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Background: Recently, muscle synergy analysis has become a standard methodology
for extracting coordination patterns from electromyographic (EMG) signals, and for the
evaluation of motor control strategies in many contexts. Most previous studies have
characterized upper-limb muscle synergies across a limited set of reaching movements.
With the aim of future uses in motor control, rehabilitation and other fields, this study
provides a comprehensive characterization of muscle synergies in a large set of upper-
limb tasks and also considers inter-individual and environmental variability.

Methods: Sixteen healthy subjects performed upper-limb hand exploration movements
for a comprehensive mapping of the upper-limb workspace, which was divided into
several sectors (Frontal, Right, Left, Horizontal, and Up). EMGs from representative
upper-limb muscles and kinematics were recorded to extract muscle synergies and
explore the composition, repeatability and similarity of spatial synergies across subjects
and movement directions, in a context of high variability of motion.

Results: Even in a context of high variability, a reduced set of muscle synergies may
reconstruct the original EMG envelopes. Composition, repeatability and similarity of
synergies were found to be shared across subjects and sectors, even if at a lower
extent than previously reported.

Conclusion: Extending the results of previous studies, which were performed on a
smaller set of conditions, a limited number of muscle synergies underlie the execution
of a large variety of upper-limb tasks. However, the considered spatial domain and the
variability seem to influence the number and composition of muscle synergies. Such
detailed characterization of the modular organization of the muscle patterns for upper-
limb control in a large variety of tasks may provide a useful reference for studies on
motor control, rehabilitation, industrial applications, and sports.
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INTRODUCTION

In recent years, the study of motor control has focused on
a human-centered perspective by emphasizing the importance
of evaluating muscle or kinematic coordination patterns. Such
view focuses on the premise that the Central Nervous System
(CNS) relies on a limited number of modules (Bizzi et al.,
2008), possibly implemented at neural level (Bizzi and Cheung,
2013), to simplify the production of movement. Consequently,
by properly recruiting spatial modules with temporal activation
coefficients, the CNS exploits a reduced set of pre-shaped neural
pathways, called synergies, to achieve a large variety of motor
commands. This view implicitly assumes that, if synergies are
encoded at neural level, a unique set should be used across
a variety of movements or, at least, task-specific sets should
underlie movements requiring similar motor commands. Thus,
different movements within a task (e.g., reaching movements in
different directions) may be generated by one set of synergies, but
different tasks may require different or additional synergies.

The approach based on muscle synergies for the analysis of
human motor control has been widely exploited in the literature.
Applications of the muscle synergy concept included, among
others, investigations of muscles synergies in the upper-limb
in physiological conditions (d’Avella et al., 2006, 2008), and
the effect of neurological lesions (Cheung et al., 2009, 2012).
Synergies have also been applied to locomotion (Ivanenko et al.,
2004; Clark et al., 2010; Dominici et al., 2011; Lencioni et al.,
2016), and to postural control (Torres-Oviedo and Ting, 2007;
Safavynia and Ting, 2013).

While the existence of a modular control architecture has
broad acceptance in the literature, many points still need to
be clarified for a full comprehension of the framework and
its applicability. Addressing some of the open issues, some
studies investigated whether a reduced set of synergies might
be at the basis of a variety of movement (Valero-Cuevas
et al., 2009), whether synergies might be implemented in a
sparse fashion (Prevete et al., 2018), and might have a real
correlation in the task space, questioning whether the extracted
synergies are really able to reconstruct the original movement
(Alessandro et al., 2013). Moreover, different algorithms for
synergy extraction have been compared (Tresch et al., 2006),
and different synergy models –such as time-invariant or spatial
synergies and time-varying synergies (d’Avella et al., 2003) have
been proposed.

While some open issues are still debated, the impact of the
muscle synergies approach has broadened to many fields, as
explained in a recent review (Taborri et al., 2018), even outside
the motor control field in which the method was conceived. For
example, neurological rehabilitation may exploit the potential
of the approach for gaining deeper insights concerning motor
impairment. Cheung et al. (2009, 2012) suggested that in post-
stroke patients, spatial synergies are preserved even if their
recruitment timing is altered and that, in severely impaired
patients, effects such as fractionation or merging of synergies
might be used as biomarkers for assessing motor control
alterations. As suggested by other authors (Jarrassé et al.,
2014) muscle synergies might be involved in the development

and control of rehabilitative exoskeletons, or even assistive
robotics. Lastly, muscle synergies might also be employed for the
assessment of sports (Taborri et al., 2018).

Following these premises, the screening of the literature
clearly highlights the large amount of assessments and
applications that may benefit from a comprehensive mapping
of muscle synergies for the upper-limb as a reference database.
Furthermore, it should be noted that muscle synergy studies
are often limited to a reduced number of subjects, or compare
specific conditions with others. While in walking, several
studies are available to set a reference dataset (such as
Clark et al., 2010), possibly also because of the challenges
in collecting and analyzing them, large databases of upper-
limb synergies are still missing. In fact, the richest available
assessment focusing on the upper-limb, explored a variety of
reaching movements (point-to-point, reversal, and through
via-points) concluding that a set of 4–5 synergies could
account for >0.80 of the total variation of the original EMGs,
based on 17 muscles recorded on 9 subjects (d’Avella et al.,
2006). However, this study analyzed only the frontal and
sagittal planes.

Furthermore, when considering the possible exploitation
of muscle synergies to real applications, a relevant aspect
that has rarely been investigated is the effect of natural high
inter-individual variability. In fact, experimental designs are
usually confined to stereotyped and constrained scenarios, where
subjects have to perform repetitive movements toward a reduced
set of targets, and in very controlled postural conditions. These
designs consider in detail only target variability, for example
with the paradigmatic set of circular targets arranged in 1–2
different planes (such as in d’Avella et al., 2006; Tang et al., 2014;
Kieliba et al., 2018 and many others), or in case of some studies,
spanning across some gestures (as in the case of rehabilitation
in Cheung et al., 2009), while inter-individual/environmental
variability, related to natural and ecological variability of motion
which may depend on many factors (such as personal attitude,
different adopted motor strategies, training, sex, age, target
positioning, anatomical mismatching and others), have been
usually neglected or strongly constrained. These experimental
designs have been employed to analyze specific aspects and thus
include controlled conditions. However, a growing literature
suggests that variability is a key factor in motor control and
motor learning. In fact, it was experimentally shown that action
exploration and motor variability facilitate motor learning in
humans and that our CNS actively regulate it to improve learning
(Wu et al., 2014; He et al., 2016). In the field of muscle
synergies, a weakly constrained scenario was considered in
the study of multi-directional point-to-point movements (Delis
et al., 2018; Hilt et al., 2018). These studies confirmed the
hypothesis of modularity in upper-limb movements with limited
constrains, suggesting that a reduced number of modules are
shared across subjects and underlie point-to-point movements in
various directions.

