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Octopus vulgaris, well-known from temperate waters of the Mediterranean Sea and a well-
cited model species among the cephalopods, has large eyes with which it scans its 
environment actively and which allow the organism to discriminate objects easily. On cursory 
examination, the single-chambered eyes of octopus with their spherical lenses resemble 
vertebrate eyes. However there are also apparent differences. For example, the retina of the 
octopus is everted instead of inverted, and it is equipped with primary rhabdomeric 
photoreceptors rather than secondary ciliary variety found in the retina of the vertebrate eye. 
The eyes of octopus are well adapted to the habitat and lifestyle of the species; the pupil 
closes quickly as a response to sudden light stimuli mimicking a situation in which the octopus 
leaves its den in shallow water during daytime. Although the many general anatomical and 
physiological features of octopus vision have been described elsewhere, our review reveals 
that a lot of information is still missing. Investigations that remain to be undertaken include 
a detailed examination of the dioptric apparatus or the visual functions such as brightness 
discrimination as well as a conclusive test for a faculty analogous to, or in lieu of, color vision. 
For a better understanding of the octopus eye and the functions mediated by it, we suggest 
that future studies focus on knowledge gaps that we outline in the present review.
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INTRODUCTION

If you  have ever encountered an octopus, the way the animal looks at you  is striking; you  feel 
as if you  are being scanned. The eyes are one of the prominent characteristics of the octopus 
but also of cephalopods in general. Already from outside, the eyes appear to be  special. They 
are usually rather large with a diameter of approximately 20  mm (see section “Eye Size and 
Ocular Dimensions”), and their pupils often have conspicuous shapes (see Figure  1 and, for 
example, photos in Douglas, 2018). If one takes a closer look at eye morphology, the coleoid 
cephalopod eyes attract attention, as parallels can be  drawn between the design of the camera 
type eyes of these molluscs and the design of vertebrate eyes, particularly those of fish (von 
Lenhossék, 1894; Packard, 1972). At the neuronal level, large parts of the cephalopod brain 
are dedicated to the processing of visual information as indicated by the size of their optic 
lobes (Young, 1960, 1971; Wells, 1966a; Maddock and Young, 1987).

In numerous studies on the eyes of many of the approximately 800 known species of cephalopods 
(Jereb and Roper, 2005, 2010; Jereb et  al., 2014), we  have learned a lot about specialized eye 
designs, for example, the pinhole eye of Nautilus (Hensen, 1865; Griffin, 1900; Wiley, 1902; 
Merton, 1905; Hurley et  al., 1978; Muntz and Ray, 1984; Muntz, 1991; Barber, 2010), the 
asymmetrical eyes of Histioteuthis (Denton and Warren, 1968; Young, 1975; Wentworth and 
Muntz, 1989; Thomas et  al., 2017) and the largest eyes on Earth, found in Architeuthis and 
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Mesonychoteuthis (Nilsson et  al., 2012), just to mention a few 
examples. In addition to reports regarding peculiar eye designs, 
researchers have worked on many aspects of the visual system 
in more common cephalopod genera such as Octopus, Eledone, 
Sepia, and Loligo. Young (1962a) pointed out basic similarities 
among the eyes of these genera, but at the same time, mentioned 
important differences between them. Because of these apparent 
differences, neither generalizing conclusions from one species 
to another, nor combining data from different species to derive 
overarching conclusions should be  the method of choice.

This review aims to summarize the present knowledge regarding 
the eye and vision of a well-studied cephalopod, the common 
octopus, Octopus vulgaris. Thus, when we are referring to octopus 
in the text, data collected with Octopus vulgaris are considered; 
if data from other cephalopod species are included for comparison, 
the species name is indicated. We  set out to collect information 
on vision in the common octopus as it is a prominent model 
species among cephalopods and has probably been the most-
studied cephalopod species for more than 150  years. Especially 
in the mid-20th century, many studies were designed to unravel 
the discriminatory and cognitive abilities of this species using 
behavioral tests with visual stimuli (for example, see work by 
Boycott, Mackintosh, Messenger, Sutherland, Wells, and Young 
such as Boycott and Young, 1956; Young, 1956; Sutherland, 1957; 
Wells, 1960; Mackintosh, 1963; Messenger, 1968a). However, our 
understanding of vision in octopus is still patchy and has never 
been summarized specifically for this species. After a short, 
general introduction to Octopus vulgaris in general, it is the 
aim of the current review to gather, to the best of our knowledge, 
all information available on the eye of the common octopus. 
The collection of references can then form the basis for future 
investigations of vision and the visual faculties of this species. 
Accordingly, we  will mention such future avenues in the text.

