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Background: Rectal cancer is a disease characterized with tumor heterogeneity. The

combination of surgery, radiotherapy, and chemotherapy can reduce the risk of local

recurrence. However, there is a significant difference in the response to radiotherapy

among rectal cancer patients even they have the same tumor stage. Despite rapid

advances in knowledge of cellular functions affecting radiosensitivity, there is still a lack

of predictive factors for local recurrence and normal tissue damage. The tumor protein

DNp73 is thought as a biomarker in colorectal cancer, but its clinical significance is

still not sufficiently investigated, mainly due to the limitation of human-based pathology

analysis. In this study, we investigated the predictive value of DNp73 in patients with

rectal adenocarcinoma using image-based network analysis.

Methods: The fuzzy weighted recurrence network of time series was extended to

handle multi-channel image data, and applied to the analysis of immunohistochemistry

images of DNp73 expression obtained from a cohort of 25 rectal cancer patients who

underwent radiotherapy before surgery. Two mathematical weighted network properties,

which are the clustering coefficient and characteristic path length, were computed for

the image-based networks of the primary tumor (obtained after operation) and biopsy

(obtained before operation) of each cancer patient.

Results: The ratios of two weighted recurrence network properties of the primary

tumors to biopsies reveal the correlation of DNp73 expression and long survival time,

and discover the non-effective radiotherapy to a cohort of rectal cancer patients who

had short survival time.

Conclusion: Our work contributes to the elucidation of the predictive value

of DNp73 expression in rectal cancer patients who were given preoperative

radiotherapy. Mathematical properties of fuzzy weighted recurrence networks of

immunohistochemistry images are not only able to show the predictive factor of DNp73

expression in the patients, but also reveal the identification of non-effective application

of radiotherapy to those who had poor overall survival outcome.

Keywords: fuzzy weighted recurrence networks, network properties, multi-channel images, DNp73,

immunohistochemistry, predictive biomarker, rectal cancer, survival outcome
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1. INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer
in the world (Arnold et al., 2017). There are around 6,500
new diagnosed cases of CRC yearly among the population of
Sweden. The causes for CRC are considered to be associated
with gene mutations, gene variants, and changed expression of
proteins. The combination of surgery and radio-chemotherapy is
the most beneficial regimens in current treatment of advanced
rectal cancer. Preoperative radiotherapy (RT) is often given to
rectal cancer patients as a complement to surgery to improve
treatment outcome. However, tumor recurrence plays a major
cause of death for progressive rectal patients after surgery. As a
result, a significant proportion of patients did not benefit from
preoperative RT (Fan et al., 2013).

It remains up to date that the clinical testing of specific
mutations in KRAS, BRAF, RAS, and RAF genes along with
mismatch repair gene deficiency assists either as prognostic or
predictive biomarkers in CRC (Sinicrope et al., 2016; Zarkavelis
et al., 2017). Other methods for identifying biomarkers in
the treatment of CRC include molecular subtype classification
(Cuyle and Prenen, 2017), identifying molecular signatures at
protein and RNA levels by microarray analysis (Rahman et al.,
2019), protein identification in cell proliferation and new blood
vessels (Chatterjee et al., 2019), changes in the amounts of
certain proteins (Letellier et al., 2017), and proteomic strategies
(Lee et al., 2018). A recent review of methods for discovering
prognostic and predictive biomarkers in CRC for personalized
therapy can be found in Patel et al. (2019).

The role of predictive biomarkers is known to be essential
for the field of radiation oncology (Yaromina et al., 2012).
While most efforts aim to improve cancer treatment with respect
to physical conditions and technology, such as precision in
treatment plans and dose administration (Sonke and Belderbos,
2010), the inclusion of patient-specific biological characteristics
into cancer treatment decision would be very useful for
personalized treatment. However, such important biological
information of individual patients is not well explored. To
achieve this purpose, predictive biomarkers are needed to guide
radiation oncologists to determine optimal dose prescription,
select patient-specific schemes, and treatments for individual
cancer patients (Yaromina et al., 2012).

However, it is a big challenge to find predictive biomarkers
that can select patients who can benefit from RT, although our
and other groups have spent much effort to identify potential
predictors for the RT response (Ryan et al., 2016; Ye and
Guo, 2019). A previous study of our group suggested that p73
independently predicted poor prognosis in colorectal cancer and
p73-negative tumors tended to have a lower local recurrence after
RT compared with unirradiated case (Ye and Guo, 2019).