In this scientific context, a comprehensive mapping,
investigating the possibility of generalizing results through
a large variety of movements and subjects, and considering
ecological variability, is still missing. Thus, the aim of this study

Frontiers in Physiology | www.frontiersin.org 2 September 2019 | Volume 10 | Article 1231

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-01231 September 26, 2019 Time: 18:4 # 3

Scano et al. Spatial Mapping of Upper-Limb Synergies

was to explore the repertoire of muscle synergies of the upper-
limb in healthy people in conditions of high spatial variability
(i.e., exploration of many different movement directions in an
unconstrained set-up). By collecting a comprehensive dataset of
EMGs during upper-limb movements in a large workspace, we
could: first, provide a reference database of upper-limb muscle
synergies to be used for various purposes; second, evaluate the
effects of the reduction of dimensionality of the dataset on the
accuracy in reconstructing the original dataset of synergies;
third, investigate the composition, repeatability and similarity of
synergies across subjects and movement directions in conditions
of high variability. We also found that, in an experimental design
simulating ecological variability, the results of the application of
the muscle synergy analysis may show a higher inter-individual
variability with respect to previous studies.

MATERIALS AND METHODS

An overview of the study design is portrayed in Figure 1.

Participants
The study took place at the Consiglio Nazionale delle Ricerche
(CNR - Italy), UOS Lecco, Human Motion Analysis Laboratory,

and under the supervision of the Villa Beretta Rehabilitation
Hospital, Costa Masnaga, LC (Italy). The study was reviewed
and approved by the CNR Ethical Committee (Rome, Italy).
All subjects signed a written informed consent before the
experiment, which was conducted in accordance with the
Declaration of Helsinki.

Sixteen healthy individuals, neurologically and orthopedically
intact, participated to the study. Their data are summarized
in Table 1. Due to fatigue and inability to fully complete the
protocol, we excluded two subjects from the analysis (subject 15
and subject 16).

Experimental Set-Up
Subjects stood approximately in the middle of the area tracked
by the motion capture system (Vicon 8 TVC system, Oxford,
United Kingdom). A support held a target board, with 8 targets
indicated by markers placed on a circle of diameter 0.6 m at the
cardinal points for movement directions (N, NE, E, SE, S, SW,
W, NW), as in previous similar protocols (d’Avella et al., 2006).
A 9th marker, labeled 0, was placed at the center of the circle. The
distance between each of the peripheral markers and the central
marker was of 0.30 m (as in d’Avella et al., 2006). The support was
designed so that the set of targets could be freely positioned and

FIGURE 1 | Study Design. The first row of the scheme describes the aim of the work and the study design: to investigate muscle synergies of the upper-limb in a
context of high ecological variability. The experimental protocol was performed by 16 subjects (two excluded). Five sectors were investigated: Frontal, Right, Left,
Horizontal, and Up, during Hand Exploration Movements (EXP). Tracking data were elaborated on using the Vicon software. Subjects were selected for inclusion and
their kinematic and EMG data were filtered, segmented and aligned. Then, kinematics data were extracted (Shoulder Flexion, Shoulder Vertical Rotation, Elbow
Flexion, and Movement Time). In the second row, a detailed scheme of EMG data analysis and synergy extraction is portrayed. EMG data were first segmented,
aligned, filtered and averaged. Then, EMG data underwent removal of tonic components, to achieve phasic, motion-related waveforms, and were normalized to the
maximum EMG on the whole workspace (Workspace Normalization), and lastly clipped to be non-negative. Then, synergies were extracted with the NMF algorithm;
the analysis of variability was focused on Variability in Modularity, Variability in Sectors, and Variability in Workspace (see text for details).
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oriented in space with respect to the subject. Different positions
of the target board were used to map the workspace of the upper-
limb. Lastly, a 10th marker (Reference R) indicated the starting
position located on the subject’s thigh and was selected by the user
in a comfortable position. The requirement for positioning R was
not to interfere with movement and being at a lower height than
the elbow vertical position.

The acquisition protocol included a comprehensive variety of
movement trajectories, considering 5 different positions of the
target board with respect to the subject. The targets were oriented
Frontal, laterally (Right and Left), upwards (Up), downwards
(Horizontal), simulating a mapping oriented toward many of the
sectors of the workspace (Figure 2).

The Hand Exploration Tasks (EXP) considered in this study
are portrayed in Figure 1. EXP movements began with the hand
in the center of each target set and consisted in going toward
each of the peripheral targets and then coming back to center
target. Consequently, each acquisition trial was composed of
16 EXP movements (reaching 8 targets and coming back). The
protocol also considered Point-to-Point reaching tasks (PtP),
including movements from marker R to each cardinal direction
and movements back to the marker R. However, in the present
paper, several reasons motivated our choice to present only
data from EXP. First, we wanted to compare our results with
conditions that have been previously presented in comprehensive
similar works (d’Avella et al., 2006); second, due to the richness
of the experimental protocol, the methodologies and algorithms
for analysis we developed at the present point could not be
applied with equal suitability in PtP (see section Data Analysis
and Synergies Extraction on data analysis); third, given the
aim of the study and the employed design, EXP movements
might elicit higher directional variability in respect to PtP and
are more suitable for the purpose of the work. After each
movement, the subject had to wait for about a second before

TABLE 1 | Anthropometric data.

Subject ID Sex Weight Height Age Range Dominant Limb

1 M 88 180 20–30 R

2 M 80 182 20–30 R

3 M 79 179 30–40 R

4 M 74 180 30–40 R

5 M 73 174 30–40 R

6 F 56 168 20–30 R

7 M 79 183 30–40 L

8 F 51 160 60–70 R

9 M 71 174 70–80 R

10 M 72 179 30–40 R

11 F 56 166 30–40 R

12 F 56 160 20–30 R

13 M 57 171 30–40 R

14 M 80 185 20–30 R

15∗ F 65 168 60–70 R

16∗ F 60 164 60–70 R

∗Excluded from the analysis.

proceeding to the next target. Furthermore, each subject was
asked, for each of the six sets (sectors), to perform ten trials
of acquisitions. Subjects were required to move fast, in order
to enhance the EMG related to phasic (dynamic) EMG activity.
Following this instruction, subjects were expected to complete
EXP trials in no more than 0.7 s. However, tolerance in execution
time was accepted. To prevent fatigue, after each trial, a pause
of 30 s was introduced. The whole protocol had a duration
of about 2/3 h per subject. Preliminary assessment of fatigue
was performed to verify that subjects were not excessively tired.
Results will be not reported since they are beyond the scope of
this paper.

During the trials, subjects wore a set of five markers,
positioned on D5 and C7 vertebras, acromion (representing
shoulder – S), right elbow epicondyle (E), styloid process of
the ulna (W). Subjects held a 20-cm long pointer, which was
identified by two markers (EE1 and EE2). The recordings
were made with the Vicon System (Oxford, United Kingdom).
Subjects were instrumented with 14 s-EMG electrodes (Cometa,
Italy) positioned according to the SENIAM guidelines (Hermens
et al., 2000) on the following muscles: Infraspinatus (IF), Lower
Trapezius (LT), Middle Trapezius (MT), Upper Trapezius (UT),
Deltoid Anterior (DA), Deltoid Middle (DM), Deltoid Posterior
(DP), Pectoralis (PC), Triceps Long Head (TLo), Triceps Lateral
Head (TLa), Biceps Long Head (BCl), Biceps Short Head (BCs),
Pronator Teres and (PT), Brachioradialis (BR).

