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Characterizing brain activity at rest is of paramount importance to our understanding

both of general principles of brain functioning and of the way brain dynamics is affected in

the presence of neurological or psychiatric pathologies. We measured the time-reversal

symmetry of spontaneous electroencephalographic brain activity recorded from three

groups of patients and their respective control group under two experimental conditions

(eyes open and closed). We evaluated differences in time irreversibility in terms of possible

underlying physical generatingmechanisms. The results showed that resting brain activity

is generically time-irreversible at sufficiently long time scales, and that brain pathology is

generally associated with a reduction in time-asymmetry, albeit with pathology-specific

patterns. The significance of these results and their possible dynamical etiology are

discussed. Some implications of the differential modulation of time asymmetry by

pathology and experimental condition are examined.

Keywords: resting state, time irreversibility, entropy production, permutation entropy, Parkinson’s disease,

schizophrenia, epilepsy, non-linear dynamics

1. INTRODUCTION

Even in the absence of exogenous stimulation and for constant values of the parameters controlling
its dynamics, the brain generates fluctuations characterized by non-random patterns over a wide
range of spatial and temporal scales (Arieli et al., 1996; Van de Ville et al., 2010; Deco et al., 2011)
re-edited across the cortical space in a non-random way (Cossart et al., 2003; Kenet et al., 2003;
Beggs and Plenz, 2004; Ikegaya et al., 2004; Dragoi and Tonegawa, 2011; Betzel et al., 2012).

Characterizing resting activity is important for at least three main partially interrelated
reasons. On the one hand, accumulating evidence shows that neurological and psychiatric
conditions are associated with alterations of several aspects of resting local activity structure,
i.e., of how information is processed in each brain region (Zhang and Raichle, 2010; Alderson-
Day et al., 2015; Hohenfeld et al., 2018). On the other hand, spontaneous fluctuations are
intimately related to stimulus-induced ones (Luczak et al., 2009; Shew et al., 2009; Smith
et al., 2009), so that characterizing the former also provides insight onto the latter. No less
importantly, the structure of resting brain activity fluctuations gives away key aspects of the
physics of the underlying system producing them (Papo, 2014). For instance, if the brain
is understood as a complex thermodynamic machine, the activity recorded with standard
system-level neuroimaging techniques can be thought of as thermal fluctuations through which the
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energy is dissipated to ensure its functioning (Livi, 2013). Within
this framework, the generic complex spatio-temporal scaling
properties of resting brain activity, including scale invariance and
long-range temporal memory (Novikov et al., 1997; Linkenkaer-
Hansen et al., 2001; Bianco et al., 2007; Gong et al., 2007; Wink
et al., 2008; Freyer et al., 2009; Expert et al., 2011), can be
understood as indicators of the fact that the brain operates away
from equilibrium (Papo, 2013b).

Quantifying the extent to which a system such as the
brain deviates from equilibrium conditions is an important
issue. The fluctuations of a system at equilibrium obey
detailed balance of the probability fluxes, a condition whereby
the net current between any pair of states vanishes at
long enough times, i.e., given two states x and y and a
transition rate W(·) following condition holds: ρ(x)W(x →

y) = ρ(y)W(y → x), where ρ(·) is the equilibrium
probability distribution. Importantly, this condition can be
understood in terms of symmetry property of the probability
distributions P(ωt) = P(Iωt) of a trajectory ωt =

(ω1,ω2, . . . ,ωt) of length t and its time-reversed one, where
I denotes the time reverse operator. In systems outside of
equilibrium, this symmetry is broken due to the presence of
non-conservative forces: energy dissipation happens with an
irreversible increase of entropy, and the time reversal symmetry
is then broken. Beyond such explicit dissipation, irreversibility
can also be due to the presence of memory, which acts as
a hidden dissipative external force in a process (Puglisi and
Villamaina, 2009); and, it is destroyed by the presence of
noise (Porporato et al., 2007; Xia et al., 2014).

Time irreversibility provides valuable information on the
statistical properties of the generating processes of given
stochastic dynamics. On the one hand, reversibility implies
stationarity (Lawrance, 1991). On the other hand, linear Gaussian
random processes and static non-linear transformations of such
processes are reversible, and significant time irreversibility
excludes Gaussian linear processes or linear ARMA models
as possible generating dynamics, implying instead non-linear
dynamics or (linear or non-linear) non-Gaussian (Weiss,
1975; Cox et al., 1981; Lawrance, 1991; Stone et al., 1996).
The asymmetry under time reversal of some system variable’s
statistical properties provides a quantitative estimate of the
thermodynamic entropy production 6t of the system generating
the activity, even when the details of the system are unknown
(Gaspard, 2005; Andrieux et al., 2007; Roldán and Parrondo,
2010). Note that the coarse-grained entropy production provides
a lower bound on the true one (Seifert, 2019). This fundamental
relation between thermodynamic entropy (a macroscopic
quantity) and Kolmogorov–Sinai entropy (a microscopic
quantity) has in particular been proven to hold for systems in
non-equilibrium steady state (NESS) (Gaspard, 2004; Roldán
and Parrondo, 2010). 6t can be represented in terms of the ratio
6t = ln

[

P(ωt)/P(Iωt)
]

. This quantity is identically equal to zero
for each trajectory separately if detailed balance is satisfied, but
always non-negative otherwise. Non-equilibrium systems obey
fluctuation relations which hold for any stationary time series,
independently of their dynamics (Evans et al., 1993; Gallavotti
and Cohen, 1995; Crooks, 2000; Evans and Searles, 2002).