One of important reasons is that the TP73 gene expresses
isoforms with divergent and/or opposing roles in cancer. These
are mainly categorized in two classes, the anti-oncogenic TAp73
isoforms, which contain an intact N-terminal, transactivation
domain, and the oncogenic DNp73 isoforms, which lack part
or whole of the transactivation domain and act as dominant
negative forms of TAp73 proteins (Logotheti et al., 2013). The

TAp73 isoforms are generated from an external P1 promoter. The
DNp73 proteins are transcribed (a) by the P1 promoter, followed
post-transcriptionally by alternative splicing in exons 2 and/or 3
at the 5′ end (Stiewe et al., 2002), or (b) by an alternative, internal
P2 promoter which generates variants lacking exons 2 and 3, but
instead containing an exon 3′ that encodes for a unique 13-amino
acid domain (Irwin, 2006). Additional complexity is created by
alternative splicing in the 3′ end, which gives rise to a large
number of C-terminal variants of the abovementioned isoforms
(Logotheti et al., 2013). Altogether, the TP73 gene expresses
at least 35 mRNA variants, which can encode theoretically 29
different p73 protein isoforms (Murray-Zmijewski et al., 2006).
Notably, the ratio between TAp73 and DNp73 isoforms has
essential effects on the cellular response (Dulloo et al., 2010;
Rufini et al., 2011).

The imbalance between TAp73 and DNp73 isoforms may
be useful to predict response to chemotherapy and prognosis
(Muller et al., 2005; Lucena-Araujo et al., 2015). High DNp73
expression has strong correlation with unfavorable prognosis
in several types of cancer patients, and DNp73-positive tumors
show a reduced response to chemotherapy and irradiation
(Uramoto et al., 2004; Di et al., 2013; Zhu et al., 2015). The
upregulation of DNp73 was frequently detected in radioresistant
cervical cancers (Liu et al., 2006). Our previous findings indicated
that DNp73 is increased in colon cancer cell line that is resistant
to γ -irradiation (Pfeifer et al., 2009). Thus, these findings
suggested that DNp73 expression may play an important role in
the regulation of radiosensitivity. However, the prognostic and
preditive role of DNp73 in rectal cancer patients with radiation
still remains unclear.

This study aimed to elucidate the role of DNp73 as a predictive
biomarker by investigating if DNp73 was related to the survival
time of rectal cancer patients who were administered with RT
before surgery. To overcome the subjective and time-consuming
task of pathologist-based analysis of immunohistochemistry
(IHC) images stained for DNp73 expression, we carried out
a study by means of a novel image-based recurrence network
approach. The motivation for developing this new image-based
network analysis was based on the recurrence of image attributes
inherently existing in the complex nature of IHC images of rectal
cancer tissue arrays.

In fact, network analysis in graph theory has been increasingly
recognized as a useful tool for studying cancer. Such studies
include the prediction of outcomes of ovarian cancer treatment
(Zhang et al., 2013), analysis of breast cancer progression and
reversal (Parikh et al., 2014), drug response prediction in cancer
cell lines (Zhang et al., 2018), identification of novel cancer gene
candidates (Josef Gladitz et al., 2018), tumor biology for precision
cancer medicine (Ozturk et al., 2018), and prediction of cancer
recurrence (Ruan et al., 2019).

In this present study, we introduce a new method of
fuzzy weighted recurrence networks of multi-channel images
for computing useful properties of the complex networks
of the expression patterns of the DNp73 IHC. The ratios
of these network properties discover the predictive value
of DNp73 in rectal cancer patients in the Swedish Rectal
Cancer Trial.
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TABLE 1 | Demographic information of the rectal cancer patients who had a

median age of 68 years (range: 39–78 years), were followed for a median period

of 81 months (range: 0–129 months), and had the median time to disease free of

101 months after surgery (range: 15–288 months).

