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There are representative electrical parameters for understanding the mechanism of
reentrant waves in studies on tachyarrhythmia, namely the action potential duration
(APD), dominant frequency, phase singularity, and filament. However, there are no
studies that have directly identified the correlation between these electrophysiological
parameters and cardiac contractility. Therefore, we have identified individual
and integrative correlations between these electrical phenomena and contractility
during tachyarrhythmia by deriving regression equations and also investigated the
electrophysiological parameters affecting cardiac contractility during tachyarrhythmia.
We simulated ventricular tachyarrhythmia with 48 types of electrical patterns by
applying four reentry generation methods and changing the electrical conductivity of the
potassium channel, which has the greatest effect on ventricular tissue. The mechanical
responses reflecting electrical complexity were obtained through deterministic
simulations of excitation–contraction coupling. We used the stroke volume and
amplitude of myocardial tension (ampTens) as the variables representing contractility.
We derived stochastic models through single- and multivariable regression analyses to
identify the electrical parameters affecting contractility during tachyarrhythmia. In single-
variable regression analysis, the APD, dominant frequency, and filament, excluding
phase singularity, have statistically significant correlations with the stroke volume and
ampTens. Among them, the APD has the maximum influence on these two mechanical
parameters (standard beta coefficient: 0.859 for stroke volume, 0.930 for ampTens).
The stochastic model using all four electrical parameters fails to accurately predict
contractility owing to the multicollinearity between the APD and dominant frequency.
We have rederived the multi-variable stochastic model using three electrical parameters
without the APD. The filament has the greatest effect on the stroke volume stochastically
(standard beta coefficient: 0.853 and 0.752). The dominant frequency has the greatest
effect on ampTens statistically (standard beta coefficient: −0.813). We conclude that
among the electrical parameters, the APD has the highest individual influence on
mechanical contraction, and the filament has the highest integrative influence in both
statistical terms.

Keywords: ventricular tachyarrhythmia, action potential duration, dominant frequency, phase singularity,
filament, computational study, stochastic model
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INTRODUCTION

Tachyarrhythmia causes myocardial tissue to asynchronously
contract at high frequencies resulting from electrical reentry of
excitation waves (Kuklik et al., 2017). Unlike the regular rhythm
of a normal heart, reentrant waves from complex electrical
patterns that generate a fast rhythm in a specific area of the
tissue (Bray et al., 2001). These complex electrical patterns
play an important role in the development and maintenance of
tachyarrhythmia (Clayton and Holden, 2002). Therefore, many
attempts have been made to understand the occurrence and
maintenance mechanisms of tachyarrhythmia via the analysis of
reentrant waves.

To date, research on tachyarrhythmia has focused on the cases
of reentrant wave generation and the fibrillation mechanism by
analyzing the spatial properties of reentrant waves (Karma, 1994).
In studies concerning tachyarrhythmia, researchers typically
employ an action potential that provides information regarding
the electrical activity of the heart, which is used to analyze the
mechanism of the electrical patterns in myocardial tissue. The
action potential duration (APD) refers to the period during
which the myocardial cell is excited and returns to a stable state.
The APD provides quantitative electrical information that can
be confirmed when an abnormality occurs in the membrane
current through the ion channel of the myocardial cell, and
it directly affects the contraction performance of the heart
(Hille, 1978). The ion channel that has the greatest effect on
the APD of the cells is the potassium channel. A Gain of
function or loss of function in the potassium channel affects the
repolarization time of the action potential, leading to prolonging
or shortening of the APD (Ravens and Cerbai, 2008). Under
conditions with prolonged or shortened APDs, reentrant waves
can be easily induced even at normal rhythms. Furthermore,
because the APD of the myocardial cells around the rotor
of reentry is phenomenologically short, it can provide useful
information for predicting and analyzing the electrical activity
of myocardial tissue (Ten Tusscher and Panfilov, 2006; Delmar
and Anumonwo, 2009). Therefore, at the cellular level, the
APD can approximatively predict the electrical patterns to some
extent; conversely, it can phenomenologically reflect the electrical
patterns at the tissue level. In both respects, the local APD in
myocardial tissue may be an important indicator for predicting
electrical patterns at the tissue level.

In addition, there are distributions of dominant
frequencies, phase singularities, and filaments that can
serve as phenomenological indices that reflect the electrical
complexity of myocardial tissue. The dominant frequency
is the frequency with the highest energy in all spectra of
the myocardial signal. The highest energy in the membrane
potential signal produced by myocardial cells belongs to the
frequency corresponding to the generation rate of the action
potential. Therefore, the dominant frequency in the membrane
potential signal indicates the generation rate of the action
potential. By analyzing the distribution of the local dominant
frequencies of myocardial tissue, we can predict the extent
to which the heart will asynchronously repeat excitation and
relaxation cycles. Asynchronous electrical excitation can be

quantified by the distribution of the changes in the excitation
rate. Therefore, the degree of asynchronous electrical excitation
can be quantified through the dominant frequency distribution
obtained by frequency analysis of the membrane potential signals
of myocardial cells. In the reentrant waves observed at the time of
tachyarrhythmia, the closer to the center the rotor is, the higher
the dominant frequency tends to be; this is because the center of
the rotor has a relatively higher rotation rate than the peripheral
portions (Delmar and Anumonwo, 2009).

Phase singularity (PS) refers to the point at which continuous
connectivity of the excitation phase in myocardial tissue is not
defined. When reentrant waves are generated in myocardial
tissue, the center of rotation has PS, which indicates a topological
defect in the rotor (Clayton et al., 2006). Accordingly, PS can
be used as an indicator of the number of rotors and the
complexity of the vortex pattern in reentrant waves (Hayward
et al., 2009). Moreover, a line connecting phase singularities in
three-dimensional myocardial tissue is called the filament of PS
(Clayton et al., 2006). Many experimental results suggest that
filament formation, fragmentation, and extinction are closely
related to the break-up of reentrant waves (Biktashev et al., 1994;
Fenton and Karma, 2002; Pathmanathan and Gray, 2015).

It is difficult to directly measure the APD, dominant
frequency, PS, and filament from the heart, but they can
be inversely derived from time-varying images obtained using
optical mapping techniques. In their experimental study,
Knollmann et al. (2001) recorded the action potential from an
intact mouse heart using monophasic action potential (MAP)
recording techniques. They fixed the electrode to the surface of
the heart to record the MAP. Furthermore, even though the PS
and filament cannot be detected directly from the heart, these
can be detected and counted using heart images. Umapathy
et al. (2010) successfully detected PS from cardiac fibrillation
using phase mapping techniques. Ten Tusscher et al. (2009)
examined the vortex filament using a heart model based on
experimental data.

Through the APD, the electrophysiological state of myocardial
cells can be predicted, and contractility of the myocardial filament
can also be indirectly estimated. We succeeded in predicting
cardiac contractility in response to changes in the myocardial
APD through computer simulations in our previous studies
(Imaniastuti et al., 2014; Jeong and Lim, 2018a,b). However,
the myocardial APD alone cannot provide information related
to the complicated electrical patterns that occur throughout
the heart. The distributions of the dominant frequencies,
phase singularities, and filaments do not provide quantitative
information at the cellular level, such as the APD, but they do
provide information regarding the location and distribution of
the rotor of reentrant waves.