In particular, the following relation

P(−6t) ∼ P(6t)e
−6t (1)

provides a quantitative expression for the probability of entropy
of a finite non-equilibrium flowing in a direction opposite
to that dictated by the second law of thermodynamics, when
considered in a finite time. This relation illustrates the fact that
for out-equilibrium dynamics the negative tail of the probability
distribution decays faster than the positive one.

Not surprisingly, time irreversibility metrics have extensively
been used to characterize real-world systems, with a special
attention being devoted to economic and financial time
series (Ramsey and Rothman, 1996; Zumbach, 2009; Xia
et al., 2014). Time reversal asymmetry has also been used
to characterize healthy and pathological activity of biological
systems, particularly the human heart (Costa et al., 2005; Guzik
et al., 2006; Porta et al., 2006, 2008, 2009; Piskorski and Guzik,
2007; Karmakar et al., 2009; Hou et al., 2010), but also to
classify hand tremor (Timmer et al., 1993). However, the time-
reversal symmetry properties of brain activity have attracted little
attention (Paluš, 1996; Van der Heyden et al., 1996; Ehlers et al.,
1998; Visnovcova et al., 2014; Yao et al., 2019) and have not yet
been systematically examined. For instance, Paluš (1996) found
themutual information between EEG time series and their lagged
versions to be time-asymmetric. However, since the asymmetry
in the peaks of the mutual information, itself symmetric, may
not be equivalent to the temporal asymmetry of the underlying
process, the observed properties were tentatively explained as
reflecting non-stationary non-linear deterministic oscillatory
episodes randomly distributed in a noisy background. Three
studies examined time irreversibility in epilepsy, consistently
reporting increased irreversibility for ictal activity in both scalp
and intracranially recorded electrical brain activity (Van der
Heyden et al., 1996; Schindler et al., 2016; Martínez et al.,
2018). The surgical removal of brain areas generating time-
irreversible iEEG signals was associated with seizure-free post-
surgical outcome (Schindler et al., 2016).

Here we address the following main questions: what is the
typical time asymmetry of brain activity at rest? How is it
modified by a simple experimental condition such as opening and
closing eyes? How does it vary in neurological and psychiatric
brain pathologies? We conjectured that, insofar as entropy
production determines the performance of thermal machines
such as the brain, and disease is thought to be associated with
impaired self-organizing capabilities, abnormal time reversal
symmetry properties may be a marker of pathology and may be
differentially affected by different neurological and psychiatric
diseases. These questions are addressed by analysing a large set
of EEG recordings, comprising three groups of patients and
the corresponding control groups, through a recently proposed
irreversibility metric based on the assessment of permutation
patterns (Zanin et al., 2018). Results suggest that the human brain
is generically time-irreversible; that such property is increased
in eyes open resting states, with respect to eyes closed ones;
and that pathologies like Parkinson’s disease and schizophrenia
decrease the irreversibility. We further show that irreversibility
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is non-trivially modified by filtering the EEG signal at different
bands, and that its nature can be studied by resorting to surrogate
time series.

2. MATERIALS AND METHODS

2.1. Assessing Irreversibility in Time Series
In general terms, the time asymmetry of a stationary driven
system can be determined by the Kullback-Leibler (KL) distance
between probability distributions representing the forward and
reverse trajectory (respectively, p and p̂):

KL(p||p̂) =
∑

p(ω1,ω2, . . . ,ωn) log
p(ω1,ω2, . . . ,ωn)

p̂(ω1,ω2, . . . ,ωn)
. (2)

The KL distance can be thought of as the mean of the difference
between p and p̂, and quantifies the distinguishability or,
loosely, the distance between these two probability distributions
(Gaspard, 2005; Andrieux et al., 2007; Porporato et al., 2007).
The KL distance is not just an estimator of entropy production’s
lower bound but it also provides a general method to distinguish
between equilibrium and NESS (Roldán and Parrondo, 2010).