Number of patients

Male 16 (64%)

Female 9 (36%)

Shorter survival time (15–75 months) 11 (44%)

Longer survival time (101–288 months) 14 (56%)

2. MATERIALS AND METHODS

2.1. Rectal Cancer Patients
This study included the patients with rectal adenocarcinoma
from the Southeast Swedish Health Care region who participated
in a clinical trial of preoperative RT for rectal cancer (Swedish
Rectal Cancer Trial et al., 1997). Samples of biopsy and primary
tumor from the same patients were selected for the analysis.
In this Swedish Rectal Cancer Trial study, we collected samples
from both pre-radiotherapy and non-radiotherapy rectal cancer
patients. The biopsy samples were taken from the rectal cancer
before the RT and went through the routine pathological process,
and eventually embedded in paraffin blocks. The primary tumor
samples were taken from the primary rectal cancer after the RT.

There were 25 patients with RT whose demographic
information is given in Table 1. This study was carried out in
accordance with the recommendations of Good Clinical Practice,
the Research Ethics Committee in Linkoping, Sweden with
written informed consent from all subjects. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki. The protocol was approved by the Research
Ethics Committee in Linkoping, Sweden. The clinico-pathologic
characteristics of the patients are listed in Table 2.

2.2. Immunochemistry and Image
Extraction
The five-micrometer paraffin-embedded tissue micro-array
(TMA) sections were deparaffinized in xylene and rehydrated
with a series of gradient ethanol to water. The sections were
heated to boiling point in citrate buffer (pH 6.0) for 30 min to
unmasked antigen, followed by a washing in phosphate-buffered
saline (PBS). Endogenous peroxidase activity was blocked with
3% H2O2 in methanol followed by washing three-times in
PBS. The sections were incubated with protein block (Dako,
Carpinteria, CA) for 10 min and then incubated with anti-
DNp73 antibody (clone 38C674.2, Novus Biologicals, 1:200),
which specifically recognized DNp73 isoforms, but not TAp73.

After that, the sections were washed in PBS and then
incubated with goat anti-mouse secondary antibody (Dako) at
room temperature for 25 min. Next, the sections were subjected
to 3,3′-diaminobenzidine tetrahydrochloride for 8 min and then
counterstained with hematoxylin. Negative and positive controls
were added in each staining run. All slides were scored by two
independent investigators. Whole-slide images of entire sections

TABLE 2 | Clinico-pathological characteristics of the rectal cancer patients.

Parameters Number of cases

Age <60 6

>60 19

Gender Male 9

Female 16

Growth pattern Expansion 11

Infiltration 13

Null 1

Grade Well 2

Moderate 14

Poor 9

Pathological stages I 8

II 6

III 8

IV 3

were captured with an Aperio CS2 slide scanner system (Leica
Biosystems, Wetzlar, Germany) using a 40x magnification.

All sections were reviewed to remove images containing
tissue-processing artifacts, including bubbles, section folds
and poor staining. A total of 46 whole-slide images from
the 25 unique patients were extracted from the TMA slides
using ObjectiveViewer (https://www.objectivepathology.com/
objectiveview) with the original resolution.

2.3. Multi-Channel Fuzzy Weighted
Recurrence Networks
The term “channel” is a conventional expression used to refer to a
certain component of an image. For example, an RGB image has
3 channels that are red (R), green (G) and blue (B) components.
A grayscale image has only one channel. Let I = [fijk] be a
multi-channel image of size M × N × K, where i = 1, . . . ,M,
j = 1, . . . ,N, and k = 1, . . . ,K. Let m ≥ 1 be an integer, a local
image windowWk

ij ∈ I of size (2m+ 1)× (2m+ 1) is constructed
for each pixel located at ij in each of the k components of the
multi-channel image, where ij is the center of the window. This
window can be considered as embedding dimensions in two-
dimensional space, which considers the local spatial distribution
around fij of the k-th image channel. The Frobenius norm can be
used to transform each local window into a scalar measure that
has the useful property of invariance under rotations as

‖Wk
ij‖F =

√

√

√

√

√

i+m
∑

i−m

j+m
∑

j−m

|fijk|2, (1)

where (i − m), (j − m) > 0, (i + m) ≤ M, (j + m) ≤ N, and
any pixel at the center of the window that requires values from
beyond the image boundaries is skipped.