GENERAL INTRODUCTION TO 
OCTOPUS VULGARIS

Octopus vulgaris, first described by Cuvier in 1797, belongs to 
the family Octopodidae encompassing more than 200 species. 
The genus Octopus constitutes a “catchall” genus (Jereb et  al., 
2014) for all species that possess two rows of suckers on the 
eight arms and an ink sac. The distribution of Octopus vulgaris 

sensu stricto (Jereb et  al., 2014) covers the Mediterranean Sea, 
as well as the central and north-east Atlantic Ocean. The common 
octopus is said to be  nocturnal (Woods, 1965; Altman, 1966; 
Kayes, 1974; Jereb et  al., 2014), but it has been seen to shift 
its activity phase, for example in the presence of prey or predators 
(Meisel et  al., 2013), and thus some studies report crepuscular 
or even diurnal activity (Mather, 1988; Meisel et al., 2003, 2006). 
In the presence of one of its many predators (Sanchez et  al., 
2015), the soft-shelled octopus either hides in dens, camouflages 
to the background with the help of a sophisticated system of 
pigment-filled chromatophores, electron-dense leucophores, and 
reflecting iridophores, or exhibits distinct behavioral displays 
(Packard and Sanders, 1971). The dens are inhabited only 
temporarily for a couple of days or weeks (Kayes, 1974; Mather 
and O’Dor, 1991). Octopus uses natural crevices or holes as 
hiding places or accumulates rocks and shells to build its own 
den. As a bottom feeder, foraging often seems to be  tactile 
(Jereb et  al., 2014), involving exploration of the surroundings 
with its arms, in search for crustaceans, fish, shelled molluscs 
or polychaetes (Mather, 1991; Boyle and Rodhouse, 2005; Mather 
et al., 2012; Sanchez et al., 2015). In addition, visual and chemical 
cues are most likely used to find prey (Boyle and Rodhouse, 
2005). Octopus vulgaris is solitary, and the sexes only meet 
during mating (Hanlon and Messenger, 2018) when the male 
transfers spermatophore packages with its heterocotylus, an 
enlarged sucker on one of the arms, into the mantle cavity and 
oviduct of the female. At the end of the life cycle, the female 
lays 100,000–500,000 eggs bound together and glued to the 
ceiling of a den or to a rock. The female stays with the eggs 
for the duration of development, which can last up to 5 months, 
continuously caring for and defending the eggs. The female 
octopus does not feed during this period, digesting its own 
musculature in this last phase of its life (Jereb et  al., 2014; 
Hanlon and Messenger, 2018). As a consequence, the female 
dies shortly after the eggs hatch. The 1–2  mm sized transparent 
hatchlings, called paralarvae, undergo a planktonic phase mostly 
in shallow (i.e., pelagic) waters that can last weeks to months 
before they settle on the sediment. The subsequent adult life 
stage can last up to 2  years during which octopus adopts a 
general benthic lifestyle but is still commonly found in pelagic 
waters. Specimens of Octopus vulgaris can reach a mantle length 
of up to 250  mm, a total length of over 1  m, and a body 
weight of more than 2  kg (Jereb et  al., 2014).

FIGURE 1 | Pupil of Octopus vulgaris. (A) Constricted horizontal slit pupil in bright light, (B) intermediate pupil size, and (C) fully dilated pupil in dim light conditions.
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Reader interested in the biology of cephalopods, including 
Octopus vulgaris, are referred to Hanlon and Messenger 
(2018), or to Jereb et al. (Jereb and Roper, 2005, 2010; 
Jereb et  al., 2014, 2015).

EYE SIZE AND OCULAR DIMENSIONS

Often, the eye of Octopus vulgaris (Figure  2) is described as 
large. In several studies, external eye dimensions are given. 
Beer (1897) measured an eye length (most likely axial eye 
length) of 17  mm in an octopus individual weighing 607  g. 
Additionally, Hanlon and Messenger (2018) documented an 
eye diameter of 20  mm in an individual weighing 205  g. Both 
values are within the range of eye diameters of 15–20  mm 
given by Fröhlich (1914a) for Eledone moschata, Octopus 
macropus, and Octopus vulgaris. According to Packard (1969), 
a really large octopus can have an eye with a diameter larger 
than 20  mm; however ‘really large’ is not further specified by 
this author. For comparison, the eyes of humans are, on average, 

24  mm in diameter (Augusteyn et  al., 2012). Given that adult 
humans weigh far more than an octopus, the octopus indeed 
has a large eye relative to body size/mass. The octopus eye is 
large even when compared to a nocturnal bird such as the 
tawny owl (Strix aluco), which weighs 400–800  g, and has an 
eye diameter of 23–29  mm (Brooke et  al., 1999).

Beside external eye dimensions, no information on internal 
parameters such as ocular dimensions, radii of curvature, 
refractive indices or absorption coefficients of ocular media 
is available for octopus. These data would be  required in order 
to develop detailed and informative optical models of the eye 
of octopus to further increase our understanding of how and 
what the octopus sees.

VISUAL FIELDS AND EYE MOVEMENTS

The eyes of octopus are placed laterally and can be  moved 
independently, with the eye axes occasionally deviating by up 
to 180 degrees (Heidermanns, 1928). To date, no measurements 
of visual field size are available for this species. From the eye 
placement of octopus, one could assume that octopus possesses 
a small binocular visual field, to the front and possibly to the 
back; however, Budelmann et  al. (1997) dispute the existence 
of a binocular field in octopods. In any case, octopus certainly 
has large monocular visual fields, the space in which objects 
can be  seen with one eye. This is consistent with the animals 
watching or tracking objects preferable with one eye 
(Heidermanns, 1928; Muntz, 1963; Byrne et  al., 2002, 2004). 
The size of the monocular visual field is likely similar to that 
of Sepia officinalis. Model calculations in Sepia revealed that 
the visual field is limited by pupil size and that it is much 
smaller (Schaeffel et  al., 1989) than the 177 degrees estimated 
by Messenger (1968b) for the horizontal plane.

