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Experiments in cadavers have demonstrated significant mechanical interactions
between constituents of myofascial chains. However, evidence for such force
transmission effects is scarce under in vivo conditions. The purpose of this trial was
to examine the impact of ankle motion on soft tissue displacement of the dorsal thigh.
Eleven healthy active individuals (26.8 ± 4.3 years, six males), in prone position and with
the knee extended, underwent passive calf stretches (ankle dorsal extension) imposed
by an isokinetic dynamometer. High-resolution ultrasound was used to simultaneously
capture the displacement of the semimembranosus muscle, which was quantified by
means of cross-correlation analysis. Inactivity of the leg muscles was controlled using
surface electromyography (EMG). One participant had to be excluded due to major
EMG activity during the experiment. According to a one-sample t test testing the
difference to the neutral zero position, ankle dorsal extension induced substantial caudal
muscle displacements (5.76 ± 2.67 mm, p < 0.0001). Correlation analysis (Spearman),
furthermore, revealed a strong association between maximal dorsal extension and
semimembranosus motion (rho = 0.76, p = 0.02). In conclusion, the present trial
provides initial in vivo evidence for a mechanical force transmission between serially
connected skeletal muscles. This means that local alterations of the mechanical tissue
properties may modify flexibility in neighboring (superior or inferior) joints.

Keywords: myofascial force transmission, ultrasound, range of motion, fascia, myofascial chains

INTRODUCTION

Fascia, the collagenous connective tissue surrounding the skeletal muscles, has long been regarded
as a passive packing organ with limited significance for the locomotor system (van der Wal,
2009). However, recent research unveiled a far more complex role. Firstly, histological studies
have demonstrated the intrafascial existence of myofibroblasts (e.g., in the gastrocnemius fascia;
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Bhattacharya et al., 2010). Their contraction, most probably
mediated by the vegetative nervous system, can produce
substantial increases of tissue stiffness in the long-term (Schleip
et al., 2019). Secondly, already within minutes or hours,
alterations of the water content, e.g., induced by isometric
stretching, have been shown to significantly impact viscoelastic
tissue properties (Schleip et al., 2012). The capacity of fascia to
soften or harden in response to mechanical stimuli may be of
particular importance due to another newly discovered feature.
In contrast to prior assumptions, the surrounding fasciae do not
separate, but connect the skeletal muscles. This architecture can
be found between synergists and antagonists located parallel to
each other (Yucesoy, 2010) as well as between muscles arranged
in-series (Wilke et al., 2016a; Wilke and Krause, 2019).

As a consequence of intermuscular continuity (Yucesoy,
2010; Wilke et al., 2016a; Wilke and Krause, 2019) it has been
hypothesized that the modification of local tissue properties
can affect adjacent structures (Wilke et al., 2019a): if the
linkages connecting two muscles are stiff enough, they may
transmit force. In fact, experimental trials made such observation,
showing that length changes of lower leg muscles induced
mechanical strains in neighboring synergists and antagonists
(Huijing and Baan, 2001; Huijing et al., 2011). Since removing
the fibrous linkages between the muscles reduced this effect
(Huijing and Baan, 2001), the previously produced strains
seem to stem from a mechanical force transmission (Yucesoy,
2010). In their systematic review of cadaveric studies, Krause
et al. (2016) aimed to answer the question as to whether
mutual interactions would also occur between serially connected
muscles. According to their findings, substantial forces can
be transmitted, particularly in the posterior myofascial chain
(plantar aponeurosis, gastrocnemius, hamstring muscles, lumbar
fascia/erector spinae muscle). For instance, traction applied to
the biceps femoris leads to a force transmission to the lumbar
fascia (Vleeming et al., 1995). However, as cadavers (a) frequently
exhibit alterations of mechanical tissue properties (e.g., due to
fixation in solutions like formalin) and (b) do not produce
neuromuscular activity, the findings of most studies investigating
in-series mechanical force transmission cannot be extrapolated to
in vivo conditions.

As indicated, to date, only few trials have examined the
relevance of myofascial chains in the living organism. A couple
of studies demonstrated remote flexibility increases following
local exercise treatments (Grieve et al., 2015; Wilke et al.,
2016b, 2017, 2019b; Joshi et al., 2018). These findings
are intriguing, seemingly verifying the observations made
in vitro. It seems plausible that a decrease in tissue stiffness,
induced by the local interventions, can be transmitted to
more cranial structures (e.g., from Hamstrings and to
the neck muscles). However, as the measured outcome
(range of motion) represents a functional parameter, the
registration of non-local exercise effects does not provide a
definite proof for myofascial force transmission under living
conditions. The use of high-resolution ultrasound imaging
can resolve this research deficit as it is able to visualize a
non-stretched tissue during elongation of a neighboring,
connected structure: If substantial forces would be transmitted

through the linkage, a visible displacement of the non-stretched
tissue should occur.