We can then obtain a set of feature vectors yij, (i−m), (j−m) >

0, by joining the Frobenius norms computed for each window of
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the k-th image channel at the same location, for example, a color
image of 3 channels:

yij =
(

‖W1
ij‖F , ‖W

2
ij‖F , ‖W

3
ij‖F

)

, (2)

where (i−m), (j−m) > 0, (i+m) ≤ M, (j+m) ≤ N.
Since the Frobenius norm induced feature vector set yij

can be computed for the multi-channel image I, the multi-
channel fuzzy weighted recurrence network (MC-FWRN), which
is an extension of the FWRN of time series (Pham, 2019),
can be constructed as follows. To simplify the notation in
subsequent mathematical presentation, yij is now denoted as xn,
n = 1, . . . , L, where L is the total number of feature vectors, and
some same indices are used but defined differently.

LetX = {xn}, n = 1, . . . , L, c a given number of clusters of the
feature space, and a set of c fuzzy clusters,V = {vi : i = 1, . . . , c}.
Fuzzy clusters are groups that contain data points, where every
data point has a degree of fuzzy membership of belonging to each
group. A fuzzy relation R̃ between vi and vj, i, j = 1, . . . , c, is
characterized by a fuzzy membership function µ ∈ [0, 1], which
expresses the degree of similarity of each pair (vi, vj) in R̃. This
fuzzy relation has the following three properties (Zadeh, 1971):

1. Reflexivity: µ(vi, vi) = 1, ∀vi ∈ V.
2. Symmetry: µ(vi, xn) = µ(xn, vi), ∀xn ∈ X,∀vi ∈ V.
3. Transitivity: µ(vi, vj) = ∨xn [µ(vi, xn) ∧ µ(vj, xn)], ∀xn ∈

X,∀vi, vj ∈ V, where the symbols ∨ and ∧ stand for max and
min, respectively.

The computation of µ(vi, xn), i = 1, . . . , c, n = 1, . . . , L, which
are necessary for the construction of the fuzzy relation R̃ can
be carried out by means of the fuzzy c-means (FCM) algorithm
(Bezdek, 1981) as follows.

Let µnj denote a fuzzy membership grade of xn, n = 1, . . . , L,
which belongs to a cluster j, j = 1, . . . , c, whose center is vj. This
fuzzy membership is calculated by the FCM as

µnj =
1

∑c
i=1

[

d(xn ,vj)
d(xn ,vi)

]2/(α−1)
, (3)

where 1 ≤ α < ∞ is the weighting exponent, and d(xn, vj) is
used as a Euclidean distance between xn and vj.

Using the fuzzy membership grades, each cluster center vj is
computed as

vj =

∑L
n=1(µnj)α xn

∑L
n=1(µnj)α

, ∀j. (4)

The iterative procedure of the FCM is outlined as follows.

1. Given c, α, step t, t = 0, . . . ,T, initialize matrix
U(t=0) = [µnj](t=0)

2. Compute v(t)j , j = 1, . . . , c, using Equation (4).

3. Update U(t+1) using Equation (3).
4. If ‖U(t+1) − U(t)‖ < ǫ or t = T, stop. Otherwise, set

U(t) = U(t+1) and return to step 2.

The predefined FCM parameters α, T and ǫ usually take the
values of 2, 100, and 0.00001, respectively. The number of
clusters can be estimated using a cluster validity measure such
as the partition entropy, denoted by H, which is defined as
(Bezdek, 1981)

H =
1

L

c
∑

j=1

L
∑

n=1

µnj log(µnj). (5)

This cluster validity works by computing the partition entropy
H for a range of a given number of clusters, c ≥ 2, and
the number of clusters that has the minimum value of H is
considered as an optimal c for the FCM algorithm.

Finally, an N × N MC-FWRN can be constructed with the
fuzzy relation R̃ as

W = R̃− I, (6)

where W is an N × N adjacency matrix of edge weights, and I

is the N × N identity matrix. The interested reader is referred
to the work described in Pham (2019) to obtain more detailed
information about the concept of fuzzy weighted recurrence
networks originally developed for time series.

2.4. Network Properties
Twomost well-knownmeasures of the statistical characterization
of a complex network are the average clustering coefficient and
characteristic path length (Watts and Strogatz, 1998; Albert and
Barabasi, 2002; Barrat et al., 2004). The clustering coefficient of a
node in a network is a numerical indicator of a node that tends
to cluster with other neighboring nodes. The average clustering
coefficient expresses the average amount of connectivity around
individual nodes of a network, whereas the characteristic path
length is considered as a measure of the efficiency of transfer of
information in a network.