These electrophysiological parameters are used to quantify
the instability of the electrical patterns of the heart by assuming
that they are immediately correlated with cardiac contractility
(Hu et al., 2013). However, no studies have directly analyzed
the correlations between these electrophysiological quantitative
indicators and cardiac contractility. Therefore, we aim to identify
the individual and integrative correlations between the electrical
parameters such as the APD, dominant frequency, PS, filament

Frontiers in Physiology | www.frontiersin.org 2 March 2020 | Volume 11 | Article 220

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00220 March 21, 2020 Time: 16:2 # 3

Jeong and Lim Electrical Instability and Mechanical Contractility

and mechanical response of the heart during tachyarrhythmia
by deriving the applicable single- and multivariable regression
equations. The purpose of this study is to investigate the
electrophysiological parameters affecting cardiac contractility
during tachyarrhythmia.

MATERIALS AND METHODS

Electromechanical Model of the Cardiac
Excitation–Contraction Mechanism
To simulate mechanical contraction according to various
electrical patterns of ventricular arrhythmia, we used a human
ventricular model with two dynamic characteristics, electrical
conduction and mechanical contraction (Figure 1). The
three-dimensional human ventricular model with electrical
conduction characteristics consists of 619,360 nodes and
3,439,590 tetrahedral elements. We have provided a detailed
explanation of the modeling of the heart geometry in
the Supplementary Material. The model also includes
a lumped circulatory circuit that can simulate the ion
exchange mechanism through myocardial cell membranes
using the validated ventricular cell model developed by
Ten Tusscher (2004) and Ten Tusscher and Panfilov (2006)
and three-dimensional finite element analysis. In the three-
dimensional human ventricular model, the conduction

phenomenon of the action potential is expressed using the
following equation:

dVm

dt
= −

Iion + Istim

Cm
+

1
ρxSxCm

∂2V
∂2x2+

1
ρySyCm

∂2V
∂2y2 +

1
ρzSzCm

∂2V
∂2z2 (1)

Here, Vm is the membrane voltage of a myocardial cell
and t represents time. Iion is the sum of the transmembrane
currents (Equation 2), Istim is the current generated by an external
stimulus, and Cm is the capacitance of the cell membrane. ρ and
S are the cellular resistance and ratio of the volume to the surface
in every direction, respectively.

Iion = INa + IKi + Ito + IKr + IKs + ICa,L + INa, Ca + INa,K

+Ip,Ca + Ip,K + ICa, b + INa, b (2)

INa refers to the current of Na+ ions, IKi is the inward rectifier
K+ current, and Ito is the transient outward K+ current. IKr
and IKs are the rapid delayed rectifier K+ current and slow
delayed rectifier K+ current, respectively. ICa,L represents the
L-type inward Ca2+ current, INa,Ca is the Na+–Ca2+ exchange
current, and INa,K is the Na+–K+ exchange current. Ip,Ca and

FIGURE 1 | Schematic of the electromechanical model with implementation of one-way coupling in cardiac excitation–contraction mechanism. The left side of the
circuit diagram is a human electrophysiological ventricular model, which consists of 619,360 nodes and 3,439,590 tetrahedral elements. The electrical components
of the schematic comprise the current, pump, and ion exchanger from Ten Tusscher et al. (2009), which emulate the cell membrane for ion transport and SR within
cardiac cells. “I” represents ion currents, and “E” is the equilibrium potential of each ion. The right side is a human mechanical ventricular model, which consists of
14,720 nodes and 6,210 hexahedral elements. The mechanical components represent the excitation–contraction mechanism through the cross-bridge formation of
myofilaments suggested by Rice et al. (2008). Nxb and Pxb are non-permissive and permissive confirmations of regulatory proteins, respectively. XBPreR and XBPostR

are the pro-rotated and post-rotated states of the myosin head, respectively. gxbT is the ATP-consuming detachment transition rate. hfT and hbT are the forward and
backward transition rates, respectively. faapT is the cross-bridge attachment rate of the transition to the first strongly bound state, and gaapT is the reverse rate. Knp

and Kpn are transition rates. Knp(TCaTot)7.5 is the forward rate of the non-permissive-to-permissive transition. Kpn(TCaTot)-7.5 is the backward rate of the
permissive-to-non-permissive transition. The electromechanical model is coupled with a circulatory model using the coupling method of Gurev et al. (2011). “R” and
“C” represent the resistance and compliance of the cardiac circulatory system, respectively. (For more details, see the text).
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Ip,K refer to the pump currents of Ca2+ and K2+, and ICa,b and
INa,b are the background currents of Ca2+ and K+, respectively.
EK , ECa, and ENa denote the equilibrium potentials of K+, Ca2+,
and Na+, respectively.

The three-dimensional human ventricular model with
mechanical contraction is composed of 14,720 nodes and 230
hexahedral elements based on Hermite, which can represent
the natural ventricular surface curve. Depolarization of each
myocyte occurs when electrical wave propagates on the heart
and activates the calcium channel to release calcium from the
sarcoplasmic reticulum into the cytosol. This released calcium
binds to the troponin C, and then cause the cross-bridge
contraction due to the sliding of the myofilaments. This progress
is shown in Figure 1. Nxb and Pxb are non-permissive and
permissive confirmations of regulatory proteins, respectively.
XBPreR and XBPostR are the pro-rotated and post-rotated states
of the myosin head, respectively. gxbT is the ATP-consuming
detachment transition rate. hfT and hbT are the forward and
backward transition rates, respectively. f aapT is the cross-bridge
attachment rate of the transition to the first strongly bound state,
and gaapT is the reverse rate. Knp and Kpn are transition rates.
Knp(TCaTot)7.5 is the forward rate of the non-permissive-to-
permissive transition. Kpn(TCaTot)−7.5 is the backward rate of
the permissive-to-non-permissive transition.

The mechanical model simulates contractions of myocardial
cells through these calcium dynamics by expanding the
cross-bridge model developed by Rice et al. (2008) to the
three-dimensional human heart model and subjecting it to
three-dimensional finite element methods. For excitation–
contraction coupling using calcium, we used the transient
calcium information extracted from electrophysiological
simulations using calcium dynamics equation as the input for
the mechanical simulation (Ten Tusscher and Panfilov, 2006;
Rice et al., 2008).

dCaitotal

dt
= −

ICa,L + Ib,Ca + Ip,Ca − 2INa,Ca

2VCF
+

Ileak − Iup + Irel (3)

dCasrtotal

dt
=

Vc

VSR
(−Ileak + Iup − Irel) (4)

In these equations, Caitotal is the total amount of calcium in
the cytoplasm, and Casrtotal is the total amount of calcium in the
sarcoplasmic reticulum (SR). Irel is the calcium current released
from the junctional SR (JSR), and Ileak is the leakage calcium
current of the JSR. Iup is the absorbed calcium current in the
network SR (NSR), and Ixfer is the diffusible calcium current
between the dyadic subspace and bulk cytoplasm.

Mathematical description of cardiac tissue contraction is
based on continuum mechanics (Guccione et al., 1995; Usyk
et al., 2002; Gurev et al., 2011), where myocardium is assumed to
be hyper-elastic, nearly incompressible material and to have the

passive mechanical properties. The passive mechanical properties
are defined by an exponential strain function (W).