Using a simple experimental approach (Cruz-Montecinos
et al., 2015) showed that an anterior pelvic tilt leads to a
recognizable displacement of the gastrocnemius fascia. Their
sonographic examination provides first indications for a cranial-
caudal force transmission effect originating at the hip joint.
However, in many movements of daily life and sports (e.g.,
walking, sprinting, jumping, squatting), forces are generated
in the legs and hypothetically transmitted in direction of the
trunk. In addition to this, all above described available in vivo
trials examining the functional relevance of myofascial chains
were (1) based on caudal-cranial force transmission and (2)
mainly focused treatments around the ankle joint (plantar fascia
massage, calf stretching). The present proof-of-principle study,
therefore, aimed to elucidate for the first time, if a dorsal
extension movement (also often referred to as dorsal flexion) of
the ankle leads to a myofascial force transmission to the posterior
thigh under in vivo conditions.

MATERIALS AND METHODS

Ethical Standard
The experimental ultrasound study was approved by the local
ethics committee and conducted according to the Declaration of
Helsinki as well as the guidelines of Good Clinical Practice. All
enrolled participants provided written informed consent.

Sample
Eleven healthy active individuals (26.8 ± 4.3 years, 6♂,
5♀) volunteered to participate. Exclusion criteria included
severe orthopedic, cardiovascular, neurological, endocrine and
psychiatric diseases, acute inflammation or history of surgery
in the lower limb, intake of drugs that modify pain perception
and proprioception, muscle soreness and pregnancy or nursing
period. Recruitment was performed by word of mouth.

Experimental Approach
A schematic depiction of the experimental approach is shown
in Figure 1. All experiments were conducted in the same room
and at constant temperature and daytime. The participants were
positioned in a standardized prone position on an isokinetic
dynamometer (Cybex Norm, Cybex, Ronkonkoma, New York,
United States), having their ankle joint axis aligned with the
rotational axis of the device. A fixation belt was attached over
dorsal pelvis (thus not compressing the Hamstring muscles) to
prevent body movement. In the experiment, the ankle (tested
leg chosen randomly) was moved passively between plantar
flexion and maximal achievable dorsal extension by means
of the dynamometer’s continuous passive motion function.
During the measurements, ankle joint angle [◦], relative to
the neutral zero position, was constantly recorded by the
device. Three repetitions, averaged for analysis, were performed
at an angular velocity of 5◦/s (Krause et al., 2019). The
participants were instructed to remain completely passive,
avoiding any voluntary muscle activity. To confirm this,
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FIGURE 1 | Schematic illustration of the experimental set-up. In the prone
position and with the knee extended, the ankle joint was passively moved
between plantar flexion and dorsal extension (arrow shows way into dorsal
extension). Maximal dorsal extension was calculated as the distance from a
calibrated neutral zero position (dashed line). Ultrasound recordings were
made over the semimembranosus muscle in order to estimate tissue
displacement induced by the ankle motion. EMG (not depicted here) used as
biofeedback ensured that no voluntary muscle activity occurred. Pelvic fixation
with a strap was required to prevent body motion induced by the
dynamometer action. As the belt was not in contact with the Hamstrings, it
did not affect tissue displacement.

surface electromyography (Biopac MP 160, Biopac Systems
Inc., Goleta, CA, United States) was used to monitor muscle
activity, providing the participants with live biofeedback. After
preparation of the skin (shaving and alcohol cleansing), Ag-
AgCl electrodes (8 mm diameter) were positioned over the
muscle bellies of the m. semimembranosus, m. gastrocnemius,
m. quadriceps femoris and m. tibialis anterior as well as
over the lateral malleolus and the lateral femur condyle with
the latter two being reference electrodes. Sensor placement
was determined according to the SENIAM (surface EMG
for non-invasive assessment of muscles) recommendations
(Hermens et al., 2000). Electrodes were placed at 1/3 of
the distance between the ischial tuberosity and the knee’s
medial joint line (semimembranosus), on the most prominent
bulge of the gastrocnemius muscle, at 50% of the distance
between the anterior spina iliaca superior and the superior
part of the patella (quadriceps femoris) and at 1/3 of the
way between the tips of the fibula and the medial malleolus
(tibialis anterior). Data were sampled at a rate of 1.600 kHz
and filtered with a high- and low-pass filter of 10 and
500 Hz, respectively.

