
ORIGINAL RESEARCH
published: 23 April 2020

doi: 10.3389/fphys.2020.00364

Frontiers in Physiology | www.frontiersin.org 1 April 2020 | Volume 11 | Article 364

Edited by:

T. Alexander Quinn,

Dalhousie University, Canada

Reviewed by:

Wayne Rodney Giles,

University of Calgary, Canada

Raimond L. Winslow,

Johns Hopkins University,

United States

*Correspondence:

Richard H. Clayton

r.h.clayton@sheffield.ac.uk

Specialty section:

This article was submitted to

Cardiac Electrophysiology,

a section of the journal

Frontiers in Physiology

Received: 03 December 2019

Accepted: 30 March 2020

Published: 23 April 2020

Citation:

Coveney S and Clayton RH (2020)

Sensitivity and Uncertainty Analysis of

Two Human Atrial Cardiac Cell Models

Using Gaussian Process Emulators.

Front. Physiol. 11:364.

doi: 10.3389/fphys.2020.00364

Sensitivity and Uncertainty Analysis
of Two Human Atrial Cardiac Cell
Models Using Gaussian Process
Emulators
Sam Coveney and Richard H. Clayton*

Insigneo Institute for in-silico Medicine and Department of Computer Science, University of Sheffield, Sheffield,

United Kingdom

Biophysically detailed cardiac cell models reconstruct the action potential and calcium

dynamics of cardiacmyocytes. They aim to capture the biophysics of current flow through

ion channels, pumps, and exchangers in the cell membrane, and are highly detailed.

However, the relationship between model parameters and model outputs is difficult to

establish because the models are both complex and non-linear. The consequences of

uncertainty and variability in model parameters are therefore difficult to determine without

undertaking large numbers of model evaluations. The aim of the present study was to

demonstrate how sensitivity and uncertainty analysis using Gaussian process emulators

can be used for a systematic and quantitive analysis of biophysically detailed cardiac

cell models. We selected the Courtemanche and Maleckar models of the human atrial

action potential for analysis because these models describe a similar set of currents, with

different formulations. In our approach Gaussian processes emulate the main features of

the action potential and calcium transient. The emulators were trained with a set of design

data comprising samples from parameter space and corresponding model outputs,

initially obtained from 300 model evaluations. Variance based sensitivity indices were

calculated using the emulators, and first order and total effect indices were calculated

for each combination of parameter and output. The differences between the first order

and total effect indices indicated that the effect of interactions between parameters was

small. A second set of emulators were then trained using a new set of design data

with a subset of the model parameters with a sensitivity index of more than 0.1 (10%).

This second stage analysis enabled comparison of mechanisms in the two models.

The second stage sensitivity indices enabled the relationship between the L-type Ca2+

current and the action potential plateau to be quantified in each model. Our quantitative

analysis predicted that changes in maximum conductance of the ultra-rapid K+ channel

IKur would have opposite effects on action potential duration in the two models, and this

prediction was confirmed by additional simulations. This study has demonstrated that

Gaussian process emulators are an effective tool for sensitivity and uncertainty analysis

of biophysically detailed cardiac cell models.
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1. INTRODUCTION

The cardiac action potential arises from the movement of ions
through channels, pumps, and exchangers in the cell membrane.
At any instant, the current carried by each ionic species depends
on potential difference across the cell membrane, as well as
ion concentrations and the dynamics of ion channel gating.
The complex interplay of currents produces depolarization
and then repolarization of the membrane, which then acts
to trigger release of Ca2+, initiating mechanical contraction
(Fink et al., 2011).

The first model of the action potential in a cardiac
myocyte was developed over 50 years ago (Noble, 1962),
and since then a series of more detailed models have
been developed as experimental techniques and data have
improved. The present generation of models provide detailed
reconstructions of the cardiac action potential (Fink et al.,
2011), and computational models of cardiac cells and
tissue have become valuable research tools because they
can encode biophysical mechanisms into a quantitative
framework, and so can be used to test and construct hypotheses
(Clayton et al., 2011).

Although these detailed models are capable of simulating the
behavior of real cardiac myocytes, this veracity comes at the price
of complexity. Models of the cardiac action potential typically
comprise a system of coupled, stiff, and non-linear ordinary
differential equations. There are many model parameters and
boundary conditions, which we will refer to as model inputs
from here onward. These model inputs can be derived from
experimental data, using approaches based on those pioneered by
Hodgkin and Huxley in squid giant axon (Hodgkin and Huxley,
1952). However, experimental data are subject to variability and
error arising from both limitations of experimental methods
as well as intrinsic variability in cardiac cells. Some of these
inputs, such as binding affinities and reaction rate constants,
can be considered to have fixed values because they have a

physical basis. However, others, such as maximum ion channel

conductance, depend on the ion channel density in the cell

membrane as well as other factors that are variable. These
quantities may therefore vary from one cell to another, and
even from beat to beat in the same cell. These considerations
underlie three specific problems. First, errors and variability
in data are typically not taken into account when calibrating
model inputs, and taking an average of experimental data can
distort model behavior (Pathmanathan et al., 2015). Second,
data from different sets of experiments can result in different
models of the same cell type. For example, there are several
models of the human atrial action potential, all based on
human data, but which show different types of behavior (Cherry
and Evans, 2008; Wilhelms et al., 2012). Finally, a further
complication arises from the modular nature of cardiac cell
models. The equations for a particular ion channel, pump, or
exchanger are often re-used in different models and so the
provenance of model inputs may be very difficult to establish
(Niederer et al., 2009).

Addressing these problems requires tools and approaches
that can quantify how model behaviors and outputs depend on

model inputs. These include sensitivity analysis, which aims to
quantify the change in model output resulting from changes
in one or more model inputs, and uncertainty analysis, which
considers how uncertain or variable model inputs defined by a
distribution or range of values influence model outputs (Saltelli
et al., 2019). However, the level of detail included in the present
generation of cardiac cell models means that formal sensitivity
and uncertainty analysis is difficult, and so a detailed examination
of how model inputs influence model behavior often relies on
large numbers of numerical simulations where a different set of
inputs is used for each model run (Koivumäki et al., 2014). These
datasets can be used for regression analysis, which enables the
sensitivity of model outputs to changes in model inputs to be
assessed (Sarkar et al., 2012). Another approach is to select a set
of inputs, or population of models, that produce action potentials
in the range of experimental observations (Britton et al., 2013;
Sánchez et al., 2014; Muszkiewicz et al., 2015). A drawback of
these approaches arises from the high dimensional input space
for the models; a very large number of model evaluations is
needed to investigate the input space thoroughly (Clarke et al.,
2008), although recent work indicates that this challenge can
be overcome by constructing new models that are designed for
uncertainty analysis (Pathmanathan et al., 2019).