W =
C
2
(
eQ
− 1

)
(5)

Q = bfE2
ff + bt

(
E2

rr + E2
cc + 2E2

rc
)
+ 2bfs

(
E2

fr + E2
fc
)

(6)

Eαβ =
1
2
(
∂xk

∂vα

∂xk

∂vβ
− δαβ) (7)

where C is the material constant and set to 2 kPa. The form of Q
has decided the material that is transversely isotropic with respect
to the muscle fiber axis (Guccione and McCulloch, 1991). bf is 8,
bt is 2 and bfs is 4, which are determined with the orthotropic
electrical conductivity and passive mechanical properties of
the myocardium by the laminar sheet-nominal direction and
fiber orientation information. Eij is the Langian Green’s strain,
which is referred to the local fiber coordinate system; Eff is
fiber strain, Err is the cross-fiber in-plane strain, Ecc is the
radial strain, Erc, Efr , and Efc are shear in the transverse plane,
fiber-cross fiber, and fiber-radial coordinate planes, respectively
(Guccione et al., 1995).

To simulate the hemodynamic response through the
contraction of ventricles, we combined the finite-element
electromechanical ventricular model with a circulatory model
using the coupling method proposed by Gurev et al. (2011).
The circulatory model is based on the cardiovascular model
developed by Kerckhoffs et al. (2007). The human cardiovascular
model consists of a lumped hemodynamic model, as shown on
the right-hand side of Figure 1. In Figure 1, CPA and RPA are
the compliance and resistance of the pulmonary artery, and CPV
and RPV are the compliance and resistance of the pulmonary
vein, respectively. CLA and RMI are respectively the compliance
of the left atrium and resistance of the mitral valve; CLV and
RAO are respectively the compliance of the left ventricle and
resistance of the aortic valve; CSA and RSA are the compliance
and resistance of the systemic artery, respectively; CSV and CSV
are respectively the compliance and resistance of the systemic
vein; CRA and RTR are the compliance of the right atrium and
resistance of the tricuspid valve, and CRV and RPU are the
compliance of the right ventricle and resistance of the pulmonary
valve, respectively. PRV and VRV are the pressure and volume of
the right ventricle, and PLV and VLV are the pressure and volume
of the left ventricle, respectively.

Therefore, we could calculate the hemodynamic response
at the tissue level according to the electrophysiological
results of ventricular tachyarrhythmia simulations. From
the cardiovascular model, the ventricular pressure was calculated
using Equations 8–11.

Pressure = C−1(t)(V − Vrest (t) (8)

1 EV = C · EP =
[

1VL
1VR

]
=

[
CLL CLR(pL)

CRL(pR) CRR

] [
pL
pR

]
(9)
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C = yv (Cmax − Cmin)+ Cmin (10)

Vrest =
(
1− yv

)
∗

[
VL,rest,d −VL,rest,s
VR,rest,d −VR,rest,s

]
+

[
VL,rest,s
VR,rest,d

]
(11)

Here, C is the time-varying compliance matrix; CLL and
CRR are the time-varying compliance matrices of the left and
right ventricles, respectively. These were calculated from the
compliance under the active state (CMax) and passive state (CMin)
of ventricles (Equation 9). yv is the activation function of the
ventricles, and V denotes the volume; Vrest is the volume when
the pressure of the ventricle is 0; VL,rest,d and VL,rest,s are the
left ventricular volumes in the systolic and diastolic periods,
respectively, and VR,rest,d and VR,rest,s are the right ventricular
volumes in the systolic and diastolic periods, respectively.

Simulation Protocols for Generating
Reentrant Waves
To observe the electrical patterns and contractility using
sustained reentrant waves, we performed simulations involving
reentry generation and reentry sustaining. For reentry
generation, we used the S1–S2 protocols to generate reentrant
waves in the three-dimensional human ventricular tissue model
under a low conduction velocity (20 cm/s), because reentry is
easily generated under a low conduction velocity. First, stimulus
S1 was activated thrice every 600 ms, and stimulus S2 was
activated when the wave tail of the last S1 stimulus reached the
middle portion of the ventricular model (Figure 2B). The reentry
generation simulation was performed for 10 s. We saved the
state of the myocardial cells at the last moment of reentry and
used it as the input for the reentry maintenance simulation to
observe sustained reentry under a normal conduction velocity
(68.5 cm/s). The conduction velocity was calculated by dividing
the height of the ventricular model by the time it took for the
propagating waves to move from the apex to the top of the
ventricle. The sustained reentry simulation under the normal
conduction velocity ran for up to 20 s for observation of the
electrical and mechanical properties at the moment when the
reentrant waves reached a steady state.

We used two methods to generate various electrical patterns
caused by ventricular tachyarrhythmia. First, we changed the
electrical conductance of the IKs channel (gKs), the protein
channel that has the greatest effect on the electrical activity of
the heterogeneous ventricular tissue. Even though the electrical
conductances of the INa and IKi channels are higher than that
of IKs channel (gKs), they are values that do not consider
the heterogeneity of ventricular tissue according to the Ten
Tusscher ion model. The electrical conductances of only Ito
and IKs consider the heterogeneity of ventricular tissue. As the
electrical conductance of Ito affects phase 0 of the action potential
generation, we doubled the value of gKs and then increased it
to 4-, 6-, 8-, 10-, 20-, 30-, 40-, 60-, 80-, and 100-fold from the
normal value (gKs = 0.392∗1.3 mS/µF). This was done for creating
a regression model that can cover a wide range from a general

to extreme situation. Second, we varied stimulus S2 of the S1–S2
protocols in the reentry generation simulation to generate various
electrical patterns. S2 affected the entire left ventricle, lower parts
of the left ventricle, entire right ventricle, or lower parts of the
right ventricle (Figure 2A).

Quantification of Electrical and
Mechanical Characteristics During the
Ventricular Tachyarrhythmia
The following four values were used to quantify the various
electrical patterns during the occurrence of tachyarrhythmia.

1. APD: The APD was obtained by measuring the time it
took from depolarization to 90% repolarization of the
myocardial cells in one cycle. Supplementary Figure
S1B shows the action potential shape from 16,000 to
18,000 ms during sustained reentry. The APD during
tachyarrhythmia was calculated over 10 s at the same
position (center) in each case to consider the dramatically
changed electrical excitation. If the action potential cycles
were generated 10 times during tachyarrhythmia, the APD
was also measured 10 times. Finally, the APD during
reentry was averaged and used for regression analysis.

Dominant frequency: We performed frequency analysis using
the membrane potential signals obtained at each node of the
ventricular model during reentry. The frequency of the highest
power band was defined as the dominant frequency (Ng et al.,
2006). Frequency analysis was performed at a sampling frequency
of 0.01 Hz using the fast Fourier transform function in MATLAB.
The dominant frequency value in the case of tachyarrhythmia was
the mean value of the dominant frequency calculated at all nodes.

1. PS: To detect the PS of the reentrant waves, we converted
the membrane potential information obtained at each node
of the ventricular model into phase information in the
phase variable state-space using Equation 12 (Iyer and
Gray, 2001).

θ
(
x, y, z, t

)
= arctan2

(
V
(
x, y, z, t + τ

)
− Vmean

V
(
x, y, z, t

)
− Vmean

)
(12)

Here, arctan2 is the arctan function that considers the
quadrant and returns a phase value between –π and + π. τ

is the time delay for calculating the phase of each node and
was set to 10 ms in this study. This is equivalent to the time
resolution of the three-dimensional result files obtained through
the electrophysiological simulation and was set considering
computational efficiency because we used a high-resolution
ventricular model consisting of 619,360 nodes. Vmean refers to
the ideal origin mentioned in the prior study of Iyer and Gray
(2001). In this study, we used the mean value of the membrane
potential at time t when reentry occurred. The PS is the point at
which the connectivity of the excitation wave’s phase is undefined.
Therefore, the point at which the sum of the phase differences
in the vicinity became ±2π was detected, and it was considered

Frontiers in Physiology | www.frontiersin.org 5 March 2020 | Volume 11 | Article 220

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00220 March 21, 2020 Time: 16:2 # 6

Jeong and Lim Electrical Instability and Mechanical Contractility

FIGURE 2 | S1–S2 protocols according to S2 stimulus parts. (A) S2 stimulus parts to generate the various ventricular tachyarrhythmia conditions; (B) example of
reentry generated when stimulus S2 is given to lower part of left ventricle.

to be a PS (Figure 3A and Equation 13). The phase difference at
each point was calculated using Equation 14, and it showed a wide
distribution range [−π, π).