In order to familiarize the participants with the device and
measurement conditions and to practice keeping the lower leg
muscles inactive, a warm-up of three flexion-extension cycles
was performed prior to the actual measurements. This approach
has already been used successfully in a previous, similar study
(Krause et al., 2019).

A high-resolution ultrasonography device (My Lab 70, Esaote
Biomedica, Genoa, Italy) was used to assess tissue displacement
upon ankle joint movement. Video recordings, depicting the
soft tissue of the dorsal thigh, were made with a linear
array transducer (custom-made, 100 mm × 8 mm, 7.5 Hz)
positioned over the belly of the semimembranosus muscle. To

prevent artifacts induced by variations in pressure to the skin,
a custom made template consisting of thermoplastic polymer
was used for fixation (Cruz-Montecinos et al., 2015). To detect
potential probe movement over the skin, acoustically reflective
markers (thin stripes of micropore tape) which are clearly
visible in the ultrasound image, were placed on the skin
(Morse et al., 2008).

Outcome
To reveal the spatial relations in the area of interest of
the United States image, the thickness of the subcutaneous
tissue and the deep fascia of the semimembranosus muscle
were determined using ImageJ (NIH, Bethesda, MD,
United States). Five equidistant measurements were taken
at rest and averaged.

The maximal horizontal displacement of the
semimembranosus muscle [mm distance from resting position]
during maximal passive ankle dorsal extension represented
the primary outcome. It was quantified using a frame-by-
frame cross-correlation analysis of the obtained ultrasound
videos, which reveals the maximum displacement of the muscle
relative to the zero position without ankle movement (see
Figure 2). The employed algorithm, created in MATLAB (The
MathWorks, Inc., Natick, MA, United States), was developed
by Dilley et al. (2001) and has been shown to represent a
highly reliable method to quantify tissue displacement (ICC:
0.77 to 0.99). Briefly, the software calculates the correlation
coefficient between the pixel gray levels of successive frames
within previously defined, rectangle-shaped regions of interest
(ROI) of the successive frames. The pixel shift revealing the
highest coefficient represents the relative movement between
two frames. In video recorded in this trial, six equidistant
ROIs (approximate size: 5 × 1 mm) were placed within the
semimembranosus. Mean maximal horizontal displacement
of the ROIs was calculated and analyzed as quantification of
muscle displacement. Excellent reliability of this approach (use
of the described software and six ROIs including interpretation
procedure) has been demonstrated in a previous trial of our
workgroup, which also examined fascial displacement in the
thigh (Krause et al., 2019).

Data Processing and Statistics
The recorded ultrasound, dynamometer and EMG data were
synchronized using a common electrical impulse delivered
through an external trigger to the interface of the employed
software (Acqknowledge, Biopac Systems Inc., Goleta, CA,
United States). Besides providing biofeedback, EMG data
were used to detect involuntary muscle activity with two
approaches implemented in the software package: The first
was based on a normalization against maximum voluntary
contraction (MVC), which was determined by means of isometric
contractions of the included muscles. Here, muscle activity
was defined as any root mean square values (0.03 s) >5%
MVC. The second was based on the algorithm of Hodges
and Bui (1996). Briefly, it determines the mean and standard
deviation of the signal during a period of 0.25 s under
resting conditions and creates a filtered average rectified value
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FIGURE 2 | Exemplary visualization of ultrasound-based cross-correlation analysis. Equidistant ROIs (red rectangles) are selected at rest (left image). In this example,
five ROIs have been positioned: three within the fascia and one in each, the subcutaneous tissue (SCT) and the muscle. Upon movement (right image), pixel
displacements relative to the center of the non-moving ROIs (small yellow square inside the red rectangles in left picture) are tracked (yellow line in right picture). The
end of the line indicates the maximal displacement, which is computed by the software algorithm.

(ARV). It then extracts the variance with regard to the
noise by means of dividing the difference between the ARV
and the mean by the standard deviation. For the resulting
signal, the median is calculated for the entire waveform.
Any activity exceeding this median for at least 0.1 s is
considered as muscle activity. Once one of the two methods
described detected muscle activity, the corresponding trials were
discarded from analysis.