Methods for sensitivity and uncertainty analysis using
probabilistic approaches have been developed and applied in
areas including climate modeling (Lee et al., 2011, 2013), and are
beginning to be used for cardiac and cardiovascular flow models
(Eck et al., 2016; Mirams et al., 2016). One of these approaches
is to use a Gaussian process (GP) as an emulator or surrogate of
a model.

A GP is a flexible non-parametric regression tool widely used
for machine learning, which effectively interpolates an output
surface. The GP is initially trained using a set of design data
composed of inputs and the desired output. Once trained, a
GP can be evaluated very quickly to estimate an output for a
new and unseen set of inputs, and so can emulate a cardiac
cell model, or simulator (Chang et al., 2015). A GP can treat
uncertainty and variability explicitly, providing a probabilistic
(mean and variance) estimate of the output, and so is an ideal
tool for sensitivity and uncertainty analysis. It can be trained
on a relatively small number of simulator runs, and so offers
advantages over other approaches, such as Monte Carlo methods
that require large numbers of simulator runs (Sánchez et al., 2014;
Melis et al., 2017).

The aim of this study was to extend our previous work on GP
emulators of cardiac cell models (Chang et al., 2015; Johnstone
et al., 2015; Coveney and Clayton, 2018) to demonstrate that this
approach can be used on a larger scale for a systematic sensitivity
and uncertainty analysis of two biophysically detailed models
of the human atrial action potential. Our objectives were (i) to
undertake a comprehensive sensitivity analysis of both models,
taking into account first order effects and interactions; (ii) to
compare sensitivity indices calculated using emulators with those
calculated using a regression technique; (iii) to identify a subset of
model inputs that have the greatest influence on model outputs;
and (iv) to use these inputs to compare the behavior of the two
models quantitatively.
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2. MATERIALS AND METHODS

2.1. Human Atrial Cell Models
Several models of the human atrial action potential have been
developed and are reviewed in detail elsewhere (Cherry and
Evans, 2008; Grandi et al., 2011; Wilhelms et al., 2012; Sánchez
et al., 2014). We selected two models for the present study, both
based on data from human atrial cells. The first model was the
Courtemanche model (Courtemanche et al., 1998). The second
model was an extension of the model developed by Nygren et al.
(1998), with modifications to the IKur and Ito currents as well as
the movement ofNa+ (Maleckar et al., 2009) which we refer to as
theMaleckar model.

We chose these models because both represent the action
potential of human atrial cells, and so have clinical relevance.
They have been used for tissue and whole-organ scale simulations
of atrial fibrillation (McDowell et al., 2011; Krogh-Madsen et al.,
2012; Colman et al., 2013; Tobón et al., 2013). Furthermore,
both models have a comparable set of ion channels, pumps, and
exchangers, but have different representations of intracellular
Ca2+ handling and different action potential shapes (Cherry and
Evans, 2008).

2.2. Model Inputs and Outputs
The Courtemanche and Maleckar cell models include
components that represent membrane electrophysiology as
well as intracellular Ca2+ storage, uptake, and release. We chose
to concentrate on inputs that control the maximum current
density carried by ion channels, pumps, and exchangers in
the cell membrane as well as those that control the rate and
magnitude of uptake and release of intracellular Ca2+. We
also selected the cell capacitance Cm, and the extracellular
concentrations [Na+]o, [K+]o, and [Ca2+]o as additional inputs.
The inputs examined in this study are listed in Table 1, where
the central values given are the default for each model. We used
notation for model inputs and currents as given in the original
manuscripts (Courtemanche et al., 1998; Maleckar et al., 2009),
and as used in the CellML implementations (http://cellml.org).
For example we refer to the HERG current as IKr with maximum
conductance GKr , and the Kv1.5 current as IKur with maximum
conductance GKur .

The rationale for this choice was that each of the selected
inputs can be considered uncertain (i.e., not a physical constant),
yet has a biophysical interpretation. Maximum conductances
of ion channels, pumps, and exchangers depend on protein
expression, and so could be expected to vary within an individual
cell at different times as well as from cell to cell. Cell size and
capacitance vary from cell to cell. This natural variability can
be considered to be aleatoric uncertainty, which is irreducible
(Mirams et al., 2016). On the other hand, the kinetics of
transmembrane currents are related to ion channel biophysics,
and so could be considered epistemic uncertainty, which can in
principle be reduced.

Our analysis proceeded in two stages. In Stage 1 the influence
of all of the inputs listed in Table 1 was examined for a fixed
pacing cycle length of 1,000 ms. In Stage 2, a subset of the inputs
was selected on the basis of their Stage 1 sensitivity index (see

TABLE 1 | Range of inputs used for design data in each cell model.

