 β = Random, 0.75 7 64.6 −78.1 27.5

12 β = Random, 1 7 74.1 −97.2 8.4

Model Suite 4: Estimated species intercept models with random slopes

Fixed effect: Weight, Temp and Species; Random effect: Slope; Nested
effect: Trial

13 β = Random, Free∗ 21 107.8 −62.6 43

14 β = Random, 0.67 20 45.2 55.3 160.9

15 β = Random, 0.75 20 78.6 −11.5 94.1

16 β = Random, 1 20 85.7 −25.6 80

∗R output with parameter values found in the Supplementary Material.

research and metabolic scaling data from species in polar
and tropical environments.

Norin and Gamperl (2018) provided a compelling study
to measure allometric scaling for Cunner. It adhered to all
the characteristics of a robust and well-designed study (White
and Kearney, 2014) to estimate the scaling relationship,
with ample breadth of fish mass, 68 observations per trial,
and five trials (Table 1). What makes this study notable
is their conclusion that no universal scaling relationship
exists. We offer a few explanations for this apparent
contradiction. Our inference is broadly applicable to fish,
while theirs is limited to Cunner. Put simply, we are
measuring evidence at a different inferential level for a
universal scaling constant. If we look at the values of the
SIC(7) intervals for all Cunner trials (Figure 4) they appear
to be very similar. The intervals are {0.79, 1.04}, {0.88,
1.09}, {0.81, 0.98}, {0.74, 0.91}, and {0.7, 0.89}, and all
SIC(7) intervals capture the values 0.88 and 0.89. Clearly
our estimate of β̂ = 0.89 from the best model with a
random slope should be considered as a possible universal
scaling for Cunner as well as other fish. As such, our results

are consistent with Norin and Gamperl (2018), and their
insightful suggestions about the need to consider species-
specific scaling relationships when building fish population
dynamic models that apply metabolic scaling exponents,
should be heeded.

Scaling relationships are at times considered key tools
for predicting the effects of global change on fisheries (e.g.,
Cheung et al., 2008), or as tools to estimate how abundant
fish might be in the absence of fishing (e.g., Jennings and
Blanchard, 2004). Therefore, variation in the scaling relationship
between body size and metabolism have clear implications for
how we predict fish populations will respond to changes in
the environment or changes in body size distributions. As
we move forward and seek to predict the consequences of
changes in fish populations, the assumption of a universal
scaling exponent, while attractive and generalizable may
either under or overestimate a species sensitivity to changes
in the environment. Given the evidence for species-specific
variation in scaling relationships provided in our study, stock
assessments seeking to integrate scaling relationships into
forecasts may therefore benefit from species-specific values.
While theoretical underpinnings have motivated application
of a scaling relationship of β = 0.75, our data show that
fisheries models that blindly adopt this parameter may be
ultimately misleading.

We had some concern that the species distribution would
be non-normally distributed, but there was no evidence from
our analysis of this concern. However, those models may be
useful for assessing the importance of species phylogenetics to
metabolic scaling. The variance for the random species intercept
model was 0.19 with a residual of 0.047. Similarly, from the
random slopes model, the variance for the random intercept
was 0.24, the random slope was 0.005, and the residual variance
was 0.044 (see Supplementary Material for model outputs).
Both measurement error in SMR and real inter-species variability
contribute to the variability in β̂ . Variance components are
notoriously difficult to tease apart, that is they are only weakly
estimable (Ponciano et al., 2012). An estimate of the magnitude
of measurement error in SMR would contribute greatly to the
ability of further studies to accurately estimate the inter-specific
variability in β̂ .

This study does not address the question of inter-
specific metabolic scaling. This would entail a study of
scaling of intra-specific intercepts with mean species body
size. As we do not have accurate estimates of mean body
size for these species, we cannot yet address this issue.
Future work could use the random affects models or
the estimated species intercepts models (model suites 2
and 4, Table 2) to evaluate if species relatedness and/or
taxonomy are significant factors explaining species random
effects variability.

Many of the studies used in this analysis were not
designed to test the metabolic relationship, which is evident
from the standard errors of the regression coefficients for
individual trials (Table 1). However, under our data criteria,
these studies had precise measurement of SMR, body mass,
and temperature. The inclusion of these trials added unique
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BOX 5 | Changes in SMR due to temperature and body mass.
Temperature has been thought to play a critical role regulating individual metabolic rate in fishes (Fry, 1947), where metabolic rates typically increase as temperature
increases. As a consequence, all of the models we have considered so far have included a temperature effect. We can evaluate the effect of temperature more fully
by considering six modification of models in suites 1 and 3 (Table 2). The first model (M17) is a random intercept model without inclusion of the temperature variable.
The second model (M1) includes temperature (Table 2, Suite 1, Model 1), and the third model (M18) adds an interaction term of temperature with log(weight). These
are all fixed slope models.