Sum of 1θ =

4∑
n=1

1θn =

{
± 2π, PS point

0, Otherwise
(13)

Phase Difference (PD) =


θ1 − θ2, |PD| ≤ π

θ1 − θ2 − 2π, |PD| > π, PD > 0
θ1 − θ2 + 2π, |PD| > π, PD < 0

(14)
Then, we detected the PS points in the ventricular geometry,

as shown in Figure 3B. To quantify the PSs, we counted the
number of PSs, which were detected in the ventricles during
reentry according to time, and averaged them. Finally, the average
number of PSs during reentry was used for regression analysis.

1. Filaments: Filaments were detected by applying the method
proposed by Fenton and Karma, which detects filaments in
a three-dimensional cube (Fenton and Karma, 2002). Then,
we found a point satisfying the iso-potential condition
both temporally (Equation 15) and spatially (Equation
16) simultaneously and we considered it to represent
the filaments.

dVm

dt
= 0 (15)

Vn
m = Vn+1

m = Viso (16)

In the equations, V iso was set between −75 and −10 mV,
depending on the mean range of the membrane potentials of
the PSs detected at the ventricular tissue surface. This considers
the characteristic that filaments internally connect the PSs to
the surface. Furthermore, the points satisfying the spatial iso-
potential condition were regarded as the points where changes in
the potentials at the centers (p, q, and r) of tetrahedral elements
were the same (Equations 17 and 18, and Figure 3A).

Vn
m = p · Vn

x,y,z + q · Vn
x+1,y,z + r · Vn

x,y+1,z+

(1− p− q− r) · Vn
x,y,z+1 (17)

Vn+1
m = p · Vn+1

x,y,a + q · Vn+1
x+1,y,z + r · Vn+1

x,y+1,z+

(
1− p− q− r

)
· Vn+1

x,y,z+1 (18)
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FIGURE 3 | Detection of PS and filament. (A) Detecting PS and filament in tetrahedral elements; (B) detected PS (red elements) and filament (green elements) in
ventricular model, which consists of tetrahedral elements.

Here p, q, and r all have values between (0 and 1). To
determine the center point of the tetrahedral elements, we set the
values of p, q, and r to 0.5. Then, we could detect the filaments
in the ventricular geometry, as shown in Figure 3B. To quantify
the filaments, we counted the number of filaments, which were
detected in the ventricles during reentry according to time, and
averaged them. Finally, the average number of filaments during
reentry was used for regression analysis.

We used the stroke volume (SV) and amplitude of the tension
(ampTens) as quantitative values to evaluate the contraction
efficiency according to various electrical patterns.

1. SV: The volume of the left ventricle was measured during
reentry using the electromechanical model coupled with
a cardiovascular model. We defined a meaningful period,
which is the time when blood actually flows in and out of
the left ventricle during tachyarrhythmia (Supplementary
Figure S4). During the meaningful period, we measured
the end-diastolic volume, which is the volume right before
when the ventricular volume maximally increased and
then decreased, and the end-systolic volume, which is
the volume right before when the ventricular volume
minimally decreased and then increased. The SV values
were obtained by taking the difference between the
volumes at the end of the diastole and at the end
of the systole during this period. Then, we used the

average SV value as the quantitative value of contractility
during tachyarrhythmia.

2. ampTens: We measured the standard deviation of the
myocardial tension according to the various electrical
patterns generated by tachyarrhythmia using the
electromechanical model. The contraction and relaxation
of the myocardium were determined as the quantitative
values of contractility during tachyarrhythmia. Therefore,
the amplitude of the tension was used as the value
representing contractility. For this reason, we calculated
the mean value of the standard deviation of the tension
obtained at all nodes of the human ventricular model.

Determination of Electrical Parameters
Influencing Mechanical Contractility
We performed the regression analysis using the “IBM SPSS
statistics 25” program to identify the electrical parameters
affecting mechanical contractility during tachyarrhythmia. We
used four electrical parameters as the predictors for regression
analysis, namely the APD, dominant frequency, PS, and
filaments. As the unit of each electrical value is different, we
standardized the electrical parameters so that the mean was
zero and the variance was one. The SV and ampTens were
set as the dependent variables. The dependent variables were
transformed such that the mean and variance of error were zero
and one, respectively. Then, we created regression modes for
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predicting the SV and ampTens from the electrical parameters.
Using the “enter” regression as the estimation method, it was
possible to confirm the influence of specific independent variables
under the control of other independent variables. To test the
fitness of the regression model, we performed the analysis of
variance (ANOVA) tests.

First, we carried out correlation analyses to confirm
the individual relationships between the variables. Then,
single regression analyses were performed to identify the
individual influences of the electrical parameters on cardiac
contractility. Furthermore, we conducted multiple regression
analyses to determine the electrical parameters influencing
mechanical contraction when all the electrical variables were
present concurrently. We performed collinearity tests by
calculating the variance inflation factor (VIF) and confirmed
its potential influence on the models. Then, we identified
and corrected the correlations between predictors that could
negatively impact the results of the multiple regression analysis
based on the VIF values. After eliminating the predictors
with collinearity, we derived multiple regression models and
compared the effects of the independent electrical variables on
cardiac dynamics.

RESULTS

Results of Electromechanical Simulation
We implemented 48 types of tachyarrhythmia signals by
changing the conduction characteristics of the IKs channel,
which has the greatest effect on the electrical activity of the
ventricular tissue and applying four types of reentrant wave
generation methods. From the electrophysiological simulation,
we obtained the electrical instability parameters under the
48 types of tachyarrhythmia conditions. The following dataset
comprising the electrical instability parameters was obtained
through the simulation: The APD is 131.02 ± 50.47 ms
(Supplementary Figure S1); the average of the local dominant
frequencies is 5.59 ± 1.15 Hz (Figure 4 and Supplementary
Figure S2); the average number of PSs is 49.98 ± 24.49,
and the average number of filaments is 12,401.1 ± 7,902.9
(Figure 5 and Supplementary Figure S3). The dataset for the
mechanical parameters obtained through the electromechanical
simulation is as follows: The average SV is 0.38 ± 0.56 mL
(Supplementary Figure S4), and the average ampTens is
0.41± 0.38 kPa (Supplementary Figure S5).

Correlations Between Individual
Parameters
Figure 6 shows the individual correlations between the electrical
and mechanical parameters. Among the parameters representing
electrical phenomena, the linear relationship between the APD
and SV was the strongest (R = 0.859, p-value < 0.05). The
dominant frequency has a strong negative linear correlation
with the SV, and the SV decreases with the dominant frequency
(R = −0.809, p-value < 0.05). The next strongest correlation is
between the filaments and SV (R = 0.713, p-value < 0.05). As for

FIGURE 4 | Dominant frequency contours: WT, wild type; GKs4, GKs8, and
GKs30, conditions under which the conductance of IKs channel doubled and
increased to 4-, 8-, and 30-fold; LV, LLV, and RV are the conditions under
which stimulus S2 was given to the whole left ventricle, lower part of the left
ventricle, and the whole right ventricle, respectively.