Data Analysis and Synergy Extraction
The first step of the data analysis consisted in pre-processing
all the kinematics data with the upper-limb model and target
model implemented in the VICON Nexus System. The second
step consisted in data elaboration and was performed with Matlab
2018, with custom-developed software.

First of all, kinematic recordings were used to separate
movement phases. Each acquisition was thus segmented in
16 movements. The segmentation was achieved by computing
the 3D Euclidean distance (3Ed) of the pointing marker from
the 0 marker. Then, the velocity profile associated to 3Ed
was computed, and used as signal for detecting movement
onsets and offsets.

Furthermore, the kinematics of the upper-limb was computed
in intrinsic articular coordinates. Three relevant angles were
considered: shoulder flexion, shoulder vertical rotation, and
elbow flexion, according to the protocol proposed in a previous
study (Scano et al., 2019). Then, in order to compare the data,
all the movements were aligned by considering the EMGs in
the interval [−0.5; +1.5] seconds with respect to the movement
onset. This procedure ensured the capturing the complete EMG
waveforms which could begin before movement kinematic onset
and finish after having reached the target. The data from 14
sEMG channels were high-pass filtered at 50 Hz (Butterworth
filter, 7th order) to remove motion artifacts, rectified, low-
pass filtered with a cut-off frequency of 10 Hz (Butterworth
filter, 7th order) to extract the EMG envelope. Data from each
movement type were intra-subject averaged to characterize a
mean pattern, which we labeled “filtered and averaged EMG.”
Afterwards, the mean EMG data were further analyzed to
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FIGURE 2 | The five set of targets spanning different sectors of the arm workspace considered in the study are portrayed: Frontal (A), Left (B), Right (C), Horizontal
(D), and Up (E). Together, they provide a comprehensive mapping of upper-limb workspace.

FIGURE 3 | Summary of kinematics. For each of the 16 directions of movement, and for each of the 5 sectors analyzed in this paper, articular angles (Shoulder
Elevation, Shoulder Vertical Rotation, Elbow Flexion) and the beginning and at the end of each movement and Movement Time (averaged across the 14 subjects
included in the study) are shown. Each articular angle plot (rows 1–3) illustrates the average range of motion for one movement direction (columns) in all five sectors.
The following convention are adopted: blue barplots indicate the range of motion when an angle increases from beginning to end of movement, while cyan barplots
indicate when an angle decreases. In the graphs of articular angles, black ticks report inter-individual standard deviation for movement end points, while red ticks
report inter-individual standard deviation for movement starting points.

extract the phasic component of the EMG, removing the
postural (tonic) EMG activity from the original signal (Flanders
et al., 1992), following the approach used in previous works
(d’Avella et al., 2006). The procedure is graphically shown in

detail in the results section. Following this approach, slightly
negative EMGs could be obtained in some cases. In order
to be able to perform the non-negative matrix factorization
(NMF), negative phasic EMG values were set to zero before
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FIGURE 4 | Aligned, filtered and averaged EMG waveforms are reported in light gray for a representative subject and condition. In light red, tonic activity estimated
with a linear ramp model is portrayed. The phasic EMG activity is obtained by subtracting the tonic activity from the original envelopes.

synergy extraction. This approximation was deemed reasonable
since the negative activations were found especially during
the backward phases of PtP movements, while in EXP their
magnitude was negligible. Lastly, a normalization procedure was
performed in order to allow inter-subject comparisons. Since
our study design has the distinctive feature of mapping muscle
patterns over a variety of movement directions in different
portions (or sectors) of the upper-limb workspace, we referred
the variability captured in the EMG recordings to the whole set
of sectors considered at once (whole workspace). Therefore, we
decided to normalize the EMG data with respect to a metric
considering all the workspace at once. Thus a “Workspace
Normalization” of the data was performed on the maximum
value achieved for each muscle in the complete dataset (also
including PtP movements).

For each subject, the aligned, filtered, averaged, de-
ramped, normalized and zero-clipped EMG envelopes were
arranged as follows to generate the pooled matrix data
to be given as input to the synergy extraction algorithm.
For each of the five sectors (Frontal, Right, Left, Up,
and Horizontal), all the movements from EXP conditions
were grouped together to generate a mapping of each
specific sector.

For each of the five sectors, EMG data were pooled together
in a pooled matrix data [EMG(t)]. Labeling ns as the number
of samples of each movement, nm as the number of considered
muscles (14), and dr as the number of movements (16 in EXP),
data were arranged in [(ns·dr) x (nm)] matrices before synergy
extraction. Afterwards, spatial synergies were extracted using
NMF algorithm (Lee and Seung, 2001). The NMF decomposes
the EMG data matrix into the product of two matrices, the first
one representing time-invariant synergies (wi), and the second
one representing time-varying activation coefficients for each

synergy (ci), as in equation (1):

EMG(t) =
N∑
i=1

ci(t)wi (1)

where N is the total number of extracted synergies. Thus, for each
decomposition, each spatial synergy was coupled with a set n of
coefficients (dimensionality n = ns·dr , i.e., the total number of
time samples of all included movements).

The order of the factorization r given as input to the
NMF algorithm was chosen increasingly from 1 to 14 (the
maximum number of muscles that characterizes the maximum
dimensionality of the examined control problem). For each r,
the NMF algorithm was applied 50 times in order to avoid
local minima and the repetition accounting for the highest
fraction of total variation of the signal explained by the synergy
reconstruction was chosen as the representative of order r. The
number of synergies N was then chosen as the minimum r
explaining at least 80% of the data variation, quantified by a
reconstruction R2 defined as 1 – SSE/SST where SSE is the
sum of the squared residuals, SST is the sum of the squared
differences with the mean EMG vector (d’Avella et al., 2006).
Additional synergies were added only if the total amount of
variation explained increased by at least 5% for each further
synergy. Solutions of order lower than 3 were not accepted, since
the reconstruction of all the directionalities in a plane require a
minimum of 3 basic vectors (Russo et al., 2014).

Analysis of Variability
After the identification of the repertoire of synergies available
in the five sectors in each of the two normalization conditions,
our aim was to identify if, and at what extent, invariant elements
underlie upper-limb movement in conditions of inter-individual
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FIGURE 5 | Normalization and zero-clipping procedures have been used to remove the negative phasic components and to apply the standard NMF method for
synergy extraction. Black tick indicates movement onset computed with kinematics.

variability. In order to do so, we identified three main domains
of investigation of the variability, described below. Briefly,
Variability in Kinematics discusses the variability in intrinsic
coordinates across participants, Variability in Modularity refers
to the variation in the dimensionality of the control space
across participants. Variability in Sectorial Analysis refers to the
variability of the modules in individual sectors, while Variability
in Workspace Analysis assessed the variability of modules in
all the workspace.