The octopus can modify the space it can oversee by 
retracting and bulging out its eyes, or by rotational eye 
movements. The rotational eye movements that can turn 
the eye up to 80 degrees sideways in either direction 
(Budelmann and Young, 1984) are mediated by four oblique 
muscles that pass halfway around the eyeball. In total, each 
octopus eye has seven extra-ocular muscles, each innervated 
by a separate nerve (Glockauer, 1915; Budelmann and Young, 
1984). In contrast, decapod cephalopods have up to 14 eye muscles 
that are innervated by only four nerves (Glockauer, 1915; 
Budelmann and Young, 1993).

Octopus also shows reflexive eye movements. When stimulated 
by a large field vertical grating rotating on an optokinetic 
drum, the animals perform compensatory eye, head, and body 
movements (Packard, 1969).

Future studies of the visual fields of octopus are highly 
desirable, particularly those that provide measurements of the 
putative binocular visual field and evaluate its implications for 
binocular depth perception, the monocular visual field, and 
the dynamic visual field, taking eye movements into account. 
Regarding eye movements, it remains to be determined whether 
the octopus can also turn its eyes upwards and downwards, 
and if so, to what degree.

FIGURE 2 | Schematic of the eye of Octopus vulgaris (longitudinal vertical 
section). Light falling on the eye of octopus first hits the cornea (C). Beyond 
the cornea, the light passes the anterior chamber and the pigmented mobile 
iris (IR) before it is refracted by the spherical lens. The lens, composed of an 
anterior (AL) and a posterior part (PL) separated by a septum (S), is 
suspended by the ciliary body (CB). Finally, the light hits the everted retina (R) 
in the back of the eye. A detailed description of the ocular structures is given 
in the text. The figure was adapted from frozen sections of an octopus eye 
and from Figure 1 in Budelmann (1994) and Figure 5 in (Wells, 1966b) 
displaying an eye of Octopus spec. Scale 10 mm.
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EYE LID AND CORNEA

As is likely the case with all octopods, octopus possesses a 
ring-shaped muscular skin fold or bulge around the eye that 
can close in a manner comparable to an eye lid (von Lenhossék, 
1894; Magnus, 1902). This eye lid-like structure closes over a 
cornea (Figure  2) which is hardly visible in the living octopus. 
This cornea has also been referred to as pseudo-cornea (Schöbl, 
1877) or pseudo-corneal fold (Amoore et  al., 1959). According 
to previous studies (Beer, 1897; Magnus, 1902), which are 
supported by our own observations, the cornea is not a component 
of the eye, meaning that the cornea cannot be extracted together 
with the underlying ocular structures. Moreover, it has a dorsal 
opening which brings the anterior chamber — the compartment 
between cornea and lens — in contact with the surrounding 
sea water (Amoore et  al., 1959; Wells, 1966b); although this 
finding is not undisputed. As expected, the fluid within the 
anterior chamber has the same sodium concentration as seawater, 
however the potassium concentration has been found to be higher 
(Amoore et  al., 1959).

A detailed analysis of the cornea is required to determine 
the functional role of the cornea in the eye of the octopus. 
Interesting insight in this often neglected structure could also 
be  obtained by studying the histological fine structure of the 
cornea or its development during ontogeny.

PUPIL AND IRIS

One of the most prominent features of the octopus eye is its 
pupil (Figure  1). The cephalopod pupil is mobile, in contrast 
to the pupil of fishes, excluding the elasmobranchs (Douglas, 
2018). The pupil of octopus is circular in darkness (Figure 1C), 
while in bright light, it constricts to a horizontal slit (Figures 1A,B) 
corresponding to the orientation of the central stripe of increased 
photoreceptor density on the retina (Muntz, 1977; and see section 
“Retina and Visual Function”). Compared to other cephalopods 
that can have U- or W-shaped pupils (e.g., cuttlefish), a slit-
shaped pupil is a rather simple pupil design (Douglas, 2018).

In general, the octopus pupil adapts the eye to changes in 
ambient light. The advantage of the pupillary reaction is that 
it is faster than the alternative adaptation mechanisms which, 
in octopus, are pigment migration and the contraction/
enlargement of the photoreceptors (Babuchin, 1864; Young, 
1963). Pupil dynamics were recently examined in an octopus 
by Soto (2018). The individual studied, with a mantle length 
of approximately 6.5  cm, had a pupil area of 33  mm2 when 
the pupil was fully dilated. Pupil area decreased to approximately 
4  mm2, or 12% of the dark-adapted pupil area, when the eye 
was exposed to bright light. Constriction of the octopus pupil 
was thus similar to or a little weaker than in other cephalopod 
species (Douglas et al., 2005; Bozzano et al., 2009; Matsui et al., 
2016) such as Sepia officinalis or Eledone cirrhosa that constrict 
their pupils to 3% of the maximal area (Douglas et  al., 2005). 
It took the octopus pupil 0.5–1.3  s to reach half maximum 
constriction defined as the t50 value. Most other cephalopod 
pupils examined so far also constricted quickly upon light 