While Equation (2) defines a general rule for estimating
irreversibility, it does not define what p and p̂ should represent.
Consequently, various methods to quantify time reversibility
from empirical time series have been proposed and applied to
real-world problems, particularly biological and financial systems
(Diks et al., 1995; Paluš, 1996; Ramsey and Rothman, 1996; Daw
et al., 2000; Kennel, 2004; Costa et al., 2005, 2008; Casali et al.,
2008; Zumbach, 2009; Lacasa et al., 2012; Donges et al., 2013;
Xia et al., 2014; Lacasa and Flanagan, 2015; Flanagan and Lacasa,
2016). Here, we use a method (Graff et al., 2013; Martínez et al.,
2018; Zanin et al., 2018) based on permutation entropy (Bandt
and Pompe, 2002; Zanin et al., 2012). This method presents
various advantages: it has no free parameters other than the
embedding dimension of the permutation entropy; as visibility
graph methods (Lacasa et al., 2012) it is not an all-or-none
measure of irreversibility, so that its use is also meaningful for
non-stationary signals, which are by definition irreversible, and
is temporally local, and therefore allows assessing fluctuations;
however, unlike visibility graphs, it does not rely on scaling
arguments and its convergence speed is faster and hypothesis
testing more straightforward. For the sake of completeness,
we here review the method, starting by the definition of the
permutation patterns.

2.1.1. Permutation Patterns
The idea of analysing a time series through its permutation
patterns was introduced by Bandt and Pompe (2002), and
since then received an increasing attention from the scientific
community (Amigó, 2010; Zanin et al., 2012; Riedl et al., 2013).
Given a time series X = {xt}, with t = 1 . . .N, this is usually
divided in overlapping regions of length D, such that:

s → (xs, xs+τ , . . . , xs+τ (D−2), xs+τ (D−1)). (3)

D is called the embedding dimension and controls the quantity of
information included in each region, while τ is the embedding

delay. s further controls the beginning of each region, and thus
the degree of overlap between regions.

In this study we consider D = 3 and τ = 1. While
larger values of D may allow detecting more complex dynamics,
their use also requires longer time series to reach statistically
significant results, especially in the case of EEG time series,
which are highly noisy. On the other hand, larger values of τ

are used when sampling continuous systems whose characteristic
frequency is not known, which is not the present case.

Once these regions have been defined, an ordinal pattern is
associated to each one of them. The elements composing each
region are sorted in increasing order, and the ordinal pattern
corresponding to the required permutation is saved for further
analysis. In other words, the permutation π = (r0, r1, . . . , rD−1)
of (0, 1, . . . ,D− 1) is the one fulfilling:

xs+r0 ≤ xs+r1 ≤ . . . ≤ xs+rD−2 ≤ xs+rD−1 . (4)

See Figure 1 for a graphical representation of the six
permutation patterns that can appear for D = 3.

2.1.2. From Permutation Patterns to Irreversibility
The irreversibility of a time series is then estimated by looking at
asymmetries in the appearance frequencies of the corresponding
permutation patterns. Specifically, for D = 3, 6 patterns can
appear, paired as follows:

(0, 1, 2)
t.r.
↔ (2, 1, 0) (5)

(1, 0, 2)
t.r.
↔ (2, 0, 1) (6)

(1, 2, 0)
t.r.
↔ (0, 2, 1), (7)

with
t.r.
↔ representing a time reversal transformation. In other

words, a region corresponding to the pattern (0, 1, 2) (for
instance, a monotonically increasing series) will become (2, 1, 0)
after a time reversal operation (in the previous example, it will
become a monotonically decreasing series). This idea is also
graphically represented in Figure 1. A time series will thus be
reversible if and only if all permutation patterns composing the
previous pairs appear with approximatively the same frequency;
if this does not happen, a time arrow can be derived from
the predominant presence of one of the patterns composing
the pair. In other words, and to illustrate, suppose a trivially
irreversible time series with monotonically increasing values;
only one permutation pattern can appear, i.e., (0, 1, 2), which will
transform to (2, 1, 0) under a time reversal transformation. Given
a new realization of the same time series, assessing the relative
abundance of (0, 1, 2) over (2, 1, 0) will allow to easily define if we
are looking at the original or at the time reversed time series. This
is nevertheless not possible if the appearance probabilities of both
patterns is approximately the same.

A statistical test can easily be designed, by comparing the
probability distributions of patterns in the forward and reversed
time series. Specifically, if the time series is reversible, the number
of times the two permutation patterns forming a pair appear
should be similar—i.e., should not be different, in a statistical
sense. Following the previous example, let us denote by n(0,1,2)
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FIGURE 1 | Calculation of permutation patterns and irreversibility. The six graphs represent the six possible permutation of a time series values for D = 3. The three

arrows indicate how each pattern will be transformed under a time reversal operation.

and n(2,1,0) respectively the number of times the patterns (0, 1, 2)
and (2, 1, 0) have appeared; and let us define:

p =
n(0,1,2)

n(0,1,2) + n(2,1,0)
. (8)

The time series is not reversible if we can reject the null
hypothesis that p = 0.5 in a two-sided binomial test. Note
that the test should be repeated for all pairs of permutation
patterns—three times in the case of D = 3.