Variability in Kinematics
At first, we investigated the kinematic variability expressed in
articular coordinates, by testing the inter-individual variability
within each workspace sector, considering the mean articular
angles (shoulder flexion, shoulder vertical rotation, elbow
flexion) of each subject for each movement. For each articular
angle, we tested the variability both at the beginning and at the
end of each movement. Thus, in our tests, sectors were considered
separately. In each sector, for each subject and each direction
of motion, we stacked the angles for each trial repetition at the
beginning and at the end of each movement (0- > N, 0- > NE,. . .)
and tiled them in a vector representing each subject. We tested
data for normality using the Kolmogorov–Smirnov test. Then, we
tested the inter-individual and inter-directional differences with a
2-way ANOVA with subjects and movement directions as factors.
A total of 40 tests = 5 (sectors)× (3 angles+movement time)× 2
configurations (beginning and end of movement) were tested.
For all the tests, the significance level was α = 0.05.

Variability in Modularity
To investigate modularity of motor control, we first proceeded
determining whether different individuals used on average the
same number of modules for movement generation in the
workspace, tiling together the number of modules for each
subject and testing for inter-individual differences. At the same
time, we tested if some sectors required more modules than

others, tiling together for each sector the number of modules
employed by all the subjects, and testing for inter-sector
differences. Given the ordinal and not-continuous nature of the
variable ‘number of modules,’ these analyses were performed with
the non-Parametric Kruskal–Wallis test having subjects (test 1a)
and sectors (test 1b) as factors. Following the same procedure,
we verified if the amount of reconstruction R2 was the same
depending on subjects (test 2a) and in the various sectors (test
2b) (non-Parametric Kruskal–Wallis test). For all the tests, the
significance level was α = 0.05.

Variability in Sectorial Analysis
To characterize the synergy repertoire employed in each sector,
we performed a clustering analysis. The synergies extracted for
each sector across all subjects were used as input to a k-means
clustering algorithm (total of 5 cluster analyses, one per sector).
In each of the 5 clusterings, the number of clusters was chosen
as the minimum that allowed to include in the same cluster no
more than one synergy for each subject in the dataset. For the
assessment of variability, we introduced two metrics: the synergy
inter-individual repeatability (from here, simply repeatability)
and the degree of similarity within each cluster (from here,
simply similarity). Repeatability was defined as the percentage
of subjects that share the same synergy on a specific domain
(workspace sector). Repeatability provides a measure of the
reproducibility across subject of each specific mean synergy
(indicating how many subjects over the total share the same
synergy). Repeatability was obtained by dividing the number of
subjects in each cluster by the overall number of subjects. Instead,
similarity was defined as the variability within all the synergies
that belong to the same cluster. It provides a measure of the
“consistency” of each extracted cluster (indicating how similar
are the shared synergies). We computed similarity by averaging
the values of all the pairwise dot products between the synergies
that compose each cluster.
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For each of the five sectors, we first determined the synergy
inter-individual repeatability, and then we determined whether
some sectors had less or more repeatability in the usage of
modules. We tiled the repeatability of all the centroids of
each sector into a vector. After testing for normality with the
Kolmogorov–Smirnov test, we performed a one-way ANOVA to
test for differences in repeatability across sectors.

We then performed an intra-sector analysis of similarity. We
computed the similarity of synergies constituting each cluster,
as the average of all the pairwise cosine similarity values of the
synergies from different subjects within the same cluster. We
tiled all the cosine values of all clusters into vectors representing
the centroids of each sector, tested for normality with the
Kolmogorov–Smirnov test, and performed a one-way ANOVA
to test for differences in similarity across clusters, in a way
previously proposed in similar studies (d’Avella et al., 2006).

Lastly, we performed an inter-sector analysis of similarity,
testing whether there was an effect on similarity due to sectors.
We tiled the similarity of all the centroids of each sector into
a vector. After testing for normality with the Kolmogorov–
Smirnov test, we performed a 1-way ANOVA to test for
differences in repeatability across sectors.

Variability in Workspace Analysis
Our analysis was concluded with an assessment of the variability
of the extracted mean synergies in the entire workspace. The
rationale behind this approach was to assess whether different
sectors share the same motor modules. If so, it may be possible
to further decrease the dimensionality of the dataset of synergies.
In order to achieve this result, the set of all the extracted clusters
(determined as in section “Variability in Sectorial Analysis”)
was used as input to a hierarchical cluster analysis (Matlab
“clustergram”). We decided to cut the hierarchical tree at the
minimum clustering order such that no repetitions of a synergy
belonging to the same sector could be found in the same cluster
obtained with the hierarchical clustering. In this way, we were
able to group similar synergies found within different sectors.
With this cutting criterium, we could provide an estimation
of the inter-sectorial repeatability of clusters, as a summarized
result of this work, while their degree of inter-sectorial similarity
was not controlled due to the choice of the hierarchical tree
cutting criterium.

RESULTS

Kinematics: Inter-Individual Variability
The average kinematics of the movements is reported in Figure 3.
Interestingly, two-way ANOVA for all considered kinematic
variables (3 articular angles at the beginning and at the end
of movement, and movement time) revealed that in all sectors
there were statistically significant differences among subjects
(p < 0.001 for all the tests) and among direction of movement
(p < 0.001 for all the tests; this second result being expected
considering that the directions require in general different
kinematic patterns). However, these results acquire more interest
in the light that the interaction term was significant as well

(p < 0.001 in all tests), in all the five considered sectors. Post
hoc tests (not reported in detail) furtherly showed that there were
significant interaction effects in many of the combinations of the
two factors. These findings allowed us to conclude that in our
weakly constrained scenario the adopted motor strategies differ
at kinematic level.

EMGs: Signal Pre-processing
The details of the EMG pre-processing procedures are shown
for a representative subject and condition. Filtered and
averaged EMG waveforms, including the contributions
from phasic and tonic EMG activity, are portrayed in
Figure 4 in light gray, together with the tonic activity
estimated according to a linear ramp model, portrayed in
light red. In Figure 5, normalization and zero-clipping
procedures have been applied in order to remove the
negative phasic components and to apply the standard
NMF method to extract muscle synergies. In Figure 6, the
extracted spatial synergies and the temporal coefficients
are illustrated. In Figure 7, the reconstructed EMG
envelopes are shown.

Variability in Modular Analysis
In Figure 8, a summary of the number of extracted modules, for
each sector and for both the normalization conditions, and of the
corresponding reconstruction R2 values is reported.

The hypothesis of modular control (i.e., the existence of a
reduced set of modules underlying movement) is confirmed. In
fact, the number of modules is low with respect to the original
dimensionality of the data (14 EMG channels). Thus, the results
of this study confirm previous findings that indicate that motor
coordination may be achieved by a limited number of modules.
In fact, the mean number of modules was 3.17 (Frontal = 3.14,
Right = 3.00, Left = 3.14, Horizontal = 3.42, Up = 3.14).
The mean R2 value, corresponding to the mean number of
extracted modules reported above, was 0.85 (Frontal = 0.84,
Right = 0.85, Left = 0.84, Horizontal = 0.85, Up = 0.86).
Further analysis revealed that the number of modules was not
significantly different across sectors (p = 0.137) and across
subjects (p = 0.475). At the same time, the R2 value was
not significantly different when considering different sectors
(p = 0.330), or different subjects (p = 0.242). No statistically
significant differences were found between subjects, spanning
from a minimum average number of modules of about 3 to a
maximum of about 3.7. No differences in R2 were found between
subjects (p = 0.26).