FIGURE 5 | Membrane voltage contours with phase singularities and
filaments: WT, wild type; GKs4, GKs8, GKs30, the conditions that the
conductance of IKs channel increased doubled, 4-, 8-, and 30-fold,
respectively; LV, LLV, and RV, the conditions that stimulus S2 was given to
whole left ventricle, the lower part of left ventricle, and the whole right
ventricle, respectively.

the PS, its correlations with the SV is lower compared to the other
electrical parameters (R = 0.305, p-value < 0.05; Table 1).

A single regression model has derived to observe the
sensitivity of the SV according to changes in the electrical
parameters (Table 2). Variations in the SV according to unit
changes in the electrical parameters are the highest at the
dominant frequency (unstandardized B coefficient = −0.393,
p-value < 0.05) and lowest at the filaments (unstandardized
B coefficient = 5.059E-5, p-value < 0.05). The sensitivity of
the SV according to one unit change in the APD is 0.010 (p-
value < 0.05), and that of the SV according to one unit change
in the PS is 0.007 (p-value < 0.05).

Standardized regression coefficients are used to relatively
compare the individual influences of the electrical parameters
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FIGURE 6 | Scatter plots of electrical parameters and mechanical parameters.
APD, action potential duration; DF, dominant frequency; PS, the number of
phase singularities; Filament, the number of filaments; SV, stroke volume.

on the SV using different units of measure. The APD has the
statistically strongest influence on the SV (standardized beta
coefficient = 0.859, p-value < 0.05), and the effect of the PS is the
weakest (standardized beta coefficient = 0.305, p-value < 0.05).
The second most influential parameter is the dominant frequency
(standardized beta coefficient = −0.809, p-value < 0.05). The
third most influential parameter is the filament (standardized
beta coefficient = 0.713, p-value < 0.05).

It is possible to statistically predict the SV using a single
regression equation relating to each electrical parameter and the
SV. Among the four electrical parameters, the accuracy (R2)
in predicting the SV is the highest at 73.8% (p-value < 0.05)
using the APD, which has the highest correlation with the SV.
The standard error (SE) between the stochastically predicted
SV using the single regression equation and predicted SV
through deterministic simulation is ±0.290 mL. The accuracy
of predicting the SV based on the dominant frequency is 65.5%
(p-value < 0.05), and that using the filament is 50.9% (p-
value < 0.05). The accuracy of stochastically estimating the SV
using the PS is statistically the lowest, at 9.3% (p-value < 0.05).

Ventricular ejection during tachyarrhythmia is very irregular.
Consequently, it is difficult to determine a meaningful ejection
period as the severity of tachyarrhythmia increases. Therefore,
we used the ampTens in the myocardium to obtain more
objective and quantitative values as parameters to estimate
mechanical contractility in tachyarrhythmia. Among the
electrical parameters, the APD and dominant frequency are more
highly correlated with the myocardial ampTens than with the SV
during reentry (Figure 4 and Table 1). Similar to the SV, there is a
statistically significant positive correlation between the ampTens

and APD, which is the highest at −0.930 (p-value < 0.05).
Furthermore, the myocardial ampTens has a statistically strong
negative correlation with the dominant frequency (Pearson
correlation coefficient =−0.907, p-value < 0.05). The correlation
between the filament and ampTens is moderate at 0.507 (p-
value < 0.05), which is lower than the correlation between the
filament and SV. The PS do not have any statistical correlation
with the ampTens (p-value = 0.161).

Single regression models have derived from the individual
relationships between the ampTens and three electrical
parameters representing electrical activity, excluding the PS
(three parameters having statistically significant relationships
with ampTens), are able to determine the effects of the
APD, dominant frequency, and filament on myocardial
tension (Table 3). The variation in myocardial ampTens
according to unit changes in the three electrical parameters
is the largest for a unit change in the dominant frequency
(unstandardized B coefficient = −0.299, p-value < 0.05). The
change in the ampTens due to a unit change in the APD
is the second largest (unstandardized B coefficient = 0.07,
p-value < 0.05), and the change in myocardial tension due to
a unit change in the filament is the smallest (unstandardized B
coefficient = 2.441E-5, p-value < 0.05). These results are similar
to the variations observed in the SV according to unit changes in
each electrical parameter.

We have compared the relative influence of the three electrical
parameters on the myocardial ampTens. Statistically, the most
influential independent variable is the APD (standardized
beta coefficient = 0.930, p-value < 0.05), followed by the
dominant frequency (standardized beta coefficient = −0.907,
p-value < 0.05). The relative sensitivity of the ampTens to the
APD and dominant frequency is higher than the sensitivity of
the SV to these variables. However, the standardized regression
coefficient of the filament is 0.507 (p-value < 0.05), and the
relative sensitivity of the ampTens to the filament is lower
than that of the SV.

We have estimated the ampTens through a single regression
model derived using the three electrical parameters individually,
excluding the PS. The prediction accuracy of the ampTens
is the highest at 86.6% (p-value < 0.05), obtained from
the single regression model using the APD as the predictor.
It is possible to predict the ampTens with higher accuracy
compared to the SV using the APD. The SE between the
ampTens stochastically predicted from the APD and that
deterministically predicted from tachyarrhythmia simulations is
±0.141 kPa. Furthermore, the single regression model using
the dominant frequency as the predictor of the ampTens
has a high prediction accuracy of 82.2% (p-value < 0.05),
which is higher than the accuracy obtained when predicting
the SV using the dominant frequency. However, when the
ampTens is stochastically estimated using the filament as the
predictor, the accuracy is lower than that of the predicted SV
(R2 = 0.257, p-value < 0.05). This is statistically less accurate
than the single regression model using either the APD or
dominant frequency.

Further, there is a strong negative correlation between the
dominant frequency and APD, with a correlation coefficient of
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TABLE 1 | Correlation coefficients.

SV Tension APD DF PS Filament

Pearson correlation coefficient (R) SV 1.000 0.887 0.859 −0.809 0.305 0.713

Tension 0.887 1.000 0.930 −0.907 0.146 0.507

APD 0.859 0.930 1.000 −0.991 0.284 0.577

DF −0.809 −0.907 −0.991 1.000 −0.268 −0.533

PS 0.305 0.146 0.284 −0.268 1.000 0.795

Filament 0.713 0.507 0.577 −0.533 0.795 1.000

p-value SV . 0.000 0.000 0.000 0.018 0.000

Tension 0.000 . 0.000 0.000 0.161 0.000

APD 0.000 0.000 . 0.000 0.025 0.000

DF 0.000 0.000 0.000 . 0.033 0.000

PS 0.018 0.161 0.025 0.033 . 0.000

Filament 0.000 0.000 0.000 0.000 0.000 .

N SV 48 48 48 48 48 48

Tension 48 48 48 48 48 48

APD 48 48 48 48 48 48

DF 48 48 48 48 48 48

PS 48 48 48 48 48 48

Filament 48 48 48 48 48 48

SV, stroke volume; tension, standard deviation of tension; APD, action potential duration; DF, dominant frequency; PS, the number of phase singularities; Filament, the
number of filaments; N, the quantity of data.

TABLE 2 | Single-variable regression models for predicting SV.