exposure with t50 values ranging from 0.3 to 3  s (Douglas 
et  al., 2005; McCormick and Cohen, 2012; Matsui et  al., 2016). 
Thus, these pupils are adapted to fast light changes also occurring 
in the habitat of octopus, for instance when they are leaving 
the den in shallow water during daytime hours. In contrast, 
pupil constriction took 90 s in Nautilus pompilius (Hurley et al., 
1978), a species that is most likely not experiencing drastic 
variations in ambient light in its habitat. The same probably 
holds true for Japetella diaphana, a deep sea octopus, whose 
pupil takes approximately 6  s to constrict (Douglas, 2018). In 
addition, the range of light intensities to which the pupil of 
Octopus vulgaris reacts with intermediate pupil sizes is narrow 
(Hess, 1905; Soto, 2018); the pupil already fully constricts in 
response to a luminance of approx. 20  cd/m2.

Axial light has a stronger effect on pupillary dilation than 
light from above (Soto, 2018), as described generally for 
cephalopods by Hess (1909, 1910) or McCormick and Cohen 
(2012). This “shadow effect” of the pupil for light from above 
might result in a more constant intensity of the retinal image 
than the illumination in the natural environment, in which 
most light is coming from above; this effect has so far only 
been described for Sepia officinalis (Mäthger et  al., 2013).

Pupil dilation seems highly variable and individual (Magnus, 
1902), and is also affected by factors other than ambient 
illumination (Weel and Thore, 1936). Octopus might constrict 
its pupil to camouflage the eye, allowing the animal to blend 
into the substrate, and the dilated pupil could serve as intra-
specific deimatic signal, making the animal appear larger and 
more threatening to potential predators (Douglas, 2018).

Octopus does not show a consensual pupil response (Magnus, 
1902; Weel and Thore, 1936). If only one eye is illuminated, 
only the pupil of this eye constricts, not the pupil of the 
non-illuminated eye. A non-consensual pupil response is adaptive 
in a species that has laterally placed eyes and watches objects 
predominantly with one eye (Heidermanns, 1928; Muntz, 1963; 
Byrne et  al., 2002, 2004).

The octopus usually keeps the pupil horizontal, a reaction 
mediated by the statocysts that are required for the animal 
to maintain proper body and eye orientation (Boycott, 1960; 
Wells, 1960; Boycott et al., 1965). Only if the pupil is horizontal, 
and thus the orientation of the retinal receptors is fixed relative 
to the external world (see section “Retina and Visual Function”), 
the octopus is able to discriminate stimuli differing in orientation 
(Boycott and Young, 1956; Sutherland, 1957, 1963a; Wells, 1960; 
Young, 1960). This suggests that visual and proprioceptive input 
is not integrated in the brain.

The octopus pupil is bounded by the iris. According to Hess 
(1909), the cephalopod iris is not a structure of the inner eye 
but instead lies in form of a lobe in front/on top of the posterior 
chamber (Figure 2). The iris consists of five cell layers (Froesch, 
1973): the external epithelium, a chromatophore and iridocyte 
layer, a layer of muscles and collagen strands, and the pigment 
epithelium. The chromatophores and the pigment epithelium 
absorb, while the iridophores reflect light, thereby changing 
the appearance of the eye, for instance when a threatened 
animal displays the dark eye bar over the eyes (Packard and 
Sanders, 1971). The muscles found in the iris are most likely 
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sphincters, however, Froesch (1973) was unable to distinguish 
between sphincter and dilator. Brain regions and nerves involved 
in the pupillary reaction were described by Magnus (1902) as 
well as Weel and Thore (1936).

Soto (2018) described the pupillary reactions of only one 
octopus individual. It would be  interesting to analyze more 
individuals to assess whether the data already obtained are 
representative for the species; in this case, the non-consensual 
pupil reaction could also be quantified. A future challenge might 
also be  to further characterize the role of the pupil shape in 
modulating optical properties or for camouflaging the eye. 
Regarding the latter, an interesting study of pupil shape-mediated 
camouflage in skates was recently published (Youn et  al., 2019).

LENS AND ACCOMMODATION

At first glance, the octopus lens, the main refracting structure 
within its eye, seems to be  spherical (Figure  2). However, as the 
lens of Octopus vulgaris has not been measured, it might be slightly 
ellipsoidal, as is the case in other cephalopods (Sivak, 1982, 1991; 
Sroczynski and Muntz, 1985; Sivak et  al., 1994). Fishes also have 
spherical lenses: however, in contrast to fish, the lens of octopus 
consists of an anterior and a posterior part divided by a septum 
(Figure  2; Budelmann, 1996). Each component is comprised of 
onion-like layers (Budelmann et  al., 1997).

