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Within the past year, several studies have reported a positive role for the gut microbiome 
on the maintenance of skeletal muscle mass, evidence that contrasts previous reports of 
a negative role for the gut microbiome on the maintenance of whole body lean mass. The 
purpose of this mini-review is to clarify these seemingly discordant findings, and to review 
recently published studies that further elucidate the gut-muscle axis.
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ROLE OF THE GUT MICROBIOME ON WHOLE BODY  
LEAN MASS

A role for the gut microbiome on the maintenance of whole body lean mass, skeletal muscle 
mass, and physical functioning (defined as the gut-muscle axis) has been proposed by several 
independent research groups (de Sire et  al., 2018; Grosicki et  al., 2018; Ni Lochlainn et  al., 
2018; Picca et  al., 2018; Ticinesi et  al., 2019). A negative role for the gut microbiome on the 
maintenance of whole body lean mass was first suggested based on a pioneering study by 
(Backhed et  al., 2004). Whole body lean mass was decreased by 7 and 9% in young male 
and female germ-free mice (GFM), respectively, following colonization with fecal samples from 
age-matched, conventionally-raised mice (Backhed et  al., 2004). In support of this finding, 
whole body lean mass was increased following antibiotic treatment in young mice (Nobel 
et  al., 2015). However, the impact of these interventions on the quantity of skeletal muscle 
mass was not reported. Whole body lean mass is commonly assumed to include muscle mass 
but also includes the masses of bodily tissues, including the heart, liver, kidneys, and intestine. 
Interestingly, cecum hypertrophy has been reported following antibiotic treatment in mice, an 
intervention that reduces the colonic expression of antimicrobial factors to levels found in 
germ-free mice (Reikvam et  al., 2011). More specifically, cecum weight was 5.6-fold increased 
(1,804 vs. 325  mg) in young antibiotic-treated mice, an effect that was reversed following 
natural microbiota reseeding (removal of antibiotic treatment in conjunction with exposure of 
these mice to soiled litter from control mice) (Nay et  al., 2019). Based on these findings, 
whether skeletal muscle mass was increased in the studies of Backhed and Nobel (Backhed 
et  al., 2004; Nobel et  al., 2015) is unknown because the higher levels of whole body lean 
mass in GFM and in antibiotic-treated mice may simply be  due to an enlarged cecum.
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ROLE OF THE GUT MICROBIOME AND 
SHORT-CHAIN FATTY ACIDS ON 
SKELETAL MUSCLE MASS

In contrast, several studies have been published within the 
past year that demonstrate a positive role for the gut microbiome 
on the maintenance of skeletal muscle mass. In support of 
this, the muscle mass/body weight ratio was reduced in young 
GFM, and colonization of GFM with fecal samples from 
age-matched conventionally raised mice restored the muscle 
mass/body weight ratio (Lahiri et  al., 2019). Similarly, in 
antibiotic-treated young mice, muscle mass was reduced 
(Manickam et al., 2018; Nay et al., 2019; Okamoto et al., 2019) 
without a corresponding change in body weight (Manickam 
et  al., 2018; Okamoto et  al., 2019), thereby resulting in a 
decreased muscle mass/body weight ratio (Nay et  al., 2019). 
In addition, muscle mass and the muscle mass/body weight 
ratio were increased following natural microbiota seeding in 
antibiotic-treated mice (Nay et  al., 2019). In terms of bacterial 
species that may positively impact muscle mass, oral gavage 
with Lactobacillus casei or Bifidobacterium longum increased 
the muscle mass/body weight ratio without affecting body 
weight (Ni et  al., 2019).

Which bacterial factors may positively affect the maintenance 
of skeletal muscle mass? The muscle mass/body weight ratio 
was increased in young GFM fed a mixture of the SCFAs, 
acetate, propionate, and butyrate, when compared with 
control-fed GFM (Lahiri et al., 2019). Propionate and butyrate 
are found in the colonic lumen of conventionally raised, but 
not germ-free mice (Matsumoto et  al., 2012), evidence that 
identifies them as bacterially-derived metabolites. Similarly, 
muscle mass was increased without a corresponding change 
in body weight, thereby increasing the muscle mass/body 
weight ratio in aged mice (26  months old) that were fed 
butyrate for 10 months, when compared with unsupplemented 
controls (Walsh et  al., 2015).