Including a log(weight) by temperature interaction is equivalent to saying that scaling of log(SMR) with log(weight) is itself a linear function of temperature. This is how
we express it in the table below. The derivation of the standard error is discussed in the Supplementary Material.

The second group of models are built upon the random slopes model (Table 2, Suite 3, Model 9). The first model (M19) is absent temperature, the second model
(M9) is the same as Table 2, Model 9 with an intercept defined by the temperature, and the third model (M20) has an interaction of temperature with log(weight).
Using maximum likelihood fitting and extracting the SIC values, we can apply the same evidence function approach to evaluate the influence of temperature on
intraspecific metabolic scaling. Model output is provided in the Supplementary Material.

Consistent with our previous model selection effort, M9 (Table 2), which includes temperature with a metabolic scaling coefficient (0.89), has the lowest SIC score.
Models M17 and M19 without temperature include have 1SIC > 7, which indicates temperature is a significant factor as the literature suggests. As observed
previously, there is moderate evidence for M9 over M1, but not so much as to discourage future studies from considering a constant slopes model. Both M18 and
M20 with interactions between temperature and log(weight) have 1SIC > 7. Under the best model (M9), the expected metabolic scalings at 0◦C, 15◦C, and 30◦C
are 0.89, 0.9, and 0.91, respectively.

The conclusion from our focused study of temperature is that temperature is a critical factor to consider in modeling fish metabolic rate as there is strong evidence
(Box 3) for including temperature in the intercept of the scaling relationship. Future work on evaluating the effect of temperature should expand the coverage of the
temperature range with more polar and tropical fish species. Additional data at the endpoints of the temperature range will improve inferences about the scaling
relationship and the evidence for, or against, a log(weight) by temperature interaction.

TABLE BOX 5.1 | Model selection using 1SIC along with parameter estimates of for the metabolic scaling relationship.
For models M18 and M20, the parameter estimate and standard error are a function of temperature.

Model SIC 1SIC β̂ SE(β̂)

M17 −80.6 25 0.87 0.015

M1 −104.1 1.5 0.87 0.015

M18 −97.5 7.6 0.83 + 0.00257 (temp)
√

0.0023+ (8.59× 10−6)× temp2
+ 2×−0.00013× temp

M19 −86.1 8.1 0.91 0.025

M9 −105.6 0 0.89 0.021

M20 −98.4 7.2 0.87 + 0.00106 (temp)
√

0.0033+ (1.07× 10−5)× temp2
+ 2×−0.00017× temp

species to support the evaluation of a species random effect,
which ultimately allows us to make inferences from this
model across fish species. Given that some of these trials
are ill-suited in themselves to critically test the metabolic
relationship, due to low sample size or narrow range of
body masses, this may be contributing to selection of the
random slope model. Future studies that implement an
evidentialist approach with additional data sets collected using
appropriate experimental designs to uncover the allometric
scaling relationship will likely reconcile if species requires a
random slope.

Simulations to understand data requirements for robust
analysis of interspecific metabolic scaling relationships suggest
that the data should include 100–150 species spanning 3–4
orders of magnitude range in body size (White and Kearney,
2014). One approach to finding or estimating a universal
intraspecific scaling constant is to take the average from
the distribution of estimated slopes from each trial (e.g.,
Figure 3 in the current study, 0.916, SE 0.04). This approach,
while easy to implement by combing the literature, assumes
that all data are created equal, but we know that each
estimated slope, β̂ comes with error, and some of the studies
we included had relatively large standard errors (Table 1).
Our data with fewer total species than most meta-analysis,
but using individual data instead of species or trial means,

proved to be sufficient to address the question concerning
the universality of scaling relationship between fish body mass
and metabolic rate.

The evidentialist approach is useful in addressing long-
standing scientific debates (such as universal scaling
relationships of metabolism), consistent with the practice
of applied scientists, and relatively easy to implement using
existing evidence functions and programing packages. It
provides path forward for dismissing models (hypotheses)
with little to no support, identifying and retaining hypotheses
needing further evaluation, and provides a philosophy that
emphasizes accumulation of evidence, through additional data
and confronting that data with more complex models of how
the nature works. We look forward to further refinement of
the approach not only through philosophical insights and
mathematical rigor, but through application of the approach
to long-standing, pressing ecological and environmental
science problems.
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