2.1.3. Scaling and Noise in the Irreversibility of EEG

Data
The previously described test yields a result that could prima facie
be used to understand brain dynamics, i.e., one could simply
assess whether or not an EEG time series is irreversible. This
direct approach nevertheless masks important information, as it
tells nothing about the time scales at which such irreversibility
appears; may be sensitive to noise; and could be misleading
when comparing time series of different lengths, as one could
not exclude that the non-irreversibility of a short time series
may be due to its reduced length, and not to a reversible
underlying dynamics.

We here solve this problem by calculating how the
irreversibility evolves as a function of the scale over which
such irreversibility is assessed. To illustrate, let us consider an

EEG time series composed of N data points, and a window
length (the irreversibility scale) of n, such that n < N. We
firstly extract all overlapping sub-regions of size n, and evaluate
their irreversibility; if at least a 90% of those sub-regions are
irreversible in a statistically significant way (α = 0.01), then the
whole time series is considered as irreversible for the time scale
n. Finally, we average over all channels and all trials / subjects
of a data set, to obtain the fraction of times a channel has been
detected as irreversible at a given time scale n, and the evolution
of such fraction as a function of n.

2.1.4. Model of Noisy Irreversible Time Series
In order to assess whether the irreversibility evolution may only
be due to noise, we here consider a simple dynamical model
contaminated with additive Gaussian noise. The chosen model
is the well-known logistic map (Ausloos and Dirickx, 2006),
defined as:

xt+1 = rxn(1− xn)+ σξ . (9)

r is a parameter defining the dynamics of the map, here fixed to
4 to ensure a chaotic evolution. Additionally, σ is a parameter
defining the quantity of additive noise, and ξ random numbers
drawn from a normal distributionN (0, 1).
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TABLE 1 | Main characteristics of the considered EEG data sets. See section 2.2 of the main text for details.

Data set # Controls # Patients Eyes open/close # Channels Resolution (Hz) Length

Motor Imagery 110 0 Yes / Yes 64 160 1 m

Parkinson’s disease 22 74 Yes / Yes 32 500 3 m

Scalp (Epilepsy) 92 92 Yes / No 22 256 > 30 s

Schizophrenia 14 14 No / Yes 19 250 15 m

FIGURE 2 | Power spectra corresponding to the four considered data sets,

averaged over all control subjects.

The logistic map has here been chosen as it presents a non-
trivial dynamics, but at the same time its irreversibility can be
detected even in short time series (Zanin et al., 2018).

2.1.5. Testing Irreversibility Through Surrogate Time

Series
As a final issue, we further analyse the source of the irreversibility
of brain dynamics by using surrogate time series—see section
3.3. Such series are obtained through the Iterative Amplitude
Adjusted Fourier Transform (IAAFT) algorithm (Schreiber and
Schmitz, 1996). IAAFTworks by iteratively performing a random
phase transformation of the original time series, aimed at creating
surrogates that preserve both the linear (auto-)correlation and
the amplitude of the signal.

2.2. EEG Data Sets
Below are described the four data sets considered in this study;
additionally, Table 1 reports their main characteristics, and
Figure 2 the corresponding power spectra for control subjects.
Unless otherwise specified, no further processing has been
performed, i.e., the whole broadband signal has been considered
without additional noise reduction or artifact elimination steps.

2.2.1. Motor Movement/Imagery Data Set
This EEG data set is described in (Schalk et al., 2004), and can
be downloaded from https://www.physionet.org/pn4/eegmmidb/
(Goldberger et al., 2000). The full data set comprises recordings
of subjects performing different motor/imagery tasks, albeit only
the eyes open/closed resting-state conditions are here considered.
A total of 110 trials (one per subject) are available, recorded
with a 64-channel EEG (BCI2000 system). The 64 electrodes
were located as per the international 10-10 system, excluding

electrodes Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9,
and P10.

2.2.2. Parkinson’s Disease Data Set
The EEG data set of Parkinson’s patients was recorded at
Istanbul Medipol University Hospital in Istanbul. PD patients
were diagnosed according to the criteria of “United Kingdom
Parkinson’s Disease Society Brain Bank” (Daniel and Lees, 1993).
The Unified Parkinson’s Disease Rating Scale (UPDRS) (Lang
and S, 1989) was used in order to determine the clinical features
of PD; and the Hoehn-Yahr scale (Hoehn and Yahr, 1967) was
used to determine the disease stage. A total of 74 patients (ages
56 − 86, median of 74) and 22 matched control subjects (ages
54 − 89, median of 67) have here been analyzed. All patients
with PD were evaluated 60–90 min after their morning dose of
levodopa for the EEG recordings. EEG of all healthy controls
and Parkinson’s Disease patients were recorded in a dimly
isolated room. EEG was recorded according to 10-20 system with
Brain Amp 32-channel DC system machine from 32 different
electrodes. The EEG was recorded with a sampling rate of 500
Hz and with band limits of 0.01 − 250 Hz. All impedances were
kept below 10kohm and two earlobe electrodes (A1-A2) served
as reference electrodes.