Single Sector Analysis
We then investigated the composition of the characteristic
muscle synergies (centroids of the ten clusters identified
by the k-means algorithm). A repeatability matrix
was computed to identify which subjects employ
each synergy in each sector. The results are depicted
in Figure 9.

A summary of the main the results for synergy inter-
individual repeatability and for the degree of similarity within
each cluster can be found in Table 2. We tested the synergy
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FIGURE 6 | Synergy extraction in a representative condition. In the upper panel, the invariant spatial synergies are depicted. In the middle panel, the temporal
coefficients are portrayed.

FIGURE 7 | Signal reconstruction in a representative condition. The reconstructed activity is portrayed (red lines) together with the original envelopes (black lines and
gray shaded areas).
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FIGURE 8 | Modularity across sectors. In the first row, for each of sector, the number of modules extracted in EXP movements is reported. In the second row, the
reconstruction R2 is reported. In the third row, the mean values of number of modules and R2 is reported for each of the considered sectors.

inter-individual repeatability and found that there was no
statistically significant difference in the repeatability across
sectors (p = 0.79). The mean of for all the sectors was
57.81% (Frontal = 61.43%, Right = 50.00%, Left = 62.86%,
Horizontal = 54.76%, Up = 60.00%). Moreover, we found that
there was no sector in which the clusters had significantly higher
degree of similarity than the others (p = 0.67).

Variability in the Whole Workspace
In the last step of our analysis we investigated the inter-
sector repeatability of the centroids identified in all sectors,

as a summary measure portraying which centroids are shared
across workspace sectors. In order to do so, we defined the
inter-sector repeatability matrix, as a workspace homologous of
the inter-individual repeatability matrix presented in sectorial
analysis above. The inter-sector repeatability matrix shows which
centroids are shared across sectors, and is portrayed in the lower
panels of Figure 10. Furthermore, in Figure 10, we reported the
Clustergram achieved by pooling together the set of the centroids
identified in all five sectors. The hierarchical tree was cut at
the minimum order so that there were no repetitions in the
inter-sector repeatability matrix.
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FIGURE 9 | Single sector analysis. Characteristic synergies in the Frontal, Right, Left, Horizontal, and Up sectors. In each sub-plot, in the upper panel, the
centroids of the k-means clusters condition are shown. In the lower panel, the inter-individual repeatability matrix indicates which subjects share the same synergies.

Hereby, we propose a qualitative description of each
of the whole-workspace centroids obtained with the
clustergram classification.

W1 (shared in Right, Left and Up sectors) is composed
of Trapezius (mainly the Superior head) and Infraspinatus.
W1 is employed in tasks that involve shoulder external
rotation and trunk/limb stabilization. W2 (shared in all sectors)
has a similar composition with respect to W1, but with a

major contribution of Middle and Inferior Trapezius. As the
Infraspinatus activation is lower with respect to W1, this
synergy can be employed not only during shoulder external
rotation, but especially during arm adduction and limb/trunk
stabilization. W3 (shared in Right and Horizontal sectors
only) is characterized by the activation of Triceps Lateral
head and Posterior Deltoid muscles. W3 is used to achieve
posterior and lateral extension of the arm, that are required
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TABLE 2 | Summary of the results for Synergy Inter-individual Repeatability and Degree of Similarity within each cluster identified in each of the sectors.

Inter-Individual Repeatability

Repeatability (%) W1 W2 W3 W4 W5 W6 mean Tests

Frontal 92.86 85.71 50.00 35.71 42.86 // 61.43 No Inter-Sector Difference p = 0.79

Right 50.00 64.29 50.00 64.29 42.86 28.57 50.00

Left 78.57 92.86 64.29 42.86 35.71 // 62.86

Horizontal 50.00 71.43 35.71 57.14 35.71 78.57 54.76

Up 92.86 71.43 64.29 42.86 28.57 // 60.00

Degree of similarity within each cluster

Similarity (Normalized) W1 W2 W3 W4 W5 W6 mean p (Intra-Sector) Tests

Frontal 0.6222 0.514 0.5188 0.5853 0.7238 // 0.5928 p = 0.0062 No Inter-Sector Difference p = 0.23

Right 0.6039 0.6724 0.491 0.657 0.557 0.3025 0.5473 p = 0.0004

Left 0.5209 0.6074 0.641 0.8234 0.4357 // 0.6057 p < 0.0001

Horizontal 0.6333 0.4297 0.8052 0.7169 0.4737 0.6242 0.6138 p < 0.0001

Up 0.6733 0.3745 0.4502 0.3537 0.7349 // 0.5173 p < 0.0001

FIGURE 10 | Whole workspace analysis. (Left) Clustergram of the similarity matrix of the sectorial centroids. The clustergram highlights the variability between
sectors; the dark red square-shaped areas represent the invariant groups of sectorial centroids. (Right) Centroids of the hierarchical clustering (whole-workspace
centroids) performed on the sectorial centroids and inter-sectorial repeatability matrix, achieved cutting the hierarchical tree at the minimum clustering order needed
so that no repetitions of a sectorial centroid belonging to the same sector could be found in the same cluster.

to explore the set of targets in Horizontal and Right sectors.
W4 (shared in all sectors) recruits the three heads of the
Deltoid and Triceps Brachii muscles. W4 is used mainly to
achieve abduction and external elevation of the limb (due to
the activity of the Deltoids), in coupling with Triceps that
contributes to the extension of the forearm. W5 (shared in
all sectors) recruits majorly the Anterior Deltoid, supported
by minor contributions of Medial Deltoid and Pectoralis. W5
is employed in the tasks that require frontal flexion of the

upper-limb, especially pointing toward the left hemispace. W6
(employed in Frontal and Horizontal sectors) involves Pronator
Teres and Pectoralis. It is used in forearm movements and when
the user rotates the arm along the vertical axis in the horizontal
plane. W7 (shared in all sectors) is a flexor co-activation
pattern, involving the synergistic activity of Biceps Brachii,
Pronator Teres and Brachioradialis muscles. It is employed
especially when a subject bends the forearm over the arm
(elbow flexion).
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DISCUSSION

Summary of the Main Results
In a loosely constrained scenario, inter-individual differences
were found in upper-limb exploration movements at kinematic
level. Variability was also found in muscle synergies and
was analyzed under various perspectives. First, variability
was investigated in the number of extracted modules which
had low variation from subject to subject. Accordingly, the
mean number of modules was not significantly different
from sector to sector. Second, we identified characteristic
synergies (cluster centroids) that are available to the group
of individuals we tested, for each of the five workspace
sectors considered. Variability in muscle synergies was observed
in sectors, and it was quantified introducing the concepts
of inter-individual repeatability and similarity within each
cluster. We found that, on average, repeatability was not
significantly affected by the sector, even if, within each
sector, some centroids were more repeatable than others. The
same conclusion was drawn for similarity: on average, it
was not affected by the sectors, even if some centroids had
higher similarity than others. Furthermore, we identified which
centroids are shared across sectors, and which are specific
for some sectors.