The lens develops from the lentigenic body, called “corpus 
epithelia” in early studies (Arnold, 1967). The cells of the 
lentigenic body are characterized by their larger size, prominent 
nuclei, intensely stained nucleoli, and cytoplasmic RNA. The 
lentigenic body lies in the front of the optic vesicle. Fine 
cytoplasmic processes of the lentigenic body form the lens 
primordium, which increases in size through the addition of 
further lentigenic processes to the surface (Arnold, 1967). 
Studies of the octopus lens have so far mainly focused on 
lens development and lens proteins (Arnold, 1967; Bon et  al., 
1967; Dohrn, 1970; Brahma, 1978) with the aim of understanding 
the convergent evolution of cephalopod and vertebrate lenses.

Beer (1897) examined accommodation in numerous cephalopod 
species including Octopus vulgaris and concluded that the octopus 
eye can, indeed, accommodate or adjust its focus. According to 
Beer, the octopus is myopic or short-sighted, in its resting state; 
thus its eyes are well-adapted to seeing objects nearby. Beer found 
that when the eye was electrically stimulated, refraction changed 
to a status close to emmetropia i.e., normal-sightedness. This 
change was not accompanied by a change in the curvature of 
the lens, but by a positional change as in fish (Land and Nilsson, 
2002): the lens moved closer to the retina. The retraction of the 
lens was caused by the contraction of a ring-shaped muscle at 
the equator of the bulbus which is firmly associated with the 
ciliary body (Figure  2) that is a section of the uvea and serves 
to suspend the lens. Upon contraction, the ciliary body and lens 
are pulled against the retina. A prerequisite for these movements 
is that the eye bulbus of octopus is very soft and flexible.

Beer (1897) also assumed a myopic resting refractive state 
for Sepia officinalis. However, retinoscopic measurements in 
Sepia officinalis revealed emmetropia or slight hyperopia (Schaeffel 

et  al., 1999). In the latter study, it was also speculated that 
the accommodation mechanism in Sepia involves the lens 
moving laterally, thus perpendicular relative to the pupillary 
axis of the eye. It is likely that new investigations of visual 
accommodation in octopus would also reveal a resting refractive 
state close to emmetropia. In general, octopus might not need 
elaborate accommodation abilities as its spherical lens with a 
short focal length, in conjunction with long receptor cells (see 
section “Retina and Visual Function”) most likely provide a 
large depth of focus (Budelmann et  al., 1997).

There are a number of open questions related to the octopus 
lens, beginning first with the previously mentioned spherical 
shape of the lens. The second question relates to ocular 
transmittance. According to Denton and Warren (1968), octopus 
lenses should absorb ultraviolet (UV) light as octopus live close 
to the surface, whereas cephalopods living in the deep sea seem 
to have transparent lenses. However, this aspect needs to be studied 
in greater detail, as the statement by Denton and Warren (1968) 
is in contrast to a note by Hess (1910) in his work regarding 
the lenses of Eledone and Sepia which, according to his 
measurements, do not absorb light of any wavelength. As no 
details of the measurement procedure are given by Hess, we must 
assume that he  was only able to measure in the visible part 
of the spectrum. Thus his note has to be  treated with caution.

Third, very little is known about the optical properties of 
the lens of octopus. According to a side note in Sutherland 
(1963b), the lens is not astigmatic, thus the different meridians 
do not possess different refractive power. Most likely, it possesses 
a graded refractive index that compensates for longitudinal 
spherical aberration, such that axial and non-axial light rays 
are focused in the same focal plane, as in Octopus pallidus 
and Octopus australis (Jagger and Sands, 1999) or with some 
residual spherical aberration as in other cephalopod lenses 
(Sroczynski and Muntz, 1985, 1987; Sivak, 1991; Sivak et  al., 
1994; Kröger and Gislen, 2004; Sweeney et  al., 2007); the lens 
of Illex illecebrosus seems to be  overcorrected for spherical 
aberration (Sivak, 1982). In contrast to spherical aberration, 
the lenses of Octopus spec. do not seem to be  corrected for 
chromatic aberration (Heidermanns, 1928; Jagger and Sands, 
1999). In this regard, the nature of chromatic aberration — 
that is, a condition in which light of different wavelengths is 
focused differently — has to be  re-evaluated in the context 
of color vision (see section “Visual Pigment and Color Vision”).

Finally, regarding the development of the split cephalopod lens, 
it is still unknown how the growth of the two components is 
coordinated. This question was already posed by Jacob and Duncan 
(1981) in the case of Sepiola atlantica, in which the anterior and 
posterior part of the lens are not closely electrically coupled. 
These authors also suggested studying whether the anterior and 
posterior halves of the lens are built from the same lens proteins.

RETINA AND VISUAL FUNCTION

Although the eyes of vertebrates and coleoid cephalopods are 
similar in many aspects (Packard, 1972), the retinal designs 
of these two animal groups differ drastically. Cephalopods have 
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everted retinae with the rhabdomeric photoreceptors pointing 
towards the light (Fröhlich, 1914a) in contrast to the inverted 
retinae with ciliary photoreceptors in vertebrates. Moreover, 
in contrast to the multilayered vertebrate retinae, cephalopod 
retinae mainly contain the photoreceptors. Cephalopod 
photoreceptors are primary receptor cells, each with its own 
axon, whereas the vertebrate photoreceptors are secondary 
receptor cells derived from epithelial cells. The axons of octopus 
photoreceptors project directly to the large optic lobes, where 
the visual information is processed (Young, 1960, 1971; Wells, 
1966a; Maddock and Young, 1987). In vertebrates, the processing 
of the visual information already begins in the inner retina, 
before visual signals pass into the brain via the optic nerve.