The average clustering coefficient for an unweighted network
represented with an N ×N (binary) adjacency matrix A = [aij],
i, j = 1, . . . ,N, is defined as

C =
1

N

N
∑

i=1

Ci, (7)

where Ci is the local unweighted clustering coefficient for node i,
and defined as

Ci =

∑

j,k aijajkaki

ki(ki − 1)
, ki 6= 0, 1, (8)

where ki is the degree of node i, which is the number of links
of node i.

The average clustering coefficient for a weighted network is
defined as

CC =
1

N

N
∑

i=1

Cw
i , (9)
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where Cw
i is the local weighted clustering coefficient for node i,

and defined as (Fagiolo, 2007)

Cw
i =

∑

j,k [wijwikwjk]
1/3

ki(ki − 1)
, ki 6= 0, 1, (10)

where wij,wik,wjk ∈ W.
In general, the clustering coefficient of a node is the ratio

of existing links connecting a node’s neighbors to each other
to the maximum possible number of such links. The clustering
coefficient for the entire network is the average of the clustering
coefficients of all the nodes.

The characteristic path length of a network is defined as the
average of all shortest path lengths:

CP =
1

N(N − 1)

N
∑

i6=j,i,j=1

dij, (11)

where dij is the length of the shortest path between nodes
i and j. The Dijkstra’s algorithm (Newman, 2010) was used
for computing the shortest weighted path in this study. The
characteristic path length is calculated by finding the shortest
path between all pairs of nodes, adding them up, and then
dividing by the total number of pairs. This operation shows on
average the number of steps it takes to get from one node of the
network to another.

2.5. Algorithm for Computing Network
Properties From MC-FWRN
1. Given a multi-channel image I, window parameterm, number

of clusters c, and FCM parameters.
2. Using Equation (1) to compute the Frobenius norm for each

window (2m+1)× (2m+1) of each image channel, and using
Equation (2) to form a matrix of vectors of length 3 with the
number of pixels that can be used to construct the windows.

3. Compute the fuzzy weighted adjacency matrix W using
Equation (6) via the FCM.

4. Using W to calculate the clustering coefficient with Equation
(9), and the characteristic path length with Equation (11).

3. RESULTS AND DISCUSSION

Table 3 shows the screening results of the 25 rectal cancer
patients. Patient numbers 1-11 are those who had shorter survival
time, and patient numbers 12–25 are those who had longer
survival time. The evaluation of the IHC-stained color intensity
of the whole slide of a tissue core with brown antibody stain
and blue counter-stain were assessed as being positive and
negative, respectively. The positive stain is subjectively classified
as weak = 1 (light brown), moderate = 2 (moderate brown),
and strong = 3 (dark brown), whereas the negative stain = 0
(blue). Figure 1 shows representative IHC staining for DNp73
expression on the biopsy and primary tumor tissue images
obtained from a rectal cancer patient survived 40 months after
radiotherapy, and biopsy and primary tumor tissue images
obtained from a rectal cancer patient who survived 255 months
after radiotherapy at the censoring date.

TABLE 3 | Screening results of rectal cancer patients.

Patient

#

Disease-free

time

Recurrence

status

Survival

time

IHC score

Primary

tumor

Biopsy

1 0 Yes 15 1 1

2 6 Yes 19 1 3

3 20 Yes 25 2 1

4 13 Yes 40 3 3

5 37 Yes 60 3 3

6 44 Yes 62 2 3

7 0 Yes 15 3 2

8 63 Yes 75 3 3

9 26 Yes 27 3 3

10 12 No 26 3 3

11 34 Yes 43 2 2

12 100 Yes 101 1 1

13 0 Yes 180 1 3

14 114 Yes 114 2 2

15 122 Yes 255 3 2

16 167 Yes 167 2 2

17 81 No 101 3 2

18 129 Yes 129 2 3

19 129 Yes 288 2 3

20 126 Yes 126 3 2

21 186 Yes 238 3 3

22 122 Yes 122 2 2

23 168 Yes 288 2 3

24 151 Yes 151 3 3

25 168 Yes 168 2 2

Time is in months. For IHC score, 0 = negative, 1 = weak, 2 = moderate, and 3 = strong.