ROLE OF THE GUT MICROBIOME AND 
SHORT-CHAIN FATTY ACIDS ON 
PHYSICAL FUNCTION

A role for the gut microbiome on physical functioning, including 
muscle strength and endurance exercise capacity has been 
reported in seven studies within the past year. Grip strength 
was decreased in young GFM, when compared with age-matched, 
conventionally-raised mice (Lahiri et  al., 2019). Treadmill 
endurance capacity was reduced in conjunction with increased 
ex vivo muscle fatigability in antibiotic-treated mice (Nay et al., 
2019; Okamoto et al., 2019), and swimming endurance capacity 
was reduced in young GFM, when compared with conventionally-
raised mice (Huang et  al., 2019). In terms of bacterial taxa 
that may underlie the maintenance of physical function, oral 
gavage with the bacterial species Lactobacillus casei or 
Bifidobacterium longum increased grip strength in young mice 
(Ni et al., 2019). Colonization of young GFM with Eubacterium 

rectale or Clostridium coccoides increased swim time to exhaustion, 
when compared with uncolonized GFM (Huang et  al., 2019). 
An increase in the bacterial genus Veillonella was observed in 
human marathon runners post-marathon, and colonization of 
mice with the bacterial species Veillonella atypica increased 
treadmill run time to exhaustion (Scheiman et  al., 2019). As 
a potential mechanism for how V. atypica may improve endurance 
exercise capacity, intra-rectal instillation of the SCFA propionate 
similarly increased treadmill run time (Scheiman et  al., 2019). 
Separately, acetate infusion in antibiotic-treated mice improved 
treadmill endurance capacity (Okamoto et al., 2019). Moreover, 
grip strength was increased in GFM fed a SCFA mixture, 
when compared with conventionally-raised, control-fed mice 
(Lahiri et al., 2019). However, whether SCFAs can affect physical 
function in aged animals is less clear. Butyrate supplementation 
was not able to reverse the age-related decrease in grip strength 
found in aged mice (Walsh et  al., 2015).

It is important to note that with the exception of (Walsh 
et  al., 2015), the studies referenced in this mini-review have 
been performed in young mice and humans. Studies aimed 
at investigation of the gut-muscle axis in older adults are 
limited, as discussed in previous reviews (de Sire et  al., 2018; 
Grosicki et  al., 2018; Ni Lochlainn et  al., 2018; Picca et  al., 
2018; Ticinesi et  al., 2019). Recent findings from our group 
add to elucidation of the gut-muscle axis in older adults. 
We  identified higher levels of Prevotellaceae, Prevotella, 
Barnesiella, and Barnesiella intestinihominis in older adults in 
conjunction with higher muscle strength (defined as high-
functioning, HF), when compared with older adults that had 
reduced muscle strength (defined as low-functioning, LF) 
(Fielding et  al., 2019). Moreover, to evaluate a causative role 
for the gut microbiome on muscle strength, we  transplanted 
fecal samples from HF and LF older adults into GFM, and 
similar differences for these bacteria were identified when 
comparing their respectively colonized mice, in conjunction 
with higher muscle strength in HF-colonized mice. Interestingly, 
Barnesiella and Prevotellaceae contain genes that produce acetate, 
propionate, and butyrate (Morotomi et  al., 2008; Chen et  al., 
2017; Esquivel-Elizondo et  al., 2017; Louis and Flint, 2017). 
However, whether SCFAs positively affect muscle strength in 
older adult humans is unknown.

DISCUSSION

Collectively, these studies suggest that increasing gut bacterial 
SCFA production may positively affect skeletal muscle mass 
and physical function in humans. Two approaches for increasing 
gut bacterial SCFA production include a high-fiber diet and 
exercise. First, acetate, propionate, and butyrate production 
are increased following fiber fermentation by gut bacteria 
(Bourquin et  al., 1993). Interestingly, when compared with 
consumption of a high-fiber diet, a low-fiber diet reduced 
muscle mass without altering body weight and decreased 
treadmill endurance capacity in young mice in conjunction 
with decreased Prevotellaceae, Prevotella, and fecal SCFAs 
(Okamoto et  al., 2019). Although dietary fiber intake is 
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positively associated with handgrip strength and physical 
functioning in older adult humans (Wu et  al., 2013; Tak 
et  al., 2018), few studies aimed at increasing dietary fiber 
intake, quantifying fecal SCFAs, and examining the resultant 
effects on skeletal muscle mass or physical function have 
been reported. To date, only one study has explored this 
hypothesis: older adults that consumed the fermentable fiber, 
inulin had increased grip strength (Buigues et  al., 2016), 
but fecal SCFAs were not quantified. Second, fecal SCFAs 
were increased in response to 6 weeks of aerobic exercise 
training in young adult humans in conjunction with 
improvements in body composition and physical functioning 
(Allen et  al., 2018), but few related studies in older adults 
have been published. Of note, Bacteroides were increased 
in older adults in response to 12 weeks of endurance exercise 
training (which improved cardiorespiratory fitness) 
(Morita  et  al., 2019), but fecal SCFAs were not measured.

In sum, with the goal of further elucidating the gut-muscle 
axis in older adult humans, future studies aimed at increasing 

fecal SCFA production (whether through dietary fiber, exercise, 
or both) and evaluating the impact on muscle mass and physical 
function are of interest.
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