Input Central value Range Units

COURTEMANCHE MODEL

GNa 7.8 5.85–11.70 (±50%) nS/pF

GK1 0.09 0.045–0.018 (±25%) nS/pF

Gto 0.165 0.0826–0.0330 (±50%) nS/pF

fGKur 1.0 0.50–1.50 (±50%) None

GKr 0.0294 0.0147–0.0441 (±50%) nS/pF

GKs 0.1294 0.0647–0.1941 (±50%) nS/pF

GCa,L 0.1237 0.0619–0.1856 (±50%) nS/pF

Gb,Na 0.0006 0.0003–0.0010 (±50%) nS/pF

Gb,Ca 0.0011 0.0005–0.0017 (±50%) nS/pF

iNaKMax 0.5993 0.2997–0.8990 (±50%) pA/pF

iNaCaMax 1600.0 800.00–2400.0 (±50%) pA/pF

ip,CaMax 0.275 0.1375–0.4125 (±50%) pA/pF

Krel 0.30 0.15–0.45 (±50%) /ms

τtr 180.0 90.0–270.0 (±50%) ms

iupMax 0.005 0.0025–0.0075 (±50%) mM/ms

Kup 0.00092 0.00046–0.0014 (±50%) mM

Cm 100.0 75.0–125.0 (±25%) pF

[Na+]o 140.0 126.0–154.0 (±10%) mM

[K+]o 5.4 4.86–5.94 (±10%) mM

[Ca2+]o 1.8 1.62–1.98 (±10%) mM

MALECKAR MODEL

PNa 0.0018 0.0009–0.0027 (±50%) nL/s

GK1 3.1 2.325–3.875 (±25%) nS

Gt 8.25 4.125–12.375 (±50%) nS

GKur 2.25 1.125–3.375 (±50%) nS

GKr 0.5 0.250–0.750 (±50%) nS

GKs 1.0 0.50–1.50 (±50%) nS

GCa,L 6.75 3.375–10.125 (±50%) nS

Gb,Na 0.0605 0.303–0.909 (±50%) nS

Gb,Ca 0.0590 0.0295–0.0885 (±50%) nS

NaKMax 68.55 34.27–102.82 (±50%) pA

KNaCa 0.0750 0.0375–0.1125 (±50%) pA/mM4

ip,CaMax 4.0 2.0–6.0 (±50%) pA

αrel 200,000 100,000–300,000 (±50%) pA/mM

τtr 0.01 0.005–0.015 (±50%) s

iupMax 28,00 1,400–4,300 (±50%) pA

Kcyca 0.0003 0.00015–0.00045 (±50%) mM

Ksrca 0.5 0.25–0.75 (±50%) mM

Kxcs 0.4 0.2–0.6 (±50%) Dimensionless

Cm 50 37.5–62.5 (±25%) pF

[Na+]o 140.0 126.0–154.0 (±10%) mM

[K+]o 5.4 4.86–5.94 (±10%) mM

[Ca2+]o 1.8 1.62–1.98 (±10%) mM

below), and a new set of emulators was built using this subset as
inputs. As for Stage 1, the simulations in Stage 2 were paced at a
fixed pacing cycle length of 1,000 ms for 39 beats, followed by an
S2 stimulus. The diastolic interval (DI) of the S2 beat in the S1–S2
pacing sequence was used as an additional input.

Cardiac cell models produce an output that is a time series
of states. Of these, membrane voltage Vm and intracellular
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FIGURE 1 | Action potential biomarkers. Nine action potential biomarkers were used as outputs to characterize each simulator run. (A) Courtemanche model, (B)

Maleckar model. Biomarker labels are a: dV/dtmax , b: Vmax , c–f: V20,V40,V60, and V80, g: APD50, h: APD90, i: RestVm. Ca
2+
max and Ca2+min not shown.

Ca2+ concentration [Ca2+]i describe the time course of action
potentials and Ca2+. To investigate how cell model inputs
influence action potential shape, we selected nine features of the
action potential that quantify its shape, based on biomarkers used
in related work (Britton et al., 2013; Sánchez et al., 2014) as well
as the minimum and maximum [Ca2+]i. These eleven outputs
are shown in Figure 1 and are listed below.

• dVm/dtmax—Maximum slope of the action potential upstroke.
• Vmax—Peak voltage of the action potential.
• V20,V40,V60, andV80—Membrane voltagemeasured at 20, 40,

60, and 80% of APD90.
• APD50 and APD90—Action potential duration at 50 and 90%

of repolarization.
• RestVm—Resting membrane potential, calculated as the

average membrane voltage over a 10 ms period, 100 ms prior
to the action potential upstroke.

• Ca2+min and Ca2+max—Minimum and maximum intracellular
[Ca2+]i.

2.3. Model Implementation
Both cell models were implemented in Matlab (Mathworks Inc.),
using Matlab code automatically generated from the CellML
repository (http://cellml.org). The models were solved using the
ode15s time adaptive solver for stiff systems of ODEs with
the relative and absolute tolerance both set to 10−6, and the
maximum time step set to 0.5 ms.

To ensure that both cell models remained stable over the
range of inputs used to train the GP emulators, we made some
small modifications. Previous studies (e.g., Wilhelms et al., 2012)
have identified an instability in the Courtemanche model that
arises from a gradual drift in the intracellular concentrations
[Na+]i and [K+]i. We therefore fixed [Na+]i and [K+]i at their
default initial values of 11.17 and 139.00 mM, respectively in the
Courtemanche model implementation. In the Maleckar model,
we fixed the IK,Ach current to zero.

For each run, action potentials were initiated by an inward
current of 2,000 pA delivered for 2 ms in the Courtemanche
model, and 750/Cm pA/pF for 6 ms in the Maleckar model. In
Stage 1, each run comprised 40 action potentials at a cycle length
of 1,000 ms, with a check to ensure that APD90 had reached
steady state. In Stage 2, each run was composed of 39 S1 action
potentials at a cycle length of 1000 ms and a final S2 stimulus
delivered at an S1S2 interval determined by the APD90 of the final
S1 beat, plus an offset of 10 ms, plus a diastolic interval (DI) with
a range of 50–450 ms sampled using a Latin hyper-cube design
with the other selected inputs as described below.

2.4. Gaussian Process Emulators
Our overall approach is described in detail in a previous paper
(Chang et al., 2015). We treat the cardiac cell models as
simulators which produce a vector of model outputs ys as a
function of a vector ofmodel inputs (parameters) x such that ys =
fs(x). An emulator is then a statistical model of the simulator,
sometimes known as a meta-model, a surrogate model, or a
response surface model. The emulator approximates the model
as ye = fe(x), where the emulator output approximates the
simulator output ye ≈ ys for a given input x.

In the present study we specified the emulator as a GP, where
the GP hyperparameters are optimized using a set of simulator
runs called design data. When the GP has been trained, the
posterior prediction ye at an input x∗ can be evaluated, which
is a probability density with an expectation and a variance.
The variance for the prediction ye expresses uncertainty in the
prediction of the simulator behavior at x∗ (Oakley and O’Hagan,
2002, 2004).

2.5. Simulator Runs for Emulator Design
Data
For Stage 1 we generated design data from 300 runs of each cell
model implemented as described above. For each simulator run,
a different set of inputs was generated using an optimized Latin
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hyper-cube design. We chose a range of variation that was a
trade off between examining the effect of co-variation in model
inputs while minimizing the number of model runs resulting in
unphysiological behavior. We selected inputs within a range of
±50% of the central values (model defaults) given in Table 1

(i.e., from central value × 0.5 to central value × 1.5), except
for GK1, Cm, and extracellular ion concentrations. To reduce the
incidence of unphysiological behavior (see below), these inputs
had ranges of ±25, ±25, and ± 10%, respectively. Each input
was scaled to vary between [0 . . . 1] over the designated range.
A set of output biomarkers was obtained from the final action
potential. A further set of 150 model runs were then used for
emulator validation (see below). For Stage 2, a second set of
design data was produced from 200 simulator runs of eachmodel,
with a reduced set of inputs sampled from a Latin hyper-cube
as described in the results section, and other inputs set to their
central value. A further set of 100 simulator runs were used for
emulator validation.