Model Unstandardized coefficient Standardized coefficient t Sig. t (p-value) Model summary

B SE Beta R2 F Sig. F

A1 (Intercept) −0.868 0.117 −7.390 0.000 0.738 129.7 0.000

APD 0.010 0.001 0.859 11.389 0.000

A2 (Intercept) 2.583 0.240 10.573 0.000 0.655 87.4 0.000

DF −0.393 0.042 −0.809 −9.351 0.000

A3 (Intercept) 0.034 0.179 0.188 0.852 0.093 4.7 0.035

PS 0.007 0.003 0.305 2.170 0.035

A4 (Intercept) −0.245 0.107 −2.282 0.027 0.509 47.6 0.000

Filament 5.059E-5 0.000 0.713 6.902 0.000

APD, action potential duration; DF, dominant frequency; PS, the number of phase singularities; Filament, the number of filaments; B, beta coefficient; SE, standard error;
t, T-statistics; sig.t, significant value of T-statistics; R2, coefficient of determination; F, F-statistics; sig. F; significant value of F-statistics. Model A1 is used for the APD,
Model A2 is used for the dominant frequency, Model A3 is used for phase singularities, and Model A4 is used for length of filaments considered as independent variables,
respectively.

TABLE 3 | Single-variable regression models for predicting the tension amplitude.

Model Unstandardized coefficient Standardized coefficient t Sig. t (p-value) Model summary

B SE Beta R2 F Sig. F

B1 (Intercept) −0.510 0.057 −8.931 0.000 0.866 296.8 0.000

APD 0.007 0.000 0.930 17.227 0.000

B2 (Intercept) 2.084 0.117 17.791 0.000 0.822 212.9 0.000

DF −0.299 0.021 −0.907 −14.590 0.000

B3 (Intercept) 0.107 0.090 1.188 0.241 0.257 15.90 0.000

Filament 2.441E-5 0.000 0.507 3.987 0.000

APD, action potential duration; DF, dominant frequency; PS, the number of phase singularities; Filament, the number of filaments; B, beta coefficient; SE, standard error;
t, T-statics; sig.t, significant value of T-statistics; R2, coefficient of determination; F, F-statistics; sig. F; significant value of F-statistics. Model B1 is used for the APD, Model
B2 is used for the dominant frequency, and Model B3 is used for the number of filaments as an independent variable.
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−0.991 (p-value < 0.05). This correlation is higher than that
observed in the relationships between the APD and dominant
frequency with the SV and ampTens. Furthermore, there is
a statistically strong positive correlation between the PS and
filament (R = 0.795, p-value < 0.05). The correlation coefficient
between these parameters is also higher than their correlation
coefficients with the SV or ampTens.

Multivariable Regression Analyses to
Discover the Most Influential
Electrophysiological Feature for
Estimating the Severity of VF
We have performed the following multivariable regression
analyses between the electrical parameters (APD, dominant
frequency, PS, and filament) and mechanical parameters (stroke
volume and ampTens) using 48 types of tachyarrhythmia
simulation data: (1) between the four electrical parameters
and SV (Model 1); (2) between three electrical parameters
and the SV [APD was statistically excluded (Model 2)]; (3)
between the four electrical parameters and ampTens (Model 3);
(4) between three electrical parameters (APD was statistically
excluded) and ampTens (Model 4). Table 4 shows summaries of
all regression models.

Although not all the four electrical parameters have
shown a linear correlation with the SV (PS is not linearly
related to SV in the correlation analysis, see Table 1), we
are able to build a multivariable regression model with a
statistical accuracy of 89.2% (Model 1, p-value < 0.05) by
concurrently considering the four electrical parameters.
The mean error between the stochastically predicted SV
using Model 1 and the deterministically predicted SV via
simulation is ±0.137 mL. When the influences of the four
electrical parameters are considered simultaneously, we
have observed that the APD has the greatest effect on the
SV (standardized beta coefficient = 1.983, p-value < 0.05),
followed by the dominant frequency (standardized beta
coefficient = 1.371, p-value < 0.05), filament (standardized beta
coefficient = 0.582, p-value < 0.05), and PS (standardized beta
coefficient = −0.354, p-value < 0.05). However, the APD and
dominant frequency showed very high multicollinearity (79.032
VIF for APD and 71.137 VIF for the dominant frequency; see
Table 5).

To solve the multicollinearity affecting Model 1, we have
removed the APD based on statistical results; according to
these results, the APD is the electrical activity variable with
the highest VIF index. Then, the dominant frequency, PF,
and filament were used to determine if the SV has been
predictable (Model 2). The accuracy of the multiple regression
model derived from Model 2 is 84.1% (p-value < 0.05), which
is lower than the accuracy of regression Model 1, but the
VIF indices of all three variables have decreased to below
the maximum permissible value. When considering the three
electrical activity variables used in Model 2, the variable with
the highest influence on the SV is the filament (standardized
beta coefficient = 0.853, p-value < 0.05), followed by the PS
(standardized beta coefficient = −0.505, p-value < 0.05) and

dominant frequency (standardized beta coefficient = −0.490,
p-value < 0.05, Table 5). The mean error between the statistically
predicted SV using Model 2 and that measured through
deterministic simulation is±0.159 mL.

When considering the four electrical activity variables at the
same time, we are able to predict the ampTens with an accuracy
of 89.1% (p-value < 0.05). In Model 3, the electrical parameter
that had the largest influence on the myocardial ampTens is
the APD (standardized beta coefficient = 1.679, p-value < 0.05),
followed by the PS (standardized beta coefficient = −0.226,
p-value < 0.05). Of the four electrical activity variables, the
dominant frequency and filament do not significantly affect the
myocardial ampTens (p-values = 0.067 and 0.270, respectively).
In this case, the mean error between the stochastically predicted
ampTens using Model 3 and the deterministically predicted
ampTens through simulation is ±0.089 kPa. However, as
discussed for Model 1, the multicollinearity between the APD and
dominant frequency used in Model 3 is very high.

We have derived a regression model similar to Model 2 for
predicting the myocardial ampTens by excluding the APD as
an electrical activity variable for solving the multicollinearity
issue between the APD and dominant frequency (Model 4).
Accordingly, the VIF indices of all the electrical activity variables
used in Model 4 are reduced to below the permissible value, and
all three electrical activity variables significantly have affected the
myocardial tension (p-value of all variables < 0.05). The most
influential variable on the ampTens is the dominant frequency
(standardized beta coefficient =−0.813), followed by the filament
(standardized beta coefficient = 0.354) and PS (standardized beta
coefficient = −0.353). In Model 4, the prediction accuracy for
the myocardial ampTens is 85.6% (p-value < 0.05). The mean
error between the stochastically predicted ampTens using Model
5 and deterministically predicted ampTens through simulation
is±0.145 kPa.

DISCUSSION

In this study, we have identified the most influential electrical
parameter on mechanical contraction among the representative
electrical parameters, such as the APD, dominant frequency, PSs,
and filaments under tachyarrhythmia conditions. Furthermore,
we stochastically have identified the individual and integrative
correlations between the electrical phenomena and mechanical
contractility, which were predicted using deterministic models.
We used the electromechanical models of a three-dimensional
ventricle developed by our team and simulated the ventricular
excitation–contraction phenomenon during tachyarrhythmia.
The main findings of this study are as follows.

(1) We successfully have simulated the electrical excitation-
mechanical contraction of the ventricles under a total of
48 different types of tachyarrhythmia, which are induced
through a cell membrane model with 12 different action
potentials and four reentrant wave generation methods.