We will now describe the retina of Octopus vulgaris in 
detail (Figure  3). A limiting membrane shields the retina 
towards the posterior chamber. The limiting membrane might 
be  a secretion of the supporting cells (von Lenhossék, 1894) 
that lie between the rhabdoms in the distal retina; there are 
about as many supporting cells as rhabdoms (Young, 1963).

The retina itself is densely packed with photoreceptors; their 
density is highest in a central horizontal stripe (Young, 1960, 1962b, 
1963, 1971). At its distal end, oriented towards the light, each 
photoreceptor carries two rhabdomeres facing opposite sides. Four 
rhabdomeres belonging to four photoreceptors form a square 
rhabdom (Figure  3), which is analogous to the rhabdom of 
arthropods. The square arrangement of the rhabdoms is very 
regular, although there are also some cells which are particularly 
small that are not organized in arrangements of four (Young, 
1963). Despite this very regular receptor arrangement, as well as 
corresponding regular distributions of the dendrites in the plexiform 
layer in the optic lobe (Young, 1960), the octopus is only able to 
discriminate stimuli differing in orientation (Boycott and Young, 
1956; Sutherland, 1957, 1963a; Wells, 1960; Young, 1960) when 
the eye is oriented such that the pupil is horizontal, that is when 
the statocysts are functioning normally (Boycott, 1960; Wells, 1960; 
Boycott et  al., 1965). The regular receptor arrangement plays an 
important role for the polarization sensitivity of the eye of octopus 
(see section “Dichroism of the Retina and Polarization Sensitivity”).

The two rhabdomeres of each photoreceptor are separated by 
screening pigment in the cell body (Figure 3). Additional pigment 
is found in the processes of the supporting cells between the 
distal segments of the photoreceptors. The migration of this 
screening pigment to the bases/tips of the photoreceptor and 
perhaps also the supporting cells (Babuchin, 1864; Young, 1963), 
in combination with enlargement/contraction of the photoreceptors 
and the constriction/dilation of the pupil (see Figure  1 and 
section “Pupil and Iris”), serves to dark- or light-adapt the eye. 
Pigment migration does not seem to be uniformly fast throughout 
the entire retina; in the photoreceptors within the central stripe, 
which have less pigment than the cells in other retinal regions 
(Young, 1962b), pigment migration is slower during light adaptation, 
but faster during dark adaptation than in the remainder of the 
retina (Hess, 1905; Young, 1963).

In Octopus fangsiao (O. ocellatus), dopaminergic efferents 
from the optic lobe seem to cause screening pigment migration 
during the dark adaptation process (Gleadall et  al., 1993). In 
O. vulgaris, this has yet to be  studied.

FIGURE 3 | Schematic diagram of the retina of Octopus vulgaris. A limiting 
membrane (LM) shields the retina towards the posterior chamber. In the distal 
part of the retina are found the distal segments (DS) of the photoreceptors and 
supporting cells (SC). Pigment granules (PI) can be found within the 
photoreceptors and the supporting cells. The cross section through the distal 
retina (upper diagram), shows the regular arrangement of the distal segments of 
the photoreceptors (DS) that possess two rhabdomeres (RD) each, facing 
opposite sides of the cell, and separated by pigment (PI). Four rhabdomeres from 
four neighboring receptors form a rhabdom. While the nuclei of the supporting 
cells (NSC) are situated in the distal retina, the nuclei of the photoreceptor cells 
(NPC) are found in their proximal segments (PS) in the proximal retina, beyond 
the basal membrane (BM). In the proximal retina, within the retinal nerve plexus 
(RNP), photoreceptors are interconnected by collateral fibers (COL) from the 
proximal segments of the photoreceptors, and photoreceptors interact with 
efferents (EFF) from the optic lobe. Epithelial cells (EP), considered to be retinal 
glia cells, seem to form processes (dashed lines) that lie between the inner 
segments of the retinal cells. The schematic diagram of the octopus retina was 
adapted from previously published drawings (Babuchin, 1864; Schultze, 1867; 
Grenacher, 1884; Wolken, 1958; Moody and Parriss, 1960, 1961; Young, 1960, 
1962b, 1971; Boycott et al., 1965; Yamamoto et al., 1965).
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The photoreceptors of the octopus retina narrow before 
passing the basement membrane that separates their distal parts 
from the proximal segments that carry the cell nuclei (Figure 3). 
Finally, the photoreceptors give rise to axons. Within this region, 
called the retinal plexus, two types of interactions can be found: 
(1) interactions between photoreceptors, mediated by fine 
collateral fibers branching from the proximal part of the 
photoreceptors, and (2) interactions between centrifugal cells, 
which are efferents from the plexiform zone of the optic lobes, 
and photoreceptors (Young, 1962b; Boycott et al., 1965; Tonosaki, 
1965; Lund, 1966; Patterson and Silver, 1983). In the central 
stripe of the retina, the proximal segments of the photoreceptors 
are longer, and the retinal plexus is thicker than in the rest 
of the retina (Young, 1963). Three studies have described 
synapses and transmitters in the retina of Octopus vulgaris, 
among other species (Gray, 1970; Lam et  al., 1974; Silver et  al., 
1983). There is accumulating evidence that the photoreceptors 
are cholinergic, whereas the centrifugal cells are dopaminergic.