Modular Organization of the Upper-Limb
Control
In the recent literature, whether the human CNS exploits
a modular organization for the simplification of the motor
control problem is debated. In this context, the muscle
synergy approach represents the current state of the art for
the analysis of the modular organization of the neuro-motor
system. The analysis of upper-limb behavior is particularly
meaningful, since it is naturally connected to a wide variety of
movements, exploiting abundance at both kinematic and muscle
level (Latash, 2012), and, consequently, may explore a large
variety of conditions.

We found that a number of modules ranging from 3 to
5 reconstructed the original EMG for all subjects in each of
the directions. While recent studies suggest that it is arbitrary
to neglect a part of the reconstruction R2, which might be
meaningful for movement generation (Barradas et al., 2019),
these results are in good accordance with previous studies based
on similar reconstruction criteria, which already demonstrated
that, in a limited subset of movements of the upper-limb, a
17-muscle model can be reduced to the coordination of five
motor modules with time-varying synergies (d’Avella et al.,
2006). In the present experiment, starting from a comparable
number of EMG channels, a limited number of modules,
ranging from 3 to 5, was found for each of the considered
mappings. Even if the comparison is done on two different
study designs, this result confirms previous findings and expands
their applicability to a large variety of upper-limb tasks and
movement directions, supporting the concept of modularity also
in a wide spatial domain for upper-limb movements. While
our analysis relies on a spatial modularity model, evidence for

other models such as the time-varying one has been found
for similar tasks in previous works. Interestingly, in the full
workspace, various inter-sector shared synergies were found
to be similar, in terms of muscles contribution, to the ones
found by d’Avella et al. (2006) in a smaller workspace with
respect to ours and, especially, when the time-varying model
was adopted. Referring to the mean synergies “W” found
in the work of d’Avella and collaborators (labeled from A
to F) and in our study (labeled from 1 to 7), we found
the following. WA showed high similarities with W7, except
for the contribution of Trapezius Superior, which was not
in W7; WB had the same composition (but with a slightly
lower contribution from Deltoid Anterior) of W4; WC was
identical to W5; WD had high similarity with W2, even if
the contributions of Deltoid Middle and Deltoid Posterior are
limited. The synergies shared by a limited number of subjects
(WE, WF), or sectors (W1, W3, W6) were characterized by a
lower similarity. These results suggest that some of the present
findings do not depend on the specific model used to describe
modules (i.e., spatial synergies or time-varying synergies). Here,
considering variability in a large portion of the arm workspace,
we found that different sectors of the workspace do not require
different numbers of modules and this result was not biased
by a different amount of reconstruction R2. On the same line,
in general, different subjects do not require more modules
than others. These findings support the hypothesis that control
dimensionality is not strongly affected in specific sector of
the workspace.

Analysis of Variability
Variability is intrinsic to human behavior, and this phenomenon
can be observed at several levels. Some works rooted human
motor variability in reinforcement learning theory, suggesting
that motor variability might underlie purposeful exploration
of motor space and, when coupled with reinforcement, drive
motor learning (Dhawale et al., 2017). Other works state that for
any motor task, there are generally a large number of motor-
equivalent solutions that can produce functionally equivalent
behaviors (Ting et al., 2015; Tommasino et al., 2019), suggesting
that human may rely on motor abundance, which is an intrinsic
“hardware” source of variability (Latash et al., 2002). Even
many aspects of human social communication are related to
others’ intention recognition, based on gesture kinematics, and
exploit the role of variability (Cavallo et al., 2016). On the
contrary, other recent evidence suggests that motor variability
may have different effects on learning in redundant tasks:
recent studies suggest that, although introducing variability
can increase exploration of new solutions, this may come
at a cost of decreased stability of the learned solution
(Cardis et al., 2017).

In this context, in this work we tried to quantify the
amount of variability which is found in a loosely constrained
scenario at muscle level. We developed the concept that
so far, in the framework of muscle synergies, variability
has been mainly connected to target variability, rather than
inter-individual and environmental variability. In fact, many
study designs are based on very constrained and repeatable
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scenarios, in which variability is only due to the presence
of a limited set of targets. These setups allow, on one side,
to draw very specific conclusions on specific questions; on
the other side, however, they neglect inter-individual and
environmental variabilities, which are respectively subjective and
context-dependent sources of variability that are commonly
encountered in real-life applications. In fact, the perspective
proposed in this study is that real-life applications are not
strongly controlled, as people do not follow prescribed endpoint
or articular trajectories when reaching for different locations
in the workspace (“reach the object” is more prescriptive
than “elevate the limb from 0◦ up to 90◦”). In this context,
in our experimental protocol, it was expected that the
overall variability would increase with respect to previously
employed study designs. A first confirmation was found at
kinematic level, where in all the experimental conditions,
the population adopted significantly different behaviors. Since
many aspects may impact on this (anthropometry, sex,
age, postural condition, starting point reproducibility, fatigue,
etc.), this variability is probably related to inter-subject
differences which would be normally found in the real
world, and according to many training paradigms, should be
mimicked to optimize motor learning or motor-re-learning
(Stergiou and Decker, 2011).

In this work, we assess the variability of muscle synergies
by quantifying the inter-individual repeatability and the degree
of similarity within each cluster. Repeatability provides a high-
level measurement of the fraction of subjects sharing a
given motor module, while similarity describes the solidity
of each module (variability of the shared modules). Very
interestingly, our results seem to indicate that in general,
there is not a “preferred” or “more repeatable” sector of the
workspace, which could be expected since some portions of
the workspace are less commonly explored than others. In fact,
the average repeatability did not differ significantly between
sectors, indicating that, on average, there is a comparable
inter-individual sharing of modules from sector to sector.
The same result was found for the average similarity within
each module. However, referring to Figure 9, we can argue
that some modules seem to be strongly embedded in people’s
repertoire, generalizing through subjects and sectors, while
others might be present only in some subjects, or for the
fine tuning of specific sectors. This means that the variability
of use of muscle synergies is equally spread throughout the
workspace, and lower repeatability and similarity are found
even in the more frequently used portions of the workspace
(such as frontal). However, it should be noted that, when
considering a large spatial domain (variability) all together
(Workspace condition), the inter-individual repeatability of
muscle synergies seems to be significantly decreased with
respect to scenarios with less explored workspace presented
in previous studies (d’Avella et al., 2006). This result seems
to suggest that, when exploring a high-dimensional subset of
movements that involve a more variable repertoire, the level
of modules (synergies) shared across individuals may tend to
decrease. Despite our work involved a remarkable number
of workspace sectors, directions and limited constrains, we

wonder if a further increase of the natural variability (e.g.,
different movements, different velocities, different muscle forces,
and in general real-life scenarios) would lead to very subject-
specific sets of muscle synergies. There are still some analysis
choices, such as the criterium for cutting the hierarchical tree,
that were considered as the most reasonable, that might have
impacted on the definition of the results. Some authors discuss
issues related to data analysis and interpretation in more detail
(Banks et al., 2017).