Regarding the kinematic data indicating maximal ankle
dorsal extension (◦) and horizontal tissue displacement
(mm), mean values were calculated for the three movement
cycles in each condition. To answer the question as to
whether ankle movement leads to cranial displacement
of the semimembranosus myofascial soft tissue, a twofold
approach was chosen. Firstly, the one-sample t test and
95% confidence intervals (95% CI) were used in order
to examine whether movement of the semimembranosus
occurred (systematic difference to zero). Potential discrepancies
between men and women were detected using the t test
for independent samples. Effect sizes of both tests were
calculated and interpreted according to Cohen (1992) as small
(d = 0.2), medium (0.5) or large (0.8). Secondly, to identify
significant associations between ankle dorsal extension and
semimembranosus displacement, Spearman’s rank correlation
was used. According to Evans (1996), resulting coefficients
were graded as poor (<0.2), weak (0.2 to 0.4), moderate
(0.4 to 0.6), strong (0.6 to 0.8) or optimal (>0.8). Finally,
to demonstrate the reliability of the software algorithm for
tissue displacement, the intraclass correlation coefficient was
used (Bland and Altman, 1996). Based on the suggestions
of Fleiss (1986), resulting reliability values were classified as
poor (<0.4), moderate (0.4 to 0.75), or excellent (>0.75).
All calculations were made with BiAS for Windows 11.2
(Goethe-University, Germany); the significance level was
set to α = 0.05.

RESULTS

All participants completed the experiment. However, while the
analyses of the EMG confirmed absence of muscle activity in
10 individuals, one showed above-threshold values and hence,

the corresponding data were not included in the inferential
statistics. The subcutaneous tissue, per average, had a thickness
of 3.80 ± 2.17 mm. With 1.32 ± 0.49 mm, the deep fascia was
about two thirds smaller.

Hamstring Displacement
Calculating tissue displacement was highly reliable, revealing
almost perfect agreement between the five repetitions
(ICC = 0.81, 95%CI: 0.66 to 0.97, p < 0.0001). Corrected
for probe movement over the skin, which was negligible
(0.09 ± 0.10 mm), passive ankle dorsal extension induced
a significant caudal semimembranosus displacement of
5.76 ± 2.67 mm (95%CI: 3.86 to 7.68, p < 0.0001, d = 2.16).
The highest value (10.87 ± 1.57 mm) was registered in a
22-year old female while the lowest displacement was found
in a 24-year old male (1.22 ± 0.64 mm). In sum, higher
values (6.74 ± 3.03 mm) occurred in women when compared
to men (5.12 ± 2.46 mm), however, despite a moderate
effect size (d = 0.60), this difference did not reach statistical
significance (p = 0.38).

Correlation With Ankle Dorsal Extension
Maximal ankle dorsal extension, per average, was 19.8 ± 5.0
degrees. Spearman analysis revealed a strong positive

FIGURE 3 | Scatter plot showing the relation between maximal ankle dorsal
extension and dorsal thigh soft tissue displacement. Black circles represent
males, open circles represent females.
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correlation between the extent of caudal semimembranosus
displacement and dorsal extension (p = 0.02, rho = 0.76),
which suggests that higher ankle movement amplitudes were
associated with larger displacements of the semimembranosus
muscle (Figure 3).

DISCUSSION

The mechanical role of the soft tissue has been a recent
focus of fascia research (Zügel et al., 2018). However, despite
compelling evidence from cadaver experiments, pointing
toward the occurrence of in-series force transmission effects
across myofascial continuities (Krause et al., 2016), there
has been a lack of in vivo studies regarding this topic,
hitherto (Zügel et al., 2018). Our trial shows that maximal
ankle dorsal extension is associated with significant caudal
displacements of the semimembranosus muscle and its
encapsulating fascia. This finding may explain the remote
exercise effects detected in previous studies: It had been
shown that stretching or self-myofascial release treatments
induced flexibility increases in neighboring or even more
distant cranial joints (Grieve et al., 2015; Wilke et al., 2016b,
2017, 2019a; Joshi et al., 2018). Although representing an
intriguing observation, the occurrence of non-local changes
in such functional outcome could not only be related to a
force transmission across myofascial continuity but also be
due to other factors such as systemic neural adaptations,
i.e., altered stretch tolerance. Against this background, the
remote soft tissue displacements established here may, in
fact, demonstrate that mechanically relevant amounts of force
are transferred to serially connected skeletal muscles in the
living organism.