2.2.3. Scalp (Epilepsy) Data Set
The CHB-MIT Scalp EEG data set is described in (Shoeb, 2009)
and is available for download at https://www.physionet.org/pn6/
chbmit/ (Goldberger et al., 2000). It consists of EEG recordings
from pediatric subjects (22 subjects, 5 males, ages 3 − 22, and
17 females, ages 1.5 − 19) with intractable seizures and free of
anti-seizure medication. Note that sub-windows free of seizures
are here analyzed alongside other groups’ control subjects. All
signals were sampled at 256Hzwith 23 sensors, located according
to the International 10-20 system. Note that Ref. (Shoeb, 2009)
provides no information about the eyes status while recording;
in what follows we suppose that all data correspond to an eyes
open resting-state condition. As seizures can be of short duration,
and for the sake of having time series of similar characteristics
across all data sets, only seizure segments longer than 30 s
have here been considered, for a total of 92 instances. The
same number of seizure-free segments, of equal duration, have
randomly been chosen.

2.2.4. Schizophrenia Data Set
This data set includes resting state EEG recordings for a set
of schizophrenia patients and matched control subjects, as
described in Olejarczyk and Jernajczyk (2017) and available
at http://dx.doi.org/10.18150/repod.0107441. The 14 patients
(7 males, 27.9 ± 3.3 years, and 7 females, 28.3 ± 4.1 years)
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FIGURE 3 | Evolution of the fraction of irreversible channels, as a function of the considered window length, for all control subjects. The left and right panels,

respectively, represent data for eyes closed and open resting states. Results here reported correspond to control subjects only, irrespectively of the name in the

label—which represents the name of the data set.

met International Classification of Diseases ICD-10 criteria for
paranoid schizophrenia (category F20.0). The 14 corresponding
healthy controls were 7 males, age of 26.8 ± 2.9 years, and 7
females, age of 28.7 ± 3.4. Fifteen minutes of EEG data were
recorded during an eyes-closed resting state condition. Data were
acquired at 250Hz using the standard 10-20 EEG montage with
19 EEG channels: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4,
T4, T5, P3, Pz, P4, T6, O1, O2. The reference electrode was
placed at FCz.

3. RESULTS

3.1. Time Irreversibility of Control Subjects
As a first approach, we calculated how the irreversibility of the
healthy (control) brain dynamics evolves as a function of the
length of the considered signal. Figure 3 reports the evolution of
the fraction of irreversible time windows, as a function of their
length—as described in section 2.1.3. Several interesting facts
ought to be highlighted.

First of all, all results are quite homogeneous across the
considered data sets. This suggests that specific elements, like
the used EEG machine, the number of channels or the recording
setup have little effect in the metric; and thus that brain
irreversibility is a robust property.

Secondly, it can be appreciated that the result is a
monotonically increasing value with a small slope; even for time
windows of 100 s, irreversibility is not detected in about 30% of
the cases. The underlying dynamics may thus be irreversible, but
a large amount of noise is likely masking such characteristic, so
that it can only reliably be detected using long time series. To
clarify this point, the left panel of Figure 4 reports the results
for the Parkinson’s disease and Schizophrenia data sets (in the
eyes closed condition), along with those of the logistic map for
different values of additive noise - as defined in section 2.1.4.
While the shapes seem prima facie equal, two important aspects
stand out. On one hand, while the irreversibility for the logistic
map grows almost linearly with the size of the time window, that
of the two EEG data sets seems to grow in a sub-linear way.
On the other hand, the behavior for very short time series is
very different, both between the two EEG data sets, and between

the EEG data sets and the logistic map—see the magnification
in Figure 4, right. The observed time series are thus the result
of a complex interplay between an irreversible dynamics and
observational noise.

We then analyzed differences in irreversibility between the
eyes open and closed conditions. Figure 5 reports the evolution
of the fraction of irreversible windows in the eyes open condition,
as a function of the fraction for the eyes closed one. Each graph
is constructed by searching, for a point of coordinates (x, y), the
minimum window length for which the fraction of irreversible
time series in the eyes closed condition is equal or greater than x;
then y is set equal to the fraction of irreversible time series in the
eyes open condition for that same window length. Points above
themain diagonal (dashed gray line) thus indicate that, for a same
window length, brain dynamics is more irreversible in the eyes
open condition.

The left and right panels of Figure 5 respectively report the
results corresponding to the motor imaging and Parkinson’s
disease data sets, i.e., the two for which both conditions were
available. In both cases the line is above the main diagonal,
indicating that the brain is more irreversible in the eyes open
condition. This is in agreement with the hypothesis that cognitive
activity is associated with irreversibility. Even at rest, leaving the
eyes open implies a larger amount of inputs to be processed, and
hence a higher activity and irreversibility.

3.2. Change in the Irreversibility Due to
Pathological Conditions
An interesting question is to understand how different
pathologies may affect the irreversibility of the brain, as the
latter may yield information about the effect of the former
on brain dynamics. Figure 6 reports on the evolution of the
irreversibility of patients, as a function of the corresponding
irreversibility in the control subjects (note that these graphs have
to be interpreted in a way similar to that of Figure 5).