To capture the local information of the DNp73 expression
over the whole IHC-stained slides, images of biopsy and primary
tumor of each of the 25 rectal cancer patients were divided
into subimages of 150×150 pixels. The subimages that contain
either the background or a large portion of the background
were excluded in the analysis. To construct the FWRNs of the
IHC-stained subimages, we selected the FWRN parameters m=3
to establish a reasonable local window size of 7 × 7, c = 20
that was approximately based on the partition entropy, and the
FCM parameters α = 2, T = 100, and ǫ = 0.00001, which are
widely adopted for the FCM analysis. The clustering coefficient
and characteristic path length were calculated for each subimage
of each patient, and the total average values of the clustering
coefficients and characteristic path lengths of all subimages
represent the reported values.

Figures 2, 3 show the clustering coefficients and characteristic
path lengths of the FWRNs of the biopsy and primary tumor
images obtained from the 25 rectal cancer patients, respectively.
The scatter plot of the survival time against the ratios of the
clustering coefficients of the primary tumors to those of the
biopsies, and the ratios of the characteristic path lengths of the
primary tumors to those of the biopsies are shown in Figure 4.
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FIGURE 1 | Representative IHC-stained images of DNp73 expression: (A) a biopsy image and (B) a primary tumor image obtained from a rectal cancer patient

survived 40 months after radiotherapy; and (C) a biopsy image and (D) a primary tumor image obtained from a rectal cancer patient survived 255 months after

radiotherapy.

Based on the visualization of the scatter plot, we discovered
the predictive value of DNp73 in the rectal cancer patients
in terms of the clustering-coefficient and characteristic-path-
length ratios, which are shown in Figure 5. The probability
(p) for the predicted survival time based on the clustering-
coefficient ratio was computed as the number of patients who
lived between 101 and 288 months divided by the total number
of patients whose clustering-coefficient ratios are within the
ratio range (p = 11/15 = 0.7333). The probability (p) for the
predicted survival time based on the characteristic-path-length
ratio was computed as the number of patients who lived between
126 and 288 months divided by the total number of patients
whose characteristic-path-length ratios are within the ratio range
(p = 7/9 = 0.7778).

Both intensity and percentage of the IHC staining have to be
considered when we score the slides. We have been working with
such a classic scoring system for many years. We have realized

that even two experienced pathologists score the slides, there
is still difficulty to make clear decisions for about 10% of the
cases. In this study, a new image-based network analysis was
developed to analyze the immunostaining array slides and to
extract patterns of the IHC staining, including both intensity
and percentage in the whole arrays. We further analyzed the
associations of the immunostaining patterns with our clinical
data to provide more precise information for rectal cancer.

The mean values of both clustering coefficients and
characteristic path lengths of the rectal cancer patients of
shorter survival are lower than those of longer survival. There
is no correlation between the ratios of the clustering coefficients
of the tumor to those of the biopsy and the survival time
(correlation coefficient R = 0.0120, p-value = 9.7656e-04) among
the shorter-surviving rectal cancer patients whose maximum
survival time was about over 6 years (75 months). This can be
observed from Figure 4. There is also no correlation between
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FIGURE 2 | Clustering coefficients of rectal cancer patients.

FIGURE 3 | Characteristic path length of rectal cancer patients.

the ratios of the characteristic path lengths of the tumor to
those of the biopsy and the survival time (R = −0.0780, p-
value = 9.7656e-04) among the shorter-surviving patients. This
can also be observed from Figure 4. There is an indication of
correlation between the ratios of the clustering coefficients of the
tumor to those of the biopsy and the survival time (R = 0.4924,
p-value = 1.2207e-04) among the longer-surviving rectal patients
whose maximum survival time was 24 years (288 months).
This can be observed from Figure 4. There is also evidence
of correlation between the ratios of the characteristic path
lengths of the tumor to those of the biopsy and the survival time
(R = 0.4778, p-value = 1.2207e-04) among the longer-surviving
rectal cancer patients. This can also be observed from Figure 4.