Outputs from the model runs used for Stage 1 design data
in the Courtemanche model and Maleckar model are shown
in Figure 2. A wide variation in action potential shapes and
durations were elicited by varying the model inputs.

Model runs were removed from the design data if there
was unphysiological behavior in the model outputs evidenced
by pacemaking activity, a resting potential > −60 mV, APD90

>600 ms, or if APD90 of the 39th and 40th beats differed by more
than 5% indicating alternans. Using these criteria, 5 out of 300
Courtemanche model runs in Stage 1 were removed, because of
a long APD or APD alternans. In the Maleckar model 14 out of
300 model runs in Stage 1 were removed, all with pacemaking
activity or failure to repolarize. In Figure 2 the removed runs are
highlighted in blue. In Stage 2 no model runs were removed for
the Courtemenache model, and 5 model runs were removed for
the Maleckar model.

2.6. GP Emulator Training
Our approach to training and using GP emulators is described
in full detail elsewhere (Chang et al., 2015; Johnstone et al.,
2015). Mathematical details including the expression for
the posterior prediction of the emulator are provided in
Supporting Information as well as in Kennedy and O’Hagan
(2001), Oakley and O’Hagan (2002, 2004), and the Python code
used in this study for emulator training, validation, sensitivity
and uncertainty analysis is available from https://github.com/
samcoveney/maGPy. Briefly, each emulator was composed of a
mean function and a zero mean GP,

fe(x) = m(x)+ g(x); (1)

with a linear mean,

m(x) = h(x)Tβ = β0 + β1x1 + ...+ βPxP, (2)

and a zero-mean GP,

g(x) ∼ GP(0, σ 2c(x, x′)), (3)

where the covariance has a Radial Basis Function form,

c(x, x′) = exp






−

P
∑

p=1

(

xp − x′p
)2

δ2p






. (4)

In these expressions x = (x1, x2, ... , xP) are the P inputs
(parameters). The emulator hyperparameters β , δ, and σ define
the emulator and need to be fitted to design data as the
emulator is trained. β is a vector of length P + 1, δ a vector
of length P, and σ 2 is a scalar. An optimized value for δ was
obtained by maximum log-likelihood fitting to model inputs and
outputs in the design data, assuming weak prior information
on β and σ 2 (Kennedy and O’Hagan, 2001), and with a fixed
nugget of 10−7 (Andrianakis and Challenor, 2012). Mathematical
details for the training and fitting procedure are given in
the Supporting Information. To avoid the training process
becoming trapped in a local maximum, we repeated each fit ten
times, each with a different set of randomly chosen initial values
for the hyperparameters. The fit with the greatest log-likelihood
was then selected. We produced a separate emulator for each of
the outputs shown in Figure 1.

2.7. Sensitivity and Uncertainty Analysis
Sensitivity and uncertainty analysis can be seen as distinct but
related topics; where variance based sensitivity analysis identifies
the contribution of variance in each input to variance in each
output, and uncertainty analysis concentrates on estimating the
uncertainty in model outputs (Saltelli et al., 2019). A GP can be
evaluated for uncertain inputs x where each input can be either
a fixed value or a probability density expressed as a mean and a
variance. AGP emulator can therefore be used for variance-based
sensitivity analysis.

We calculated a first order sensitivity index for each
combination of input and output (Oakley and O’Hagan, 2004).
For each input w, the first order sensitivity index describes how
much the output variance would be reduced if xw is fixed, while
all other inputs are uncertain and are described by a mean and
variance. The first order index is expressed as the ratio of variance
in the emulator output when xw is fixed to variance in the output
when all inputs are considered uncertain.

Sw = Var[E(fe(x|xw))]
Var[fe(x)]

(5)

To capture the effect of interactions between the inputs, a total
effect index can be calculated. This describes the reduction in
output variance when xw is uncertain and all other inputs are
fixed, denoted as x∼w. It is also expressed as a proportion of the
output variance when all inputs are considered uncertain.

STw = Var[fe(x)]− Var[fe(x|x∼w)]

Var[fe(x)]
(6)

The difference between STw and Sw is then the contribution of all
interactions between xw and x∼w to the variance in the output.
These quantities were calculated using expressions given in the
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FIGURE 2 | Design data. Action potentials and calcium transients produced by Latin hyper-cube sampling as described in the main text, and running each model with

a pacing cycle length of 1,000 ms. Traces shown in gray were used for emulator design data, and those shown in blue were excluded (see text for details). (A,B)

Courtemanche model. (C,D) Maleckar model.

Supporting Information and described in Oakley and O’Hagan
(2004).

To calculate these indices, each uncertain input was assigned
a mean of 0.5 in normalized units defined by the input ranges
given in Table 1. Uncertain inputs that varied ±50% were then
assigned a variance of 0.02, GK1 and Cm were assigned a variance
of 0.04, and the extracellular ionic concentrations were assigned
a variance of 0.1.

2.8. Main Effects
The first order and total effect indices are both expressed as a
ratio of variances, with a value in the range [0 . . . 1], and do not
indicate whether an increase in output per change in input is
positive or negative. To provide a sign to each index, we also
calculated the main effect of each input on each output. The
main effect for a single input xw is the emulator output averaged
over uncertain inputs, when xw has a fixed value. Main effects
for each combination of input and output were calculated using
the procedure described in the Supporting Information, where
inputs xw were assigned fixed values in the range [0, 0.01 . . . 1].
The sign of the sensitivity indices was determined from the
gradient of the main effect close to the central value of each input.

2.9. Comparison With Regression-Based
Sensitivity Indices
Several recent studies have calculated sensitivity indices based on
partial least squares (PLS) regression (Sobie, 2009; Sarkar and
Sobie, 2010). In this approach, each model output is assumed to

be a weighted sum of inputs. Thus, the model is described by the
linear relationship

y = xB, (7)

where y = (y1, y2, ... , yM) is a vector of M outputs, x =
(x1, x2, ... , xP) a vector of P inputs, and B a P × M matrix of
regression coefficients. An estimate of the matrix B, BPLS, can be
found by PLS regression on a set of design data obtained from N
model runs, that generates an N ×M matrix of inputs Y and an
N×Pmatrix of outputsX. Each element ofX, xi,j is regularized by
subtracting the mean xj and dividing by the standard deviation of
xj, and each element of Y is regularized in the same way. BPLS is

found byminimizing the difference ||Ŷ−Ŷ||, where Ŷ = XBPLS.
The matrix BPLS can be interpreted as a matrix of sensitivity

indices, provided the linear model holds. Each element of BPLS,
bi,j describes how changing input xi results in a corresponding
change in output yj. In both cases the change is relative to the
mean value, and is a fraction of its standard deviation.