In three of the four data sets, patients exhibit a lower
irreversibility, which is especially marked in the case of
schizophrenia. These pathologies thus seem to reduce the brain’s
ability to respond to stimuli; or in other words, make the brain
less prone to deviate from equilibrium. This is nevertheless not
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FIGURE 4 | Evolution of the fraction of irreversible channels, as a function of the considered window length, for the Schizophrenia and Parkinson’s disease data sets,

and for the synthetic noisy model (gray lines). From top to bottom, the four gray lines correspond to noise levels of σ = 0.63, 0.66, 0.69, 0.72. The left and right

panels respectively represent the whole results, and a zoom for short window lengths. In all cases, only control subjects have been considered.

FIGURE 5 | Comparison of the fraction of irreversible windows for eyes closed and open conditions, for the motor imaging (left panel) and Parkinson’s disease (right

panel) data sets. The red lines (right Y axes) depict the evolution of the log10 of the p-value of a binomial test, testing if both values are equal—also represented by the

gray diagonal line.

homogeneous: while the difference mainly appears for long time
series in the Parkinson’s disease and the schizophrenia cases,
this is not that marked in the case of the epilepsy. This seems
to indicate that the brain’s dynamical alterations in the two
former conditions are identifiable at long time scales, while ictal
events are more temporally local. Parkinson’s disease in the eyes
closed condition is the exception, displaying a small increase
in irreversibility (albeit with no statistical significance). This
suggests that, in this pathology, brain dynamics differs in the two
conditions, being the irreversibility only different in the eyes open
one. This effect may be the result of the visual misperceptions and
hallucinations characterizing this pathology, which may have a
lower impact in eyes closed conditions (Davidsdottir et al., 2005;
Shine et al., 2011).

We further study if these differences between control subjects
and patients are consistent across all frequencies, or are specific
to some bands. Note that such analysis is also required to exclude
that the irreversibility is just a spurious result coming from
artifacts or muscular movements. Toward this aim, Figure 7
depicts three cases: results for the broadband signal (as presented
in Figure 6), black lines; for signals filtered with a low-pass
filter at 50 Hz, blue lines; and for signals filtered with a low-
pass filter at 30 Hz, aqua lines. When the low-pass filter is
applied, a corresponding downsampling is also executed, in

order to avoid spurious slow dynamics that may bias the
irreversibility values.

Results strongly differ for the three data sets. Firstly, in
the case of schizophrenia, applying the filters yields a strong
reduction in the difference in irreversibility; on the other hand,
the opposite was seen in the case of the Parkinson’s disease
data set for eyes open, for which the difference between control
subjects and patients was substantially increased. Even stronger
is the effect of filtering in the case of epilepsy, in which case
not only the difference between control subjects and patients is
increased, but the difference in irreversibility even changed sign.
This suggests the presence of a complex relationship between
irreversibility, dynamics at different frequencies and pathologies.
In the case of schizophrenia, patients seem to suffer from reduced
irreversibility at high frequencies; while the opposite, i.e., a
marked lower reversibility mainly at low frequencies, arises in
Parkinson’s disease patients.

We finally analyzed how this irreversibility of brain dynamics
is spatially distributed throughout the brain in the three
pathological conditions here considered. Figure 8 reports the
average irreversibility value according to the EEG sensor, for the
broadband signal. This value was calculated by averaging the
irreversibility obtained for all window lengths, i.e., by averaging
the curves of Figure 3; it therefore represents an overview of
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FIGURE 6 | Comparison of the fraction of irreversible channels between the patients and the corresponding control subjects of the four considered data sets:

Parkinson’s disease (with eyes closed and open), Schizophrenia and epilepsy. The red lines depict the evolution of the log10 of the p-value of a binomial test, testing if

both values are equal—also represented by the gray diagonal line. *assumed state.

FIGURE 7 | Comparison of the fraction of irreversible channels between the patients and the corresponding control subjects of the four considered data sets:

Parkinson’s disease (with eyes closed and open), Schizophrenia and epilepsy. Black lines correspond to the broadband signals, as reported in Figure 6; blue and

aqua lines to the signals filtered with respectively a low-pass filter at 50 and 30 Hz. *assumed state.

the dynamics of the brain at all possible time scales. The four
right-most panels of Figure 8 further report the difference in
irreversibility between patients and control subjects—red shades
indicating a higher irreversibility in the former. In the case of
the Parkinson’s disease in eyes closed conditions, patients were
characterized by higher irreversibility in the frontal and occipital
regions, while this metric was lower in most other regions. In
all other cases, the drop in irreversibility characterizing patients
was more spread, and especially strong on a very extended scalp
region, spanning frontal, central and parietal regions.