(2) The APD, dominant frequency, and filament, excluding
the PS, present statistically significant correlations with the
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TABLE 4 | Regression model summary.

Model R Adjusted R2 SE R2 change F df1 df2 Sig. F (p-value) Durbin–Watson

1 0.949 0.892 0.18438 0.901 97.845 4 43 0.000 1.797

2 0.923 0.841 0.22343 0.851 83.932 3 44 0.000 1.415

3 0.949 0.891 0.12555 0.901 97.290 4 43 0.000 2.001

4 0.930 0.856 0.14467 0.865 93.834 3 44 0.000 1.781

R, correlation coefficient; R2, coefficient of determination; SE, standard error of estimation; F, F-statistics; df, degrees of freedom; Sig. F, significant value of F-statistics.
In Model 1, all electrical variables were used to predict SV. In Model 2, three electrical variables (APD was excluded) were used to predict SV. In Model 3, all electrical
variables were used to predict tension. In Model 4, all electrical variables except APD were used to predict tension.

TABLE 5 | Significance of independent variables.

Model Unstandardized coefficient Standardized coefficient t Sig. t (p-value) Collinearity statistics

B SE Beta Tolerance VIF

1 (Intercept) −6.339 1.705 −3.717 0.001

APD 0.022 0.005 1.983 4.649 0.000 0.013 79.032

DF 0.666 0.197 1.371 3.389 0.002 0.014 71.137

PS −0.008 0.002 −0.354 −3.972 0.000 0.290 3.450

Filament 4.128E-5 0.000 0.582 5.238 0.000 0.186 5.362

2 (Intercept) 1.540 0.229 6.735 0.000

DF −0.238 0.035 −0.490 −6.788 0.000 0.650 1.539

PS −0.012 0.002 −0.505 −5.021 0.000 0.334 2.992

Filament 6.053E-5 0.000 0.853 7.451 0.000 0.258 3.881

3 (Intercept) −2.558 1.161 −2.203 0.033

APD 0.013 0.003 1.679 3.927 0.000 0.013 79.032

DF 0.252 0.134 0.763 1.881 0.067 0.014 71.137

PS −0.004 0.001 −0.226 −2.525 0.015 0.290 3.450

Filament 5.995E-6 0.000 0.124 1.117 0.270 0.186 5.362

4 (Intercept) 1.973 0.148 13.324 0.000

DF −0.268 0.023 −0.813 −11.816 0.000 0.650 1.539

PS −0.005 0.001 −0.353 −3.687 0.001 0.334 2.992

Filament 1.707E-5 0.000 0.354 3.245 0.002 0.258 3.881

B, beta coefficient; SE, standard error; t, T-statistics; sig. t, significant value of T-statistics; VIF, variance inflation factor; APD, action potential duration; DF, dominant
frequency; PS, the number of phase singularities; Filament, the number of filaments. In Model 1, all electrical variables were used to predict SV. In Model 2, three electrical
variables (APD was excluded) were used to predict SV. In Model 3, all electrical variables were used to predict tension. In Model 5, electrical variables except APD were
used to predict tension.

SV the myocardial ampTens (Table 1). Among them, the
APD has the greatest effect on the two dependent variables
(changes in SV and myocardial ampTens), which represent
ventricular ejection (standardized beta coefficient: 0.859 of
SV, 0.930 of ampTens; Tables 2, 3).

(3) Multicollinearity between the APD and dominant
frequency is observed in the multiple regression models.
For this reason, we have rederived the multiple regression
models to consider only three electrical parameters
(dominant frequency, PS, and filament) based on statistical
results. The dominant frequency, PS, and filament have
statistically significant correlations with the SV and
myocardial ampTens (Table 4). In particular, the filaments
produce the highest change in the SV (standardized beta
coefficient: 0.853), and the dominant frequency has the
largest effect on the myocardial ampTens (Standardized
beta coefficient:−0.813; Table 5).

Changes in electrical conductivity in the potassium channel
shorten the APD of myocardial cells. When the cellular
depolarization period is shorter than that of a normal cell,
the opening time of the voltage-dependent L-type calcium
channel is also shortened. Accordingly, the intracellular calcium
concentration decreases, and the cross-bridge formation rate
of the myocardial fibers that depends on calcium dynamics
decreases, causing a reduction in the contractility of the
myocardial cells. Reduced contractility in cardiomyocyte causes
decreases in left ventricular ejection and the SV. The complexity
of the reentrant wave during tachyarrhythmia negatively affects
the ventricular rate. When spiral-wave break-up occurs, multiple
reentrant waves (chaotic reentrant waves) are formed, and cardiac
output is significantly reduced. A shorter APD is likely to
form a reentrant wave, but the correlation with the complexity
of the reentrant wave has not been elucidated. However, as
observed in Figure 3 and Table 1, the APD has significant
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influences on both the SV and tension, as indicated by statistically
significant correlations.

In this study, we have implemented the ventricular
tachyarrhythmia condition by changing the conductance of
IKs from its normal value to 100-fold. Even though we increased
gKs up to 100-fold to simulate extreme situations, the APD under
the 100-fold-increased gKs condition was 90 ms in the sinus
rhythm and 74 ms during reentry (Supplementary Figure S1).
It is similar to the APDs when the KCNJ2 E299V (72–90 ms)
and KCNQ1 V241F mutations (76 ms) are expressed (Cerrone
et al., 2013; Heikhmakhtiar et al., 2018). In their experiment,
Banville et al. successfully observed the APD variation during
ventricular tachycardia. They reported an average APD of
107 ± 7 ms during ventricular tachycardia, which means our
simulation results include the ventricular tachycardia condition
(Banville et al., 2004).

The dominant frequency at the time of tachyarrhythmia is
higher than that during the sinus rhythm owing to the automatic
depolarization caused by reentrant waves. If the dominant
frequency is above normal, the ventricle does not have enough
time to fully expand and become filled with blood; thus, it
is not possible for it to eject enough blood at the time of
contraction. This mechanism applies not only to the sinus rhythm
but also to the reentrant wave condition. In our previous study,
we found a correlation between the dominant frequency and
ventricular ejection capacity during tachyarrhythmia (Jeong and
Lim, 2018a). Consistent with these results, we confirmed in
this study that the higher the dominant frequency, the lower
is the ventricular ejection capacity based on how the dominant
frequency affects the ampTens.

As shown in prior studies, the ends of a filament, such as an
O-type filament, may be present only in the internal tissue of the
ventricle, rather than on the surface of the ventricle (epicardium
to epicardium, epicardium to endocardium, or endocardium to
endocardium) (Clayton et al., 2006). In such a case, because
a filament is detected therein even if the PS is not present,
the number of filaments can be increased without changing the
number of PSs. Furthermore, because the shape of a filament
is bent or fragmented at the boundary of the ventricular tissue
during reentry break-up, the morphology of the filaments inside
the tissue may be more complicated, even though PSs are present
only at certain positions. Therefore, in this study, a regression
model has been created by distinguishing the PSs and filaments
as separate, independent predictors.

Accordingly, among the four independent variables, the
influence of the APD on the myocardial ampTens and SV is the
statistically most significant (standardized beta coefficient: 0.859
of SV, 0.930 of ampTens). The next most influential factors are the
dominant frequency (standardized beta coefficient:−0.809 of SV,
−0.907 of ampTens) and filament (standardized beta coefficient:
0.713 of SV, 0.507 of ampTens). The PS has a statistically
significant effect on the SV (standardized beta coefficient = 0.305,
p-value < 0.05), but it has no significant effect on the myocardial
ampTens (p-value = 0.161).