For comparison with variance based sensitivity indices, we
calculated PLS sensitivity indices from the Stage 1 design data
used to train the GP emulators. The input and output matrices X
and Y were constructed from regularized design data inputs and
outputs. The regression matrix BPLS was then calculated using
the Matlab function mvregress.

2.10. Emulator Validation
Each emulator was validated against an independent set of 150
simulator runs for Stage 1 and 100 simulator runs for Stage 2.
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For each output, we calculated the mean average predicted error
(MAPE) and the median individual standard error (ISE) for each
validation run. The MAPE was given by

MAPE = 100%

N

1

ys

N
∑

n=1

∣

∣yns − yne
∣

∣ , (8)

where N was the number of validation runs, yns simulator output
for run n, and yne the posterior mean emulator output for run n.
We used the mean of the simulator output ys as a denominator
instead of

∣

∣yns
∣

∣ to avoid bias associated with small values of
∣

∣yns
∣

∣.

ISE =
∣

∣yns − yne
∣

∣

√
Var(n, n)

, (9)

where yns was the simulator output for run n, yne the posterior
mean emulator output for run n, and Var(n, n) the posterior
emulator variance for run n.

For most stage Stage 1 and Stage 2 emulators the MAPE was
<10% and the median ISE was <1.0. Most of the differences
between the output from the emulator and the output of the
simulator for a given set of inputs were small, and so the fit of
the emulators was considered acceptable. A table of MAPE and
ISE is provided in the Supporting Information.

3. RESULTS

3.1. Stage 1 Sensitivity Indices
The first order sensitivity indices for both cell models are shown
in Figure 3. Each row of the figure corresponds to one of the
model outputs, and each column represents a model input. We
allocated a sign to each sensitivity index based on the slope of
the main effect. Main effects are described in more detail below
and illustrated in Figure 6. The sum of the absolute values of the
sensitivity indices for each output is given to the right of each
grid. Since first order sensitivity indices are a ratio, a sum close to
one indicates that almost all of the output variance is accounted
for by the variance on each input. Smaller values for this sum,
such as those for APD50 and APD90, can indicate interactions
among the inputs.

The total effect indices are shown in Figure 4. For each
combination of input and output, the difference between the
total effect index and the first order index reflects interactions
with the other inputs. The sum of these differences across all
of the inputs is shown at the right hand side of Figure 4. In
most cases the first order and total effect indices were similar,
and the sum of differences was small (≤ 0.12) indicating that
the effect of interactions was also small. However, the sum of
differences was larger for V80 in the Courtemanche model, as
well as for APD50 and APD90 in both models. We conclude
that in both models there are some interactions between inputs
and that these interactions have an effect on repolarization.
However, comparison of the sensitivity indices in Figures 3, 4
shows that these interactions appear to be distributed among all
of the inputs.

For comparison, Figure 5 shows sensitivity indices obtained
by PLS regression on the emulator design data, and a comparison

with variance based first order indices. The comparison plots
show broad agreement, with the first order indices Si ≈ B2i .
This relationship arises from the different definitions of Si and
Bi based on variance and standard deviation, respectively (Saltelli
et al., 2012).

Overall these sensitivity indices show the contribution of
uncertainty in each input to uncertainty in each output. Thus,
the main contributors to uncertainty in dV/dtmax are the
Na+ channel maximum conductances GNa and PNa, and the
membrane capacitance Cm. The sign of the sensitivity indices
show that these act in opposite directions, as would be expected
from the role played by the Na+ current in depolarization:
increasing Na+ current acts to increase dV/dtmax, whereas
increasing Cm acts to decrease dV/dtmax. The bigger influence
of Cm in the Maleckar model arises because the stimulus current
density in this model scales with 1/Cm; a larger Cm results in
a smaller stimulus current, which in turn produces a smaller
dV/dtmax and a smaller Vmax.

In both models, these sensitivity indices can be interpreted
to show that increased outward currents (for example arising
from increased GKur) act to decrease both the voltage of the
action potential plateau and action potential duration, whereas
increased inward currents resulting from increased GGaL and
GbCa have an opposite effect. This behavior is broadly what would
be expected, and confirms that the sensitivity indices quantify
model behavior, and can reasonably be extended to understand
more complex relationships between inputs and outputs, as well
as comparing behavior of the two models. In the Maleckar model
INaKMax has the opposite effect to GbCa. In the Courtemanche
model, Ca2+max and Ca

2+
min are influenced by GCaL, GbCa, INaCaMax

and inputs that control Ca2+ handling Irel and Kup, whereas in
the Maleckar model GCaL and KNaCa have a negligible effect, and
this reflects the different formulation of Ca2+ handling in the two
models (Cherry and Evans, 2008).

The sensitivity analysis shows that several inputs influence
APD50, APD90, RestVm, and Ca2+max. Figure 6 shows the main
effect of each input on these outputs, for each cell model. The
main effect shows the expected value of the output as each input
is fixed and varied in turn across the normalized range 0 . . . 1
corresponding to the input ranges given inTable 1, while all other
inputs are considered uncertain. The residual variance arising
from the uncertain inputs accounts for the fact that the main
effects do not converge exactly for an input value of 0.5.

Some of the main effects are comparable between the two
models, for example increasing GbCa acts to increase APD90,
RestVm, and Ca2+max. Several of the effects are non-linear, for
example the main effect of GCaL on APD50 and APD90. However,
the overall picture is complex, and it is hard to compare the
different models. In order to simplify the analysis, we selected
a subset of inputs for Stage 2 of the analysis based on their
sensitivity indices as described below.

3.2. Stage 2 Sensitivity Analysis
For Stage 2, we concentrated on inputs that strongly influenced
action potential shape and duration, with first order sensitivity
index of more than 0.1. To simplify the analysis further, we
excluded GNa and PNa as these inputs mainly influence action
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FIGURE 3 | Stage 1 first order sensitivity indices. The first order sensitivity index for each input and output is given, with a sign based on the gradient of the mean

effect. Sensitivity indices <0.05 not shown, to assist visualization. The numbers at the right hand side of the table indicate the sum of the absolute values of sensitivity

indices along each row. (A) Courtemanche model. (B) Maleckar model.

potential upstroke and amplitude. We also excluded extracellular
concentrations, since these are tightly controlled in normal
physiological conditions, and we excluded the inputs directly
involved in the storage, uptake and release of intracellular Ca2+

because we sought to concentrate on action potential shape and
duration. The Stage 2 inputs selected for the Courtemanche
model were GK1, Gto, GKurMult , GCaL, GbCa, INaKMax, INaCaMax,
and IPCaMax, and for the Maleckar model GK1, Gt , GKur , GCaL,
GbCa, INaKMax, and Cm. All other inputs were assigned their
central value from Table 1. In addition, the DI of the final action

potential was introduced as an additional input to explore the
dynamic behavior of themodel, and this final action potential was
the one that was analyzed.