As indicated, this is one of the first studies examining
serial myofascial force transmission under in vivo conditions.
The only similar trial conducted by Cruz-Montecinos et al.
(2015) demonstrated a coupling of pelvic movement and
displacement of the gastrocnemius fascia. The absolute
magnitude of fascial displacement was higher in our
data (5.8 mm vs. 1.5 mm). This difference may be
explained by various factors, including differences in the
imaged muscle (semimembranosus vs. gastrocnemius),
the moved joint (ankle vs. pelvis) and the direction of
force transmission (caudal-cranial vs. cranial-caudal).
Notwithstanding, a common finding of both studies was
the strong correlation of local ROM alterations and consecutive
remote tissue displacements.

The practical implications of our research span from
sports performance to musculoskeletal disorders. Coaches
and exercise professionals should be aware that stretching
treatments do affect both the targeted tissue but also
morphologically linked skeletal muscles. The relevance of
the exercise position, for instance having the knee extended
or not when targeting the calf, thus extends beyond the
question of mono- or bi-articularity of muscles. In essence,
it may be argued that fascial tissues represent a potential
contributor to restrictions in flexibility, which would be in

accordance with previous data (Wilke et al., 2018). Besides
its potential relevance under normal conditions, myofascial
force transmission could also play a role in the development of
overuse disorders. It had been speculated that the occurrence
of non-local abnormalities (e.g., increased hamstring stiffness
in patients with plantar fasciitis) stems from a pathologically
altered/excessive degree of myofascial force transmission
(Wilke et al., 2019a). In order to further substantiate
this assumption, it seems of interest to conduct similar
experiments in both healthy individuals and patients with
musculoskeletal disorders.

When interpreting the novel findings, some noteworthy
methodological considerations need to be made. Firstly, the
measured soft tissue displacement represents a highly plausible
surrogate but not a direct measure of transferred force. While
this represents a rather theoretical concern, the effects observed
must not only stem from a serial force transmission. Ankle
movement has been demonstrated to modify the stiffness
of the sciatic nerve. As it crosses the knee joint, it may
have an impact on the mechanics of the thigh (Andrade
et al., 2016). In addition, the fascial bands spanning from
the gastrocnemius muscle to the dorsal thigh do not only
attach to the semimembranosus but also to the other parts
of the Hamstrings. Previous research revealed substantial
mutual interaction between muscles located in parallel (Huijing
and Baan, 2001). If force was hence transmitted from
the calf it is tenable to assume that it also reached the
biceps femoris and the semitendinosus. As a consequence,
particularly the forces acting on the latter (pulling it in the
caudal direction in the same way as occurring with the
semimembranosus), could have induced a (minor) part of
the muscle displacement. Another issue relates to the sample
size of our investigation. Evidently, it was sufficient to reveal
the presence of semimembranosus motion and its correlation
to ankle movement. However, our study may have been
underpowered with regard to the influence of sex: female
participants had higher displacements but the significance
threshold was failed for this observation. Future studies, further
delineating the role of sex on serial force transmission are
therefore warranted. Finally, a couple of additional outcomes
may be of particular value for upcoming research. Besides
visualizing other muscles (e.g., those located in parallel and
the calf muscles), it would be intriguing to measure the
pennation angle in order to complement the displacement data.
From a mechanical point of view, our experimental set-up
did not allow for a judgment of tissue stiffness which could
be another relevant effect modifier. It may be argued that
higher stiffness of the implicated transmitting structures (in
this case the gastrocnemius) would allow for a higher degree
of force transmission. One possibility to assess this outcome
would be using the isokinetic dynamometer to calculate the
passive resistive torque produced during ankle movement. As a
supplement, elastography, which has recently been used to study
the mechanical properties of the lower leg muscles (Ates et al.,
2017), could be added to gain further insight the mechanical
properties of the leg muscles. Particularly, it would allow the
measurement of stiffness changes in the entire Hamstring group
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in order to quantify the degree of myofascial force transmission
from muscle arranged in parallel.

CONCLUSION

Our study demonstrated under in vivo conditions that
mechanical force is transmitted between the ankle and the dorsal
thigh upon passive stretching of the gastrocnemius. This finding
may represent the morphological substrate of remote exercise
effects occurring after treatments based on myofascial chains.
The correlation of semimembranosus displacement and ankle
dorsal extension, furthermore, may suggest that fascial tissue
can restrict flexibility. Future research should elucidate the
functional implications of the observed transmission effects in
sports and disease.
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