The axons of the photoreceptors leave the eye in bundles of 
approximately 20 axons, each through holes in the sclera (Patterson 
and Silver, 1983). Before these axon bundles enter the optic lobe, 
the bundles decussate: the dorsal retina projects to the ventral 
optic lobe and vice versa (Boycott et al., 1965; Lettvin and Maturana, 
1965; Patterson and Silver, 1983). The optic lobes are composed 
of the cortex and a central medulla, and most photoreceptors 
axons terminate in the outer plexiform zone of the cortex of the 
optic lobe (Young, 1960, 1962a, 1971; Dilly et  al., 1963).

Dichroism of the Retina and  
Polarization Sensitivity
The rhabdomeres of the photoreceptors are arranged either 
horizontally or vertically. Each rhabdomere consists of densely 
packed straight microvilli that, because of the regular arrangement 
of the rhabdomeres, are oriented perpendicular to each other 
(Wolken, 1958; Young, 1960, 1971). With the alignment of the 
visual pigment with the long axis of the tubules (Roberts et  al., 
2011), each rhabdomere is a dichroic analyzer that absorbs light 
polarized parallel to the tubules maximally. This regular retinal 
arrangement is thus most likely the basis for the ability of octopus 
to perceive polarized light (Moody and Parriss, 1960, 1961; Rowell 
and Wells, 1961; Lettvin and Pitts, 1962; Moody, 1962; Tasaki 
and Karita, 1966; Sugawara et al., 1971; Shashar and Cronin, 1996).

Numerous functions of polarization sensitivity have already 
been described for cephalopods in general, including object detection 
or recognition, communication or navigation, among other (for 
review see Mäthger et  al., 2009; Shashar, 2014). However, it still 
remains to be  determined what role polarization sensitivity plays 
in Octopus vulgaris in particular, as most evidence in this respect 
has been collected in other cephalopod species, so far. Additionally, 
it remains to be  determined whether octopus possesses true 
polarization vision as proposed by Shashar and Cronin, 1996, a 
view that has been challenged by Nilsson and Warrant (1999).

Photoreceptor Density, Spatial, and 
Temporal Resolution
Given an eye size of approximately 2  cm (see section “Eye 
Size and Ocular Dimensions”), the octopus retina covers 

an area of 1–4  cm2 (Wolken, 1958; Young, 1963). In this 
retina, 2–3 × 107 photoreceptors cells are found with a cell 
density varying between 18,000–22,000 cells/mm2 in the 
periphery and approximately 55,000 cells/mm2 in the central 
stripe (Young, 1960, 1962b, 1963, 1971). In the central stripe, 
the rhabdoms are longer and thinner than in the periphery; 
rhabdom diameters as small as 4  μm have been found in 
the stripe, while rhabdoms in the periphery had diameters 
of up to 10  μm (Young, 1963). The higher rhabdom density 
in the central retinal stripe is strongly indicative of higher 
spatial resolution in this area, even though this has not 
been measured directly with electrophysiological methods; 
for electrophysiological studies in octopus, the reader is 
referred to previous studies (Tasaki et  al., 1963a,b; Boycott 
et al., 1965; Lettvin and Maturana, 1965; Hamasaki, 1968a,b; 
Tsukahara et  al., 1973). In accordance with the foregoing, 
a horizontal area of increased spatial resolution would 
be  highly adaptive in bottom-living animals (Muntz, 1977; 
Talbot and Marshall, 2010).

Visual acuity was assessed with two different behavioral 
approaches, in a discrimination experiment using gratings 
(Sutherland, 1963b) as well as in an optomotor study (Packard, 
1969). The first approach assessed visual acuity as 1.7 cycles/
degrees or better for animals weighing 250–500  g. The 
second assessed visual acuity as 0.6–1.1  cycles/degrees for 
two groups of very small animals with average weights of 
0.27 g and 2.7 g, and 1.1 cycles/degrees or better for animals 
weighing 17 g; all values are estimates based on the assumption 
that the animals were in the center of the optokinetic drum. 
Due to several aspects related to the experimental procedure, 
these studies may have underestimated the visual acuity of 
octopus. This possibility is supported by another 
discrimination experiment on grating visual acuity in Octopus 
pallidus and Octopus australis whose visual acuity was assessed 
as 3.1–6.8  cycles/degrees (Muntz and Gwyther, 1988). 
Considering this acuity range, the octopus visual acuity 
would be  comparable to the visual acuity of cats or fowls 
(Rahmann, 1967). Generally, the visual acuity of octopus 
might vary with illumination, as the receptive field of single 
receptors will probably be  smaller when the pigment has 
migrated to the distal tip of the receptors in bright light 
(Lettvin and Pitts, 1962; Sutherland and Carr, 1963; Young, 
1963); an aspect that still needs to be  fully worked out 
in octopus.