Previous works has analyzed similar experimental
conditions. In d’Avella et al. (2006), 6 modules underlie
several exploration and reversal movements through via-points
in two planes. Four modules showed very high repeatability
through subjects, supporting a “strong synergy model” (few
modules at the basis of a variety of motions, shared across
subjects). In the light of our results on a larger spatial
domain, this hypothesis seems slightly attenuated, since it
is clear that inter-individual repeatability takes place, but
at a lower extent for some modules. In fact, we found that
repeatability was averagely the same in the five investigated
sectors, and on average equal 0.58. It is again clear that
employing different data processing, whose choice might
be interlinked to the complexity of the study design and
the variability of the spatial mapping, may provide different
interpretation of the results. In our view, this aspect may
alert researchers on the relevance of supporting their findings
with the consideration of a wide variety of the movements
available to human upper-limb, unless very specific aims
suggest otherwise.

Comparable results were found when assessing the similarity
of modules. In fact, we found that, on average, the similarity
within clusters was the same for all the synergies and that in each
portion of the workspace. On the contrary, some synergies are
more reproducible (similar) than others when considering the
same workspace sector, and thus more solid across subjects.

Other recent studies provided analyses in a scenario
comparable to ours. In Hilt et al. (2018), a variety of whole-
body point-to-point movements in various directions at a
self-selected pace were considered. The authors reported that
the spatial modules were not direction-specific but rather
functional groups of muscles shared across movements whose
weighted recruitment actually codes the task being performed.
Furthermore, similarly to our study, they found that the modular
control hypothesis is compatible with the observation that
different participants could exhibit different motor modules.
An additional study focused on intra-individual and inter-
individual variability in upper-limb and whole-body workspace
during point-to-point movements (Delis et al., 2018). These
studies show that a reduced number of synergies may be
at the basis of a variety of movement directions, even if
the modules might be partially subject-specific, suggesting the
relevant role played by variability in a loosely constrained, real-
life, experimental scenario.

Lastly, in this study we have not considered another relevant
component of variability, which is intra-individual trial-by-
trial variability. Recent reviews have shown that trial-to-trial
variability in the execution of movements and motor skills
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is ubiquitous, and widely considered to be the unwanted
consequence of a ‘noisy’ nervous system (Dhawale et al.,
2017). Furthermore, it has been suggested that motor variability
may also be a feature of how sensorimotor systems operate
and learn, although the exact mechanisms of how variability
affects learning is not well understood (He et al., 2016).
Trial-to-trial variability was for instance analyzed in detail
in lower-limb muscle synergy analyzing evaluating the effects
of concatenation of the EMG data (Oliveira et al., 2014).
Considering the aim of the work, which is mainly related
to the identification of invariants in a weakly constrained,
inter-individual scenario, our choice is reasonable; however,
in the light of studies that deepen the role of intra-subject
trial-to-trial variability also in whole body and upper-limb
applications (Delis et al., 2013), we acknowledge this limitation
and will characterize our dataset under this point of view in
future works.

Signal Pre-processing: Normalization
and Tonic EMG Removal
While many data processing factors may affect the extraction
of muscle synergies, we focus a further discussion of the results
on the impact of normalization, which we hypothesized might
be significant in our study because of the high variability
explored in our dataset. Coherently with the main distinctive
feature of our study, which is to provide a mapping of
muscle synergies in a wide portion of the workspace, we chose
to normalize the EMG envelopes across all the maximum
EMG values found in all the trials, because we wanted to
refer our results to all the high variability of motions and
EMG patterns that we explored throughout the workspace.
While this choice is reasonable and coherent, the investigation
on our dataset could be further enhanced with Sectorial
Normalizations (normalizing EMG data independently from
sector to sector) for at least two reasons. First, to allow
each sector to have and independent analysis in respect to
other sectors; this feature could be relevant when considering
future exploitations of our concept, since it would allow
experimenters to target only a subset of the proposed analysis
depending on the application. Second, since the majority of
the proposed study designs so far do not explore workspace
variability as much as we did, our results under a workspace
normalization perspective are only partially comparable to
previous findings. Realizing the relevance of normalization, a
recent study (Kieliba et al., 2018) investigated in comprehensive
detail the effects of signal preprocessing in an upper-limb
experiment, also focusing on the comparison between two
different normalization conditions. Kieliba and collaborators
found a very high repeatability of the synergies in the
two conditions. However, it should be remarked that they
used Factor Analysis rather than NMF, employed Maximum
Voluntary Contraction rather than the maximum value of
muscle envelope in all trials and explored a smaller region
of the workspace compared to this study. Among the many
pre-processing factors that may affect synergy extraction, we
decided to give particular focus on normalization since our

condition of Workspace normalization is based on a remarkably
larger variety of movement directions than most previous
studies. The choice of normalization should be considered when
designing experimental paradigms, and evaluate the impact it
may have on the results, especially in the framework of muscle
synergies. The relevance of normalization (and other processing
choices) are discussed also in other studies that introduced
a systematic evaluation of the effects of data processing on
the extracted muscle synergies in lower-limb analysis (Banks
et al., 2017). In the case of lower-limb analysis, different
techniques of normalization did not strongly influence the
results, but these outcomes cannot be generalized to the case
of the upper-limb.

A second relevant aspect of our analysis is the choice
of removing tonic EMG components, which are postural
components not related to the generation of acceleration
and deceleration of the arm. This procedure allowed to
separate the phasic components, which are responsible for
the motor synergies underlying movement generation. This
analysis, introduced in the muscle synergy framework by d’Avella
et al. (2006) may have remarkable importance in application
scenarios. It has to be acknowledged that the used linear
ramp model may introduce approximation in the estimation of
the tonic EMG component and more refined models should
be developed, also in the light of capturing phasic negative
waveforms that are neglected in this study. However, considering
clinical test of post-stroke patients as a possible exploitation
scenario for this dataset, in which the reference data presented
in this study can be compared to post-stroke patients’ motor
performance or to robot-assisted movement, this procedure
allows, for example, to remove abnormal patterns in static
posture and to extract synergies only from movement-related
EMG, reducing the chance of misinterpretation of the extracted
muscle synergies.

Lastly, the tonic EMG removal may have an impact on the
composition, as well as number, of the synergies extracted.
This is particularly relevant in applications where the focus is
exactly to determine the effect on muscle synergies in weight
support applications. This is the case of a study where the
effect of a device for the support of the upper-limb weight
was investigated (Coscia et al., 2014); in that study, the authors
extracted muscle synergies without separation of the phasic
and tonic components. They found that a set of 8 spatial
synergies underlie a set of reaching movements in the frontal
plane. Spatial synergies were not modified when using the
device. On the contrary, the temporal coefficients where scaled
proportionally to the amount of weight support provided. In
this condition, it is likely that some synergies may capture the
tonic components and thus the extracted repertoire is a linear
summation of phasic and tonic synergies. It is thus expected
that, in general, the number of extracted motor modules may
increase without tonic EMG removal. For future applications,
the separation of the EMG components might be considered to
evaluate separately the effect of a device on phasic components
(related to motion) and tonic components (related to static
weight support). A desirable weight-support device should not
alter phasic synergies with respect to free motion, reducing
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instead the burden associated to tonic synergies. Such a result
may be achieved with an even more accurate tonic EMG
removal algorithm.