Figure 4 shows similar plots of the ratios of the two network-
property parameters of the tumor to biopsy against the survival
time, suggesting the consistency of the results. It is reported

FIGURE 4 | Scatter plots of survival time of 25 rectal cancer patient against

(A) ratios of clustering coefficients of primary tumor [CC(tumor)] to those of

biopsy [CC(biopsy)], and (B) ratios of characteristic path lengths of primary

tumor [CP(tumor)] to those of biopsy [CP(biopsy)]. Symbols “◦” and “�”

indicate patient groups with shorter and longer times of survival, respectively.

that rectal patients who survive at least 5 years (60 months)
are likely to die from causes that are common in the general
population (London, 2017). This finding highlights the predictive
value of DNp73 revealed by the image-based FWRN analysis
among the cohort of rectal cancer patients whose survival time
was between 8.4 years (101 months) and 24 years (288 months)
correlated with the clustering-coefficient ratios, and 10.5 years
(126 months) and 24 years (288 months) correlated with the
characteristic-path-length ratios.

The lack of correlation of the ratios of the MC-FWRN
parameters and the (shorter) survival time may suggest an
implication of poor responses or non-effective treatment of the
RT provided to the rectal cancer patients. Meanwhile, those
patients who have positive correlation between the ratios of the
FWRN parameters and the (longer) survival time were very
likely to have a good or better response to the RT. General
findings are that higher values of the ratios of the MC-FWRN
parameters indicate longer survival time. The longest survival
time is found with the values of the MC-FWRN parameter ratios
being about 1. Based on the MC-FWRN parameters of the 25
rectal cancer patients and their survival months, we can predict
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FIGURE 5 | Predictive value of DNp73 in rectal cancer patients, who are

deemed to have longer survival time as being between 101 and 288 months,

in terms of ratios of clustering coefficient (A), and characteristic path length (B)

of image-based FWRNs. CC(PT) and CC(B) denote clustering coefficients of

primary tumor and biopsy, respectively; and CP(PT) and CP(B) denote

characteristic path lengths of primary tumor and biopsy, respectively.

the survival time between 101 months (8.42 years) and 288
months (24 years) with a probability of 73% for those patients
whose clustering-coefficient ratio is within the range between
0.97 and 1.05. Similarly, the survival time between 126 months
(10.5 years) and 288 months (24 years) with a probability of 78%
for those patients whose characteristic-path-length ratio is within
the range between 0.99 and 1.10.

The application of a novel image-based network analysis
presented in this study was able to discover the predictive
factor of DNp73 biomarker in rectal cancer patients having
preoperative RT. Predictive biomarkers provide useful
information on the probability of obtaining a response to
treatment (Walther et al., 2009) and support the process of
therapeutic decision for personalized cancer treatment (Voon

and Kong, 2011). Such a discovery of DNp73 expression as
a predictive biomarker in rectal cancer patients is expected
to provide early assessment of the patient outcome, clinical
value in the diagnostics of the disease, identification of targeted
postoperative therapy.

Regarding the MC-FWRN introduced in this study, this
new method appears to be the first of its kind mathematically
formulated to capture the recurrence features of multi-channel
data inherently existing in complex histology images in a way
that is both effective and easily implemented for practical use.
Complex networks consist of certain attributes that can be
computed to analyze the properties and characteristics of the
networks. Mathematical properties of these networks are utilized
to define network models and to elucidate how certain models
different to each other. The proposed MC-FWRN allows the
calculation of the clustering coefficients and characteristic path
lengths of DNp73 expression in the primary tumors and biopsies.
These values can used to predict the survival time of a cohort
of rectal cancer patients who were deemed to be positively
influenced by preoperative RT.

The fuzzy weighted recurrence network analysis proposed
herein is not supposed to be the study of the complexity of
DNp73-controlled networks, but the derivation of structural
properties of DNp73 expression from complex microscopy
images that can be difficult to understand by pathologists. The
results suggest that there are relationships between the graph
properties of fuzzy weighted recurrence networks and the color
distribution of the stained images. Hence, the network analysis
yields new quantitative characteristics of the complexity of
the IHC detection of the protein in tissue sections. From a
molecular biology perspective, the average clustering coefficient
and characteristic path length of the image-based fuzzy weighted
recurrence network provide a mathematical measure of the
heterogeneity of DNp73 in IHC staining, in correlation with
clinicopathological characteristics. This heterogeneitymay reflect
diverse cell populations in expressing different levels of DNp73.