3.3. Nature of Brain Irreversibility
As a final issue, we analyse the possible origin of the
observed irreversibility. As discussed in section 2.1, the statistical
significance of all presented results has been calculated through
the p-value of a two-sided binomial test; note that this is
equivalent to considering that all values composing the time
series are independent, and is thus equivalent to comparing
the irreversibility against randomly shuffled series. We explore
another possibility, i.e., the use of IAAFT surrogate time series,
which preserve linear autocorrelation and amplitude of the
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FIGURE 8 | Evolution of the average irreversibility by EEG channel in the three data sets corresponding to pathological conditions. Panels in the first and second

columns depict the fraction of irreversible windows per channel, the left (right) ones to control subjects (patients). The four right-most panels depict the difference

between the patients and the control subjects; positive values (red shapes) indicate a higher irreversibility in patients. *assumed state.

data—see section 2.1.5 for details. Comparing the results yielded
by both approaches allows to partly understand the nature
of the observed irreversibility. A statistically significant result

in the binomial test suggests the presence of any kind of
irreversibility, or of a weak version of it. If such irreversibility
is maintained in the surrogates, it is possibly caused by the
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FIGURE 9 | Comparison of the fraction of irreversible channels, when the statistical significance is calculated against shuffled time series (black lines) and IAAFT

surrogates (blue dashed lines). The red dotted lines (right axes) depict the evolution of the standard deviation of the irreversibility observed in the surrogated time

series. *assumed state.

linear autocorrelation structure of the time series—as this
property is maintained by the IAAFT. On the other hand, if the
irreversibility is reduced in the surrogate signals, then the linear
autocorrelation can be discarded as a cause—hence indicating a
strong irreversibility.

Figure 9 reports the evolution of the irreversibility both in the
original time series (black lines) and in the IAAFT surrogates
(blue dashed lines). A strong heterogeneity in results can be
observed. On one hand, time series in the motor imagery and
schizophrenia data sets display a similar or lower irreversibility
both in the raw time series and in the surrogate ones, thus

indicating that its origin resides in the autocorrelation structure.
On the other hand, all cases of the Parkinson’s Disease data
set can be associated with strong irreversibility, as this is lost
in the surrogates. An intermediate result is finally observed
in the case of epilepsy: while inter-ictal windows are more
irreversible, ictal ones are characterized by a larger distance from
surrogates’ irreversibility; this suggests that ictal activity is less
irreversible in a weak sense, but more irreversible in a strong
sense with respect to inter-ictal activity, as already suggested in
the literature (Van der Heyden et al., 1996; Schindler et al., 2016;
Martínez et al., 2018).
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4. DISCUSSION AND CONCLUSIONS

We used a permutation-entropy based metric to quantify the
time-reversal symmetry of spontaneous EEG activity from three
groups of patients under two experimental conditions (eyes
open and closed). Our results show that resting brain activity is
generically time irreversible, and that irreversibility is modulated
by simply opening or closing eyes, and altered in a pathology-
specific way by psychiatric and neurological disease.

The presence of resting time-reversal asymmetry of electrical
activity is consistent with a vision of the brain as a generically out-
of-equilibrium system. Our results indicate that at sufficiently
long time scales the healthy brain may in fact be operating close
to a NESS (Livi, 2013). Moreover, insofar as it has the shape
of Equation (1)’s fluctuation relation, the proposed asymmetry
quantifier provides information as to the system’s distance
from equilibrium. Equilibrium systems fulfill fluctuation-
dissipation relations (FDRs). Translated in terms of neural
activity, these relations would reflect a substantial equivalence
between spontaneous and task-induced brain fluctuations, so
that the presence of FDRs would considerably simplify the
characterization of the latter, by allowing to base it merely on
the correlation properties of the former (Papo, 2013a). While
the brain as any other biophysical system is not expected to
fulfill such equilibrium relations, the extent to which these are
violated can nonetheless provide important information on the
relation between resting and task-induced activity. The most
intuitive way to probe FDR violations would in general consist in
comparing correlations of the unperturbed systemwith stimulus-
or generally task-induced ones (Martin et al., 2001). However,
this method has various shortcoming: (1) it requires separate
measures of the correlation and response functions, the latter
relying on external perturbations; (2) external perturbations, the
effects of which are often difficult to control in a neuroscience
context, only represent exogenously promoted cognitive or
motor functions; (3) there is no way that perturbations are
small enough to guarantee that the measurements are made
within the linear response regime. An alternative method to
quantify a NESS involves evaluating the property of detailed
balance between microstastes of an appropriately coarse-grained
mesoscopic representation of the system’s dynamics (Rupprecht
and Prost, 2016). The proposed method is in some sense a
measure of detailed balance violation (Zanin et al., 2018), and
provides the time-scale-specific magnitude of the distance from
equilibrium. Finally, while the coarse-graining implicit in both
EEG data and in our analyses lose parts of the genuine physical
entropy production of the underlying system, the proposed time-
irreversibility quantifier can nonetheless be thought to give a
lower bound of the system’s true one (Seifert, 2019).