The sensitivity indices for Stage 2 are shown in Figures 7,
8, and the main effects for APD50, APD90, RestVm, and Ca2+max

in Figure 9.
The first order and total sensitivity indices for Stage 2 were

similar to those obtained in the Stage 1 analysis, which is
consistent with the idea that the inputs fixed for Stage 2 had only
a small effect on the outputs. DI was included as an additional
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FIGURE 4 | Stage 1 total effect indices. The total effect sensitivity index for each input and output is given, indices <0.01 not shown. Numbers on right hand side are

the sum across each row of the differences between the total effect index and the absolute value of the first order index. (A) Courtemanche model. (B)Maleckar model.

input for Stage 2. In the Courtemanche model both first order
and total effect indices for DI were larger than for the Maleckar
model, indicating that DI has a greater influence on both the
shape and duration of the action potential in the Courtemanche
model compared to the Maleckar model.

The main effects plots show opposite effects of inward and
outward currents on action potential duration; howeverAPD50 as
a proportion of APD90 in the Maleckar model was considerably
shorter than in the Courtemanche model as a result of the
different action potential shape, and so both the sensitivity

indices andmain effects forAPD50 may not be easily comparable.
This observation is reflected in the larger main effect of DI on
APD50 in the Courtemanche model. The main effects plots also
show several non-linear relationships, for example themain effect
of GKur was non-linear in each of the outputs shown in Figure 9.

An additional observation from Figure 9 was that the main
effect of GKur on APD90 in the Maleckar model was larger, and
in an opposite direction, to the main effect in the Courtemanche
model. This is a prediction from the emulator analysis, and we
undertook additional simulations of the cell models to verify
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FIGURE 5 | Multivariate regression sensitivity indices. The sensitivity index based on multivariate regression for each input and output is shown for the Courtemanche

model (A) and Maleckar model (B). In the lower panel, these sensitivity indices are compared with those obtained from GP emulators for the Courtemanche model

(C), and the Maleckar model (D).
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FIGURE 6 | Stage 1 selected main effects plots. Main effects for APD50, APD90, RestVm, and Ca2+max . (A) Courtemanche model. (B) Maleckar model.
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FIGURE 7 | Stage 2 first order sensitivity indices. The first order sensitivity index for each input and output is given, with a sign based on the gradient of the mean

effect. Sensitivity indices <0.05 not shown. The numbers at the right hand side of the table indicate the sum of sensitivity indices along each row. (A) Courtemanche

model. (B) Maleckar model.

that the emulator prediction was correct. In these additional
simulations GKur was decreased to 50% and increased to 150% of
its default value in both models, and each model was run for 40
beats paced at a cycle length of 1,000 ms as in the Stage 1 analysis.
The outcome of these simulations is shown in Figure 10, which
shows simulated action potentials for each model, together with
the principal inward and outward currents that act during the
action potential plateau.

The top panels of Figure 10 show that the prediction from
the emulator main effects is confirmed in these simulations:
decreasing GKur results in a longer APD in the Maleckar model
and a slightly shorter APD in the Courtemanche model, and vice-
versa. Based on the simulation results shown in Figure 10, we

would speculate that the mechanism by which GKur influences
APD is the secondary effect of changes in action potential plateau
voltage on the balance of inward and outward currents during
the plateau and repolarization of the action potential, and this
is consistent with earlier mechanistic studies (Greenstein et al.,
2000).

Changing GKur influenced the voltage of the action potential
plateau in both models, but had a different effect on the timing
of repolarization. The time course of Ito in both models was
similar, and was not strongly influenced by GKur and so is
not shown. A decrease in GKur reduced the outward current
during the initial part of the action potential plateau. This
resulted in an increased voltage during the plateau, and a larger
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FIGURE 8 | Stage 2 total effect sensitivity indices. The total effect index for each input and output is given, indices <0.01 not shown. (A) Courtemanche model. (B)

Maleckar model.

inward ICa,L, which is voltage-dependent and acts to prolong the
action potential plateau. In turn, the increased plateau voltage
resulted in greater activation of the outward current IKr , which
is larger in the Courtemanche model compared to the Maleckar
model. Thus, in the Courtemanche model, a decrease in GKur

resulted in increased IKr , with little change in action potential
duration. In the Maleckar model IKr is much smaller, and so
the increased plateau voltage did not result in increased outward
current during repolarization, and so action potential duration
was prolonged.

3.3. APD Restitution
The Stage 2 analysis included diastolic interval as an input,
which enabled us use the emulators to examine how different

inputs affect APD restitution. In Figure 11 we have plotted
a surface showing the expected value of APD90, colored by
the 95% credible interval (see Supporting Information). In
each of these plots the emulators were evaluated with all
inputs assigned fixed values with no uncertainty, and so the
95% credible intervals reflect only uncertainty in the emulator
predictions, with no uncertainty arising from uncertainty in
the inputs. We assigned a value of 0.5 in normalized units
to all of the inputs, except for DI and another inputs that
were varied in each plot; these were assigned fixed values
between 0 . . . 1.

Overall, APD90 restitution was flatter in the Maleckar model
compared to the Courtemanche model, which is consistent with
other studies (Cherry and Evans, 2008;Wilhelms et al., 2012). The
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FIGURE 9 | Stage 2 selected main effects plots. Stage 2 main effects for APD50, APD90, RestVm, and Ca2+max . (A) Courtemanche model. (B) Maleckar model.
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FIGURE 10 | Effect of magnitude of IKur on inward and outward currents. Simulated action potential, outward current IKur , inward current ICa,L, and outward current

IKr . In each case the final beat of 40 is shown, with a pacing cycle length of 1,000 ms. (A) Courtemanche model. (B) Maleckar model.
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FIGURE 11 | APD90 as a function of DI and other inputs. Each plot shows a surface of predicted mean APD90, colored by the 95% credible interval. (A)

Courtemanche model. (B) Maleckar model.
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overall effect of GK1, GCaL, and GbCa on APD90 was similar in
each model, with INaKMax in the Courtemanche model having a
similar effect to GKur in the Maleckar model.