In this study, we have shown significant results concerning
the DNp73 protein expression in predicting the outcome for the
rectal cancer patients with the proposed mathematical approach.
A limitation of this study is a relatively small number of the
rectal cancer patients selected in the analysis. Therefore, future
studies with more subgroups of rectal patients will be considered.
It should be pointed out that although the total samples of
the RT clinical trail from the Southeast Swedish Health Care
region included 216 cases, only 102 cases randomly received
preoperative RT. Given the aim of this study, only the paired
samples of biopsy and primary tumors that are from the same
patients were selected for the analysis. Many of the biopsy
samples are too tiny to be used for IHC staining, constituting to
the limitation of the sample size carried out in this pilot study,
which still can provide some representative indication due to the
paired samples from the same patient and all the samples derived
from the random clinical trial.

Furthermore, results from rectal cancer patients
with and without preoperative RT will be obtained
and compared. Images of biopsies, primary cancers and
metastatic cancers should be further investigated. Eventually,

Frontiers in Physiology | www.frontiersin.org 8 January 2020 | Volume 10 | Article 1551

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Pham et al. Image-Based Network Analysis of DNp73 Expression

we will analyze the associations of the reactions from
tumor invasive margins and stroma with the patients’
prognosis.

Another limitation in this study is that the TAp73 expression
was not performed in the present 25 pairs of rectal cancer
samples. It is known that TAp73 acts as a tumor suppressor,
while DNp73 exerts as an oncogene that is opposite to
TAp73 (Amelio et al., 2014; Stantic et al., 2015). Therefore,
it is necessary to expand the sample size and simultaneously
evaluate TAp73 and DNp73 in the future, based on the
methodology we have developed in the current study. DNp73
links to the ability to act as dominant-negative of the TAp73
isoforms and p53. This negative regulation by DNp73 forms
an autoregulatory feedback loop, since both TAp73 and p53
can induce expression of DNp73 isoforms by direct binding
to the P2 promoter (Irwin, 2006; Rufini et al., 2011; Di et al.,
2013). A newest evidence showed that DNp73 isoforms has
higher applicant potential in colorectal cancer patients than
the canonical p73 protein (Garranzo-Asensio et al., 2019).
Thus, it is reasonable to focus on DNp73. In addition, in
the present paper, we mainly focused on the automated
quantification of IHC expression using an image-based complex
network model. The expression of TAp73 and the relationship
between TAp73 and DNp73 will be investigated in our future
study.

The highlights of the technical development and findings
addressed in this paper are summarized as follows. First, the
proposed MC-FWRN analysis of DNp73 expression by IHC in
rectal cancer is the first of its kind. Second, a new mathematical
analysis of IHC-stained biopsy and tumor images reveals the
predictive power of DNp73 in rectal cancer patients who received
RT. Third, a new method of multi-channel fuzzy weighted
recurrence networks is developed for extracting two useful
complex network properties of IHC images that can be used
as prognostic indicators of rectal cancer. Fourth, the proposed
approach for quantifying the expression of IHC is not limited
to the study of DNp73, but can also be generally applied to
discovering image patterns of other tumor proteins. Fifth, the
proposed approach can be utilized as a computerized tool for
extracting features from whole slide images in digital pathology.

4. CONCLUSION

The findings presented herein show the useful application of
complex network analysis of images for studying the predictive
factor of DNp73 biomarker expression in rectal cancer patients.
The use of DNp73 biomarker can give insight into preoperative

RT that has been considered as an important companion in
the treatment of rectal cancer. A larger sample size when being
available in future clinical trial will further confirm the current
findings. Moreover, the proposed approach is not only found
useful to rectal cancer but also can be adopted for the analysis
of other biomarkers as well as other types of cancer, where
human-based pathology practice is of limited capacity. In fact,
there are many reports on the computerized image analysis of
H&E (Haemotoxylin and Eosin) staining, much less effort has
been made to apply computational methods for the automated
analysis of IHC staining. The MC-FWRN presented in this paper
can be generally applied for studying the expression of other
potential biomarkers.

Although there are many studies reported about the
association between DNp73 protein biomarker expression and
malignant potential, the function of DNp73 still remains unclear.
Our work contributes to the elucidation of the predictive
value of DNp73 expression in rectal cancer patients who were
given preoperative RT. We developed an original method for
constructing weighted recurrence networks of multi-channel
images. These networks allow the extraction of useful network
properties from complex IHC images. The clustering coefficients
and characteristic path lengths of the MC-FWRNs are not
only able to show the predictive factor of DNp73 expression
in the patients, but also reveal the identification of non-
effective application of RT to those who had poor overall
survival outcome.
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