We have predicted the SV and myocardial ampTens using
the multiple regression models considering the APD, dominant
frequency, PS, and filament. However, the collinearity indices

of the APD and dominant frequency, i.e., VIF values, are
79.032 and 71.137, respectively, so there is multicollinearity
between the two predictors. Multicollinearity means that a
certain independent variable A has a higher correlation with
another independent variable C than it does with a dependent
variable B. In a collinearity test, the VIF index can be
used to determine the presence of multicollinearity. Here, the
permissible maximum VIF index is 10. If the VIF indices of
any independent variables are 10 or higher, the prediction
result of the multiple regression model can be distorted by the
multicollinearity between the independent variables (Akinwande
et al., 2015). Because the VIF of the APD and dominant
frequency are much higher than the permissible value of
10, we have assumed that the APD has a strong correlation
with the dominant frequency, which is also confirmed by
the significant correlation between them shown in Figure 3
and Table 1.

In this regression model with multicollinearity, it is impossible
to adequately and quantitatively predict the influence of each
independent variable on a dependent variable. Therefore, we
have eliminated the APD (with the highest VIF index) from
the independent variables and rederived the multiple regression
model. In the regression model excluding the APD, the VIF of the
dominant frequency has significantly reduced to 2.992. This has
reconfirmed that a strong correlation exists between the APD and
dominant frequency.

Myocardial tissue composed of cells with a shortened APD
has a shorter conduction wavelength than that of myocardial
tissue composed of normal cells, and the rotational rate of reentry
becomes faster in the former. This causes rapid oscillation of
the action potentials of ventricular tissue cells, leading to an
increase in the mean frequency of the entire ventricle. Thus, the
dominant frequency is more directly related to the APD than
to the contractility of the heart. This relationship between these
two electrical parameters indicates multicollinearity. Eventually,
this means that the stochastically predicted SV and myocardial
ampTens predicted using the multiple regression models, namely
Model 1 and Model 3, may be distorted by the multicollinearity
between the APD and dominant frequency.

In addition, there is also a direct correlation between the
PS detected at the center of the reentry rotor and filament
present within ventricular tissue during tachyarrhythmia, which
indicated slight multicollinearity between these two electrical
parameters. However, their VIF values are below the permissible
maximum value of 10. Therefore, we have considered that
the multicollinearity between the PS and filament does not
significantly affect the predictions of the SV and myocardial
ampTens in any of the models (Models 1 through 4).

As a result, using the multiple regression models with the
dominant frequency, PS, and filament as predictors based on
the statistical results, we were able to quantitatively determine
the extent to which each independent variable affected the SV
and ampTens. Even though the same set of electrical parameters
is considered, the influence of the electrical parameters changes
depending on the mechanical parameters being evaluated. The
filament has the highest effect on the SV (standardized beta
coefficient = 0.853), and the dominant frequency has the
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highest effect on the myocardial ampTens (standardized beta
coefficient =−0.813).

In this study, we focused on the statistical analysis of electrical
and mechanical parameters and chose the stochastic model using
three electrical parameters, which are dominant frequency, PS
and filaments, as the optimal model for predicting mechanical
performance during ventricular tachyarrhythmia. However, from
a physiological point of view, the APD is the most influential
electrical parameter (Hille, 1978). Furthermore, individual linear
correlations between the APD and mechanical parameters are
the highest. Accordingly, the accuracy of the multiple regression
model including the APD (Models S1 and S2 in Supplementary
Material) is higher than that of the multiple regression model
including the dominant frequency (R2 scores: 0.866 for SV and
0.885 for ampTens; Supplementary Tables S1, S2). In these
models, the APD has the greatest effect on the myocardial
ampTens (standardized beta coefficient: 0.884), but the number
of filaments has the greatest effect on the SV (standardized beta
coefficient: 0.752).

Despite the direct association between the PS and filament,
their correlations with the SV and ampTens are contradictory in
the case of ventricular tachyarrhythmia. The PS is proportional
to the number of rotors, that is, the number of reentrant
waves because it corresponds to the center of the reentry
rotor during tachyarrhythmia. However, as mentioned earlier,
filaments can be present within the tissue even without
reentrant waves on the ventricular surface; hence, filaments
are related to the size of the vortex, that is, to the length
of the vortex rather than to the number of rotors. The
number of reentrant waves is related to the complexity of
the waves because it is increased by the reentrant break-
up, but there is no close correlation between the reentrant
break-up and magnitude of the vortex. The long length of
the vortex in the reentrant waves means that there are many
myocardial tissues in the same state, indicating that the
ventricular tissue cells are synchronously contracting. In contrast,
ventricular tachyarrhythmia increases the severity of mechanical
contractility when the asynchronous contraction of ventricular
tissue cells occurs. Accordingly, the extended length of the
vortex (the increased number of filaments) during ventricular
tachyarrhythmia has a different meaning regarding the severity
of mechanical contractility.

The myocardial tension refers to the myocyte-level
contractility. However, the stroke volume is a global metric
reflecting the organ-level contractility and is affected by
the myocardial tension. In general, there is a proportional
correlation as follows: tension/after loads ∼ stroke volume. We
demonstrated this correlation from the correlation analysis and
Pearson correlation coefficients, which was 0.887 (p-value < 0.05
in Table 1). Furthermore, the ampTens was obtained by
integrating the tension of whole ventricular cells. Therefore, the
ampTens can reflect the organ-level contractility.

Generally, it is assumed that linear relationships exist
between the parameters to construct the linear regression
models used to determine the individual and integrative
correlations between the electrical and mechanical parameters
during ventricular tachyarrhythmia. However, not all the

electrical parameters used in regression analysis have linear
relationships with the mechanical parameters. To improve
the prediction accuracy of the regression model, we should
consider the non-linear relationships between parameters in
the future. Another assumption is that only cardiac electrical
activation affects mechanical contraction. We did not consider
mechanoelectrical feedback such as stretch-activated channels.
For real-world scenarios, we need to use improved models
including not only electromechanical properties but also
mechanoelectrical feedback.

In the excitation–contraction coupling mechanism of
cardiomyocytes, calcium is involved in the activation of
electrical action potentials and the generation of tension.
when the cell is depolarized, calcium introduced into the
cell and induces the release of calcium from the JSR to
increase the intracellular calcium concentration. Some of the
intracellular calcium binds to Troponin C to form cross-bridge.
Therefore, calcium bound to Troponin C is an important
link between the electrical activity of cardiomyocytes and
the generation of tension (Ji et al., 2015). Some models
including the ventricular models suggested by Shannon
et al. (2004) and Grandi et al. (2010) take this dynamic
calcium buffer into account. However, in this study, the
extracted calcium information from the electrophysiological
simulation is the general calcium buffer. To improve the results,
the model implementing the dynamic intracellular calcium
buffers is needed.

CONCLUSION

We have confirmed that not only the APD but also other
electrical parameters such as the dominant frequency, PS, and
filaments can affect mechanical contractility during ventricular
tachyarrhythmia. In the absence of other electrical parameters,
the APD has the greatest effect on mechanical contractility.
Furthermore, even though the same set of electrical parameters
are considered, the influence of the electrical parameters changes
depending on the mechanical parameters being evaluated.
From a statistical point of view, the filament has the
greatest effect on the SV, and the dominant frequency has
the greatest effect on the myocardial ampTens. Hence, it
is necessary to consider these results for future studies on
ventricular tachyarrhythmia.
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