The temporal resolution of the eye, as measured by flicker 
fusion frequency, has been determined in both Octopus vulgaris 
and Octopus briareus as 72  Hz with a stimulus intensity of 
4.5 × 106  cd/m2 by Hamasaki (1968b). The flicker fusion 
frequency decreases relatively fast reaching only 20  Hz when 
stimulus intensity was decreased by 4 logarithmic units. As 
the values given are averages from the two species of octopus, 
it would be interesting to document the flicker fusion frequency 
for Octopus vulgaris in particular.

Visual Pigment and Color Vision
Octopus vulgaris possesses only one visual pigment within its 
photoreceptors, an R-type-opsin (Cronin and Porter, 2014) 
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which absorbs maximally at 475  nm with a β-band at 360  nm 
(Brown and Brown, 1958; Kropf et al., 1959; Hamasaki, 1968a). 
Generally, the visual pigments of octopods seem to be  less 
well matched to the light environment than the pigments of 
squids and cuttlefish. It is speculated that a fine-tuning of the 
pigments might not be  under selective pressure in octopods 
in contrast to squids and cuttlefish as other senses such as 
haptics or chemoreception might be more important than vision 
in these benthic animals (Chung and Marshall, 2016).

In line with the presence of only one visual pigment, 
most studies have concluded that Octopus vulgaris is color-
blind (Piéron, 1914; Bierens de Haan, 1926; Messenger et al., 
1973; Messenger, 1977; Kawamura et  al., 2001), though the 
work of Fröhlich, Goldsmith, and Kühn suggest otherwise 
(Fröhlich, 1914a,b; Goldsmith, 1917a,b; Kühn, 1950). However, 
in these old color vision studies, either experiments were 
not adequately controlled for the brightness of the stimuli 
or stimuli were adjusted in brightness on the basis of a 
human brightness discrimination ability that likely differs 
from the brightness discrimination ability of octopus. Moreover, 
these studies were not designed to examine a color vision 
mechanism recently simulated for Octopus australis by Stubbs 
and Stubbs (2016a). This color vision mechanism exploits 
the longitudinal chromatic aberration of the lens; thus, even 
monochromats should be  able to obtain color information 
this way. Although this mechanisms has been questioned 
(Gagnon et  al., 2016; Stubbs and Stubbs, 2016b), it would 
be  interesting to test it in the context of the mystery of 
color-blind camouflage and the question of what role the 
eyes and/or photoreceptors in the skin (Ramirez and Oakley, 
2015) play in background matching by cephalopods generally. 
Stubbs and Stubbs speculate that this mechanism might also 
help to explain why some cephalopods have developed colorful 
intra-specific signals (Stubbs and Stubbs, 2016b).

To date, the only cephalopod known to possess more than 
one pigment, the classic precondition for color vision, is 
Watasenia scintillans; it has three visual pigments based on 
vitamin A1 (λmax  =  484  nm), vitamin A2 (λmax  =  500  nm), 
and 4-hydroxyretinal (λmax  =  470  nm) (Matsui et  al., 1988a,b; 
Seidou et  al., 1990; Kito et  al., 1992; Michinomae et  al., 1994). 
A putative color vision faculty in the firefly squid is supported 
by the existence of a banked retina that compensates for this 
animal’s lens not being corrected for longitudinal chromatic 
aberration (Kröger and Gislen, 2004).

DISCUSSION

This review demonstrates that several aspects of vision of Octopus 
vulgaris have been investigated in some detail. Nevertheless, 

large gaps remain in our understanding of vision for this species, 
notwithstanding the fact that the common octopus has been 
an object of scientific study for more than 150  years. In our 
opinion, one of the largest gaps in our knowledge stems from 
the poor understanding of the dioptric apparatus of octopus. 
In addition, the primary functions of vision — including visual 
acuity, brightness discrimination, depth perception, motion 
detection, polarization and color vision — have not been 
conclusively investigated, and thus some enduring mysteries 
(in particular, color-blind camouflage) persist to the present day.

Taken together, the current array of published studies on 
the eye of Octopus vulgaris — many of which are reviewed 
here — helps us to understand adaptations of the visual 
system to lifestyle and habitat. To provide some examples, 
characteristics of the visual system of octopus such as specifics 
of the pupil or the retina mirror the benthic lifestyle of 
adult octopus which can even inhabit shallow water: an 
environment in which it experiences high light intensities 
from above and drastic light changes when leaving its den 
during the day. Moreover, the large eye movements and 
aspects that camouflage the animal or the eye specifically 
reinforce the fact that octopus is a soft-bodied animal that 
falls prey to many animals. Future studies will allow completion 
of a picture of vision in Octopus vulgaris. Detailed insight 
will thus be  obtained regarding the world of a fascinating 
invertebrate which otherwise spends its life in a habitat that 
is still not easily accessible to humans.
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