If time-reversal symmetry reflects a genuine indicator of
brain activity efficiency, one would expect that it would vary in
a task- and condition-specific manner. Our results show that
irreversibility can be modified by an experimental condition as
simple as opening and closing eyes (see Figure 5), consistent
with an entropy production interpretation of observed time-
reversal symmetry. Our results also generally point to decreased
irreversibility in pathology, the lowered proneness to depart from

equilibrium being most conspicuous in the schizophrenia group
(see Figure 6). Pathological dynamics seems reminiscent of non-
equilibrium systems recovering equilibrium properties at certain
scales (Egolf, 2000). In addition, irreversibility patterns showed
some degree of pathology-specificity, particularly conspicuous
at faster time scales (see Figure 3). An important general
message is then that irreversibility induces a time scale,
identified by the transition to irreversibility, both in healthy
activity and in pathology. Furthermore, the scales at which
irreversibility departs from the healthy pattern also showed
some pathology-specificity.

Time-reversal symmetry alterations showed pathology-
specific frequency content (see Figure 8). This may indicate that
the irreversibility pattern consistently seen in healthy controls
across different data sets analyzed in our study may result from
a specific composition of the broad-band frequency spectrum.
Conversely, this also suggests that frequency-specific dysfunction
associated with various pathologies (Lee et al., 2001; Başar and
Güntekin, 2008; Oswal et al., 2013; Roach et al., 2013; Little
and Brown, 2014), usually seen from an exquisitely dynamic
view-point, may ultimately affect basic aspects of normal
brain efficiency.

The results of our tests using surrogate time series show a
condition-specific dynamical etiology of time reversibility. In
particular, in some pathologies, irreversibility may stem from
changes in local linear autocorrelations, while in others it may
be a consequence of a different dynamical mechanism, the exact
nature of which can only be found by surrogate testing of a
different nature from the one used in the present study. Time
irreversibility in the data may be caused by some trivial static
non-linearity rather than by genuine non-linear dynamics of the
system generating the EEG (Van der Heyden et al., 1996). In
our study, the role of additive noise was systematically examined
and it was showed to decrease as expected irreversibility (see
Figure 4). On the other hand, when reversibility can be rejected,
a static transformation of a linear Gaussian random process
can be excluded as an appropriate model for the time series
(Cox et al., 1981). Evidence abounds for weak non-linearity in
multichannel EEG (Pezard et al., 1994; Rombouts et al., 1995)
and in the interdepencies between EEG channels (Paluš, 1996;
Breakspear and Terry, 2002). However, the role of non-linearity
per se in irreversibility may be a complex one, as suggested
by increased nonlinearity (Pezard et al., 2001) but decreased
irreversibility in Parkinson’s disease in the eyes open (though
not in the eyes closed) condition. The frequency-specificity of
the irreversibility patterns in the various pathologies considered
in the present study may stem from pathology-specific non-
linear features, e.g., bistability and non-diffusivity, associated
with non-Gaussian statistics appearing at certain scales of the
underlying dynamics (Freyer et al., 2009). Again non-Gaussianity
and irreversibility may have a complex, possibly scale-dependent
relationship, as the equilibrium systems can exhibit non-
Gaussian fluctuations, and conversely non-equilibrium systems
can exhibit Gaussian fluctuations.

Finally, the topographically distributed nature of changes in
irreversibility with respect to healthy controls would point to
diffuse impairment, even for pathologies with localized etiologies
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such as Parkinson’s disease. Although scalp topographical results
should always be interpreted with caution, higher fronto-
posterior irreversibility values in Parkinson’s disease may point
to compensatory mechanisms (Blesa et al., 2017). Altogether,
our results may suggest that pathology may change the dynamic
process underlying brain dynamics, pushing activity not only
toward qualitatively different statistical and dynamical regimes
(Buiatti et al., 2007; Papo, 2014), but also toward different
thermodynamical ones. However, given the role of connectivity
and network topology in brain physiology (Bullmore and Sporns,
2009; Bashan et al., 2012; Bartsch and Ivanov, 2014; Bartsch
et al., 2015; Liu et al., 2015; Ivanov et al., 2016; Lin et al., 2016),
appraising the overall significance of time-reversal symmetry in
brain functioning will require understanding the properties of
their spatial distribution.

In conclusion, irreversibility may represent a signature of
normal functioning andwith the potential to highlight pathology.
More generally, the evaluation of irreversibility by comparing
the information content of time-reversed processes provides a
bridge between dynamics, information and thermodynamics of
the brain, and may ultimately help understanding fundamental
questions (but otherwise experimentally hard to address) such as
information erasure, which is connected to entropy production
through Landauer’s principles (Gaspard, 2015). The properties
and significance of time scales, the scale- and sampling
rate-dependence, etiology, sensitivity, and specificity of time
irreversibility as well as the topology across the cortical space
will have to be examined with larger andmore controlled samples
before their clinical significance is corroborated.
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