Application of the Study to a Variety of
Scenarios
As suggested in a recent review (Taborri et al., 2018), the muscle
synergy approach is a flexible and versatile tool that can be
employed in several scientific fields. According to our view, the
results and the methodology adopted in this study are potentially
applicable to various scenarios described below.

Muscle synergies have been frequently employed in
rehabilitation scenarios. Studies from Cheung et al. (2009,
2012) have studied how upper-limb spatial muscle synergies
are organized in patients with different level of impairment,
in a repertoire of different upper-limb motion. While high
functioning patients had physiological-like synergies, low
functioning patients suffered of merging and fractionation
issues, and the number of available modules was modified
accordingly. Other studies have investigated a variety of
upper-limb reaching movements and suggested that stroke
induces abnormal coordination of muscle activation in severely
impaired hemiparetic individuals by altering the structure
of muscle synergies (Roh et al., 2013) or that alterations
in the shoulder muscle synergies in stroke appear in an
impairment level-dependent manner (Roh et al., 2015).
Other studies provided on overview of post-stroke patient
grouping in one-directional reaching movements (Scano
et al., 2017). The examples reported above show how muscle
synergies could be used as biomarkers of motor disability.
However, in the light of this study, future studies may
consider to include a higher movement variability and,
in this perspective, the proposed results have a twofold
application to rehabilitation. First, this methodology, properly
tuned depending on the application, could be used to
design evaluation protocols or training paradigms to be
performed in free movements, or robot assisted ones. In
this view, we suggest the importance of assessing different
methodological approaches (including synergy extraction
algorithms and EMG normalization), allowing experimenters
to consider also subsets of the proposed sectors and movement
directions (it is probably unrealistic to use the proposed
paradigm in standard clinical use). Testing the motor
capability of a neurological patient could be done with
specific tests that replicate the proposed methodology to
verify the dimensionality and the composition of motor
modules available to people. Furthermore, this work may
suggest, when possible, to expand the domain of classical
paradigms of rehabilitation (Frontal or Horizontal plane), and,
compatibly with patients’ capabilities, explore a large variety of
movements and sectors.

Moreover, variability has been often considered in the
literature dealing with motor control assisted by robotic
devices for rehabilitation. Robots for rehabilitation are
in fact designed to allow patients to explore the effort-
error relationship needed for motor re-learning (Morasso

et al., 2009). In the context of promoting rehabilitation,
designing robots and assessing their effects in a context
of motion variability may enhance their efficacy, as well
as matching the assessment of variability with muscle
synergies. Following these premises, the evaluation of
robot-assisted training seems a natural match with the
muscle synergies framework, and in fact preliminary
works have exploited this concept, assessing human-robot
interaction with muscle synergies (Tropea et al., 2013; Coscia
et al., 2014; Lunardini et al., 2016; Pirondini et al., 2016;
Chiavenna et al., 2018; di Luzio et al., 2018; Scano et al.,
2018). The database here presented, properly expanded
and matched with patients, could be a milestone reference
point for designing training paradigms or provide in depth
evaluations, extending the results found in previous works
(d’Avella et al., 2006).

Lastly, in the human-centered perspective promoted in recent
industrial applications, bioengineering approaches might be
helpful in evaluating the use of a device and understanding
its level of support, user-perceived transparency, discomfort
and ergonomic features. For example, the Up sector proposed
in this study might require a set of the primitives employed
when dealing with screwing or overhead tasks, and may
be used as a metric for the evaluation of the effects
of a device. Future applications of the proposed concept
may also include sports, considering that synergies have
been applied to cycling, rowing, swimming, ice hockey and
fitness (for a detailed review, see the work of Taborri
et al., 2018), and could be potentially be employed for
a variety of assessment in the sports field. We believe
that future applications will also include these topics and
field of application.

Limitations and Future Works
Given the ambitious objectives proposed by this study, a
detailed analysis of its limitations and range of applicability
is hereby provided. At first, it should be remarked that the
use of 14 EMG channels, while being about in line with the
standard used in reference articles in the literature (d’Avella
et al., 2006), is still limiting considering the huge amount
of motor units in the human body. Several authors (Steele
et al., 2013) warn about the use of a too small number
of channels, suggesting that some modules might be missed.
Furthermore, while the synergy approach has been showed
to be compatible with experimental findings, its relevance to
the effector space must be demonstrated (Alessandro et al.,
2013). In this study, as well as in the majority of muscle
synergy works, it is not demonstrated that the set of extracted
synergy is able to define the same motor output as the original
muscle patterns.

Secondly, while being comprehensive and inclusive of
variability, the proposed mapping is still limited by the adoption
of laboratory movements not yet integrated in real-life scenarios
and realistic tasks. Boundary conditions related to interaction
with objects or force application were not considered in this
study. Furthermore, movements were performed at self-selected,

Frontiers in Physiology | www.frontiersin.org 16 September 2019 | Volume 10 | Article 1231

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-01231 September 26, 2019 Time: 18:4 # 17

Scano et al. Spatial Mapping of Upper-Limb Synergies

natural speed. A systematic evaluation of the effect of velocity was
not investigated.

Moreover, the presented analysis neglects the negative phasic
EMG waveforms. While this approximation is reasonable in
the presented dataset (EXP movements), future exploitation of
the dataset including PtP movements will consider algorithms
for extracting synergies from negative waveforms, or the
offsetting the data for the removal of negative activations.
While the range of applications may vary and include several
different scientific fields, it is likely that, depending on the
applications, the findings of this study might be furtherly
refined. For example, the application of this database to
neurological patients’ performances might benefit from fine-
tuned recordings for the matching of the reference database to
the peculiar features of motor impairment (e.g., reduced range
of motion, jerky movements, lack of repeatability), which were
not investigated in this study. Future works will investigate
the potential of the human-centered, muscle synergy approach
for the detailed assessment of specific experimental conditions,
related to rehabilitation, medicine, industry, or sports, as well
as including a relevant part of the dataset related to point
to point movement.

CONCLUSION

In this paper, muscle synergies were extracted from the EMG
recordings during the performance of upper-limb exploration
movements in a large portion of the upper-limb workspace. The
variability of the extracted synergies was investigated to evaluate
the repertoire available to healthy people.

We found that a limited number of motor modules,
modulated by activation signals, underlies the execution of a large
variety of upper-limb exploration movements. However, spatial
synergies were not always repeatable across subjects and similar
within coherent groups, as an effect of variability. In general,
considering a wide repertoire of movements, as well as reducing
the imposed constrains, leads to the identification of a more
flexible modular architecture with respect to the ones identified
in previous studies.
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