However the shape of the APD90 restitution was modulated
to some extent by the other inputs shown. In the Courtemanche
model, decreasing GbCa resulted in steepening of APD90

restitution, with a marked decrease in APD90 for short DI as
GbCa was changed from 150 to 50% of its central value. The
Maleckar model also showed a marked decrease in APD90 as
GbCa was reduced, but this change was seen across the full
range of DI.

3.4. Uncertainty Analysis
Uncertainty analysis aims to quantify how uncertain or variable
model inputs affect uncertainty in a model output. For a
cardiac cell model, uncertainty analysis enables the effects of
hypothesized natural variability in model inputs to be quantified.
Using the GP emulators for each cell model, we assessed how
the variance in model outputs changed as variance in all of the
model inputs was increased, and the results for APD90 are shown
in Figure 12.

Figure 12A shows how the uncertainty in APD90 (expressed
as coefficient of variation) changed as all uncertainty in all the
Stage 1 inputs (expressed as standard deviation) increased, and
Figure 12B shows the effect of increasing uncertainty in all the
Stage 2 inputs. Uncertainty in APD90 increased monotonically
with uncertainty in the inputs, for both Stage 1 and Stage 2 inputs,
and in both cell models. Changing the mean value of the inputs
had a small effect on output uncertainty, larger mean values
reduced output uncertainty.

Reducing the number of uncertain inputs for Stage 2 acted
to reduce the output uncertainty for the Maleckar model,
but increased output uncertainty slightly in the Courtemanche
model. This rather unexpected finding may be due to increased
interactions among the inputs, or a more problematic emulator
fit. However, in theMaleckar model, the total effects forAPD90 in
Figure 4B are higher than the total effects for the Courtemanche
model, indicating a greater degree of interaction in the Maleckar
than Courtemanche models. The smaller number of inputs
for Stage 2 could then result in less uncertainty arising from
interactions among uncertain inputs for the Maleckar model,
and a consequent reduction in uncertainty. However, fixing
some inputs for the Stage 2 analysis may have had increased
interactions in the Courtemanche model (Figure 8A), leading to
an increase in uncertainty in predicted APD90.

4. DISCUSSION

The main findings of this study are:

• We have demonstrated the use of GP emulators for
a systematic and quantitative uncertainty and sensitivity
analysis of biophysically detailed cardiac cell models.

• The first order and total effect sensitivity indices obtained
using GP emulators showed both relationships that would be
expected, such as the dependence of action potential upstroke
onGNa, as well as those that weremore unexpected, such as the

FIGURE 12 | Uncertainty in APD90 and Vmax . Coefficient of variation (standard

deviation divided by mean) in APD90 for Stage 1 (A) and Stage 2 plotted

against imposed uncertainty on all inputs (B) for each model, with different

mean values of 0.4, 0.5, and 0.6 in normalized units.

almost negligible effect ofGKs on APD. Most of the variance in
model outputs was accounted for by first order sensitivities, so
the interactions between the inputs considered in the present
study are small.

• There was broad agreement between first order sensitivity
indices obtained using GP emulators and those obtained using
PLS regression.

• A subset of model inputs was identified, and behaviors
predicted by the emulators were confirmed by
model simulations.

We discuss these findings in more detail below, and then
highlight limitations, challenges, and future directions.

4.1. Gaussian Process Emulation of
Biophysical Models
As models of cardiac cell and tissue electrophysiology become
more widely used, it is becoming increasingly important to
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understand how different components of the models influence
model behavior, and especially how these different components
interact. Biophysically detailed cardiac cell models are complex,
with many interacting parts. Some of these model components
may be inherited from earlier models and experiments (Niederer
et al., 2009), and the process by which model parameters are
fitted is also fragile when there are uncertainties associated with
experimental data (Pathmanathan et al., 2015). The development
and evaluation of tools for sensitivity and uncertainty analysis
of cardiac models is therefore an important and growing area
(Mirams et al., 2016), but much remains to be done.

The ability to evaluate emulators cheaply can be valuable
for model calibration, where thorough exploration of a high
dimensional input space is required (Coveney and Clayton,
2018), or if the GP emulator is used to construct outputs
distributions with Monte Carlo methods. A key benefit of a
GP emulator approach is the explicit handling of uncertainty.
Under the assumption that inputs and outputs have Gaussian
distributions, the variance on the emulator output can be
calculated directly, given variances on the inputs. This enables
the direct calculation of sensitivity indices, as well as enabling
a systematic investigation of the way that output uncertainties
depend on uncertainties in the inputs.

In this study, we have demonstrated how GP emulators can
be used to systematically and quantitatively analyse biophysically
detailed cardiac cell models. A GP emulator must be trained
on design data. The number of simulator runs required to for
design data remains an open question, and will depend on the
complexity of the model output surfaces. A typical rule of thumb
is to use ten times the number of inputs, and based on our
previous experience (Chang et al., 2015) we opted for 300 runs
for Stage 1 and 200 runs for Stage 2. We also trained the Stage 1
emulators on design data sets composed of 200 and 400 simulator
runs, and obtained similar sensitivity indices to those presented
here. However, further work is required to develop methods
to determine the number of simulator runs needed as well as
suitable metrics to determine emulator quality. Emulators should
be trained on design data that fill the input space evenly, and we
chose to use Latin hypercube sampling in this study (McKay et al.,
1979). Other methods, such as orthogonal sampling (Bingham
et al., 2009) may provide a better sampling strategy.

4.2. Sensitivity and Uncertainty Analysis
Recent studies have pioneered the use sensitivity indices obtained
by partial least squares (PLS) regression of simulator outputs
on simulator inputs, which allows a calculation of sensitivity
indices (Sobie, 2009; Sarkar et al., 2012; Koivumäki et al., 2014).
This approach is straightforward to implement, and we have
found that it gives sensitivity indices that agree well with the
square root of the first order index obtained using the GP
approach (Figure 5), and the reason for this appears to be that
the PLS and GP indices are based on variance and standard
deviation, respectively. The overall agreement indicates that
both approaches can yield similar first order sensitivity indices,
although the GP easily enables calculation of interaction effects
as well as first order indices. Other approaches for uncertainty
and sensitivity analysis based on generalized polynomial chaos
expansion have also been developed and used for analysis

of cardiovascular system models (Eck et al., 2016). These
approaches also enable calculation of sensitivity indices, but the
relative merits of these different approaches are only beginning
to be explored (Johnston et al., 2018). Both GP emulators and
polynomial chaos expansions enable the explicit treatment of
uncertainties, and so offer advantages for more comprehensive
model analysis.

4.3. Human Atrial Cell Models
Models of the human atrial action potential are a subject of
research interest and clinical relevance because heterogeneity
in action potential shape and duration in different parts of the
atria is associated with vulnerability to atrial fibrillation (Varela
et al., 2016), and persistence of atrial fibrillation is associated
with remodeling of the atrial action potential (Krogh-Madsen
and Christini, 2012; Colman et al., 2013). There are several
different models of human atrial myocytes, each with different
properties (Cherry and Evans, 2008; Cherry et al., 2008;Wilhelms
et al., 2012). More recent models are extensively based on data
from human myocytes (Grandi et al., 2011). Most analyses of
these models have focussed on the mechanisms that change
action potential duration because a reduced APD increases
vulnerability to atrial fibrillation, and APD can be modulated
pharmacologically (Nygren et al., 1998; Zhang et al., 2005; Cherry
and Evans, 2008; Koivumäki et al., 2014; Sánchez et al., 2014).
These previous studies have highlighted the importance of ICaL,
as well as IK1 and IKur , in regulating APD. The present study adds
to our understanding of the Courtemanche andMaleckar models
by providing a more comprehensive view of how the model
parameters affect the shape and duration of the action potential,
as well as the maximum and minimum of the Ca2+ transient.

Increased inward current tends to increase amplitude of the
upstroke and plateau as well as increasing APD, and increased
outward current tends to have the opposite effect. The present
study has highlighted how action potential duration and shape
depends on the net flow of charge across the cell membrane.
It is well-accepted that net current flow is finely balanced so
small changes in inward and/or outward currents can influence
action potential shape and duration. Our approach enables these
effects to be investigated in a quantitative way. The two models
examined in this study represent repolarization using a different
balance of currents, and this difference is seen in the main affects
plot for APD90 in Figure 9 and the consequences can be seen
in Figure 10. The relative magnitudes of ICaL and IKr in the
two models are different, with much smaller ICaL and IKr in the
Maleckar model. This may explain why GbCa exerts a stronger
influence overCa2+min andCa

2+
max in theMaleckarmodel compared

to the Courtemanche model.
Overall, the difference between the first order sensitivity

indices (Figure 3) and the total effect indices (Figure 4) was
small. The sum of these differences for each output (right
hand column in Figures 4, 8) indicates more interactions in the
Courtemanche model than in the Maleckar model, and that these
interactions tend to affect the plateau of the action potential.
These observations mean that overall the interactions between
the inputs in these models do not have a strong effect on the
outputs, and so we can conclude that the inputs examined in this
study tend to act independently. This is a potentially important
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feature of the models, which could be exploited for model
calibration as well as for examining mechanisms of remodeling
and pharmacological action. However, it remains to be seen
whether this independence is a feature of real cardiac myocytes.

4.4. Limitations, Challenges, and Future
Directions
The use of emulators to probe detailed biophysical models is at
an early stage, and so there are several limitations and challenges
associated with the present study.

4.4.1. Choice of Inputs
We concentrated on the effect of maximum conductances
in the present study, as this reduced the complexity of the
analysis. The rationale for this approach was an assumption that
kinetic parameters are determined by biophysics, and so less
prone to variation than the expression of ion channels, pumps,
and exchangers. However, a detailed sensitivity analysis of IKr
dynamics in the Courtemanche model showed that these kinetic
parameters influence APD (Chang et al., 2017), and other studies
have highlighted difficulties in calibrating ion channel dynamics
using traditional approaches as well as showing that different
formulations can have an important effect on the magnitude
and time course of an ion channel current (Beattie et al., 2018).
In the present study our focus was on the action potential
rather than Ca2+ handling, and a detailed sensitivity analysis
of the mechanisms of Ca2+ storage, release, and uptake in each
model would be a valuable extension to the work presented
here. So far a fully comprehensive analysis has only been done
for specially constructed models (Pathmanathan et al., 2019).
Nevertheless, a complete sensitivity analysis of biophysically
detailed models, possibly using a hierarchical approach, remains
an important challenge.

4.4.2. Simulator Instability
One of the issues with a complete sensitivity analysis, highlighted
in Pathmanathan et al. (2019), is that parts of the simulator
input space may generate implausible behaviors. For a cardiac
cell model these behaviors might be a numerical instability,
spontaneous beats, or failure to repolarize. In the present study
we removed simulator runs from the design data where model
behavior was implausible, or where the simulator runs produced
action potential alternans. We considered this to be a pragmatic
approach. However, it is clearly an area for improvement because
the location of these regions of input space conveys information
about the model, and approaches where these locations are
encoded explicitly show promise (Ghosh et al., 2018). This
consideration is especially important if the inputs have a greater
range of variation than those considered in the present study, to
represent the effects of cellular remodeling, pathological changes,
or drug action. Extending the analysis presented here to a greater
range of inputs is an important future direction.

4.4.3. Choice of Outputs
We selected a range of action potential features for our
model outputs, these were based on measures used to describe
experimental action potentials and aim to capture the main
features of the action potential shape and duration. Our main

focus was on the action potential. We included the maximum
and minimum intracellular Ca2+ concentration as additional
outputs, but did not consider the duration of the Ca2+ transient.
We would not consider our choice of outputs to be definitive,
and there may be better choices. A principal component analysis
of the design data used in the present study showed that 95%
of the output variance was accounted for by the first 6 principal
components for the Courtemanche model and the first 5 for the
Maleckar model. Parameterizing the action potential and Ca2+

transient so that they are described by a minimal set of features
is likely to be important not only for model analysis but also for
model calibration (Coveney and Clayton, 2018). Emulators that
emulate time-dependent outputs have been developed, but are
not yet widely used (Conti et al., 2009; Conti and O’Hagan, 2010),
but could be a promising tool for extending work in this area.

4.4.4. Future Directions
The aim of this study was to demonstrate the utility of
sensitivity and uncertainty analysis with GP emulators. A
detailed and hypothesis-driven mechanistic study was beyond
the scope of the present work, but will be a valuable next step.
Extending the use of emulators from models of cardiac cells to
models of cardiac tissue is an important future direction, and
initial studies are promising (Lawson et al., 2018). At present,
tissue calculations are computationally expensive, especially for
personalized meshes. However, the need to evaluate uncertainty
in model predictions for use in the clinical setting requires
computationally efficient approaches, and we anticipate exciting
developments in this area.
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