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Percutaneous edge-to-edge mitral valve (MV) repair using MitraClip has been recently
established as a treatment option for patients with heart failure and functional mitral
regurgitation (MR), which significantly expands the number of patients that can be
treated with this device. This study aimed to quantify the morphologic, hemodynamic
and structural changes, and evaluate the biomechanical interaction between the
MitraClip and the left heart (LH) complex of a heart failure patient with functional
MR using a fluid-structure interaction (FSI) modeling framework. MitraClip implantation
using lateral, central and double clip positions, as well as combined annuloplasty
procedures were simulated in a patient-specific LH model that integrates detailed
anatomic structures, incorporates age- and gender-matched non-linear elastic material
properties, and accounts for mitral chordae tethering. Our results showed that antero-
posterior distance, mitral annulus spherecity index, anatomic regurgitant orifice area,
and anatomic opening orifice area decreased by up to 28, 39, 52, and 71%, respectively,
when compared to the pre-clip model. MitraClip implantation immediately decreased
the MR severity and improved the hemodynamic profile, but imposed a non-physiologic
configuration and loading on the mitral apparatus, with anterior and posterior leaflet
stress significantly increasing up to 210 and 145% during diastole, respectively. For this
patient case, while implanting a combined central clip and ring resulted in the highest
reduction in the regurgitant volume (46%), this configuration also led to mitral stenosis.
Patient-specific computer simulations as used here can be a powerful tool to examine
the complex device-host biomechanical interaction, and may be useful to guide device
positioning for potential favorable clinical outcomes.

Keywords: mitral valve, MitraClip, fluid-structure interaction, functional mitral regurgitation, heart failure, patient-
specific, edge-to-edge, annuloplasty

INTRODUCTION

The mitral valve (MV) repair technique using MitraClip (Abbott, Santa Clara, CA, United States)
is the most common percutaneous treatment option for patients with symptomatic mitral
regurgitation (MR) at high surgical risk (Mauri et al., 2013). Although MitraClip was recently
approved by the U.S. Food and Drug Administration (FDA) for use in heart failure patients with
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functional MR, two large randomized clinical trials showed
apparently conflicting results. While the COAPT trial showed
that MitraClip was associated with a lower rate of hospitalization
for heart failure and lower all-cause mortality within 24 months
of follow-up, compared with using medical therapy alone
(Stone et al., 2018), the MITRA-FR trial did not show
significant differences between the intervention and control
groups (Obadia et al., 2018).

Differences in the two clinical trials are likely to be related to
threshold values for MR severity, medical management, operator
experience and most importantly, proper patient selection
(Goldberg, 2019); with markedly improved outcomes in the
setting of a disproportionately larger severity of MR relative
to left ventricle (LV) volumes after optimizing medical therapy
(Grayburn et al., 2019). Indeed, several studies have shown
that persistence of moderate-to-severe MR after MitraClip is
associated with a considerably higher 1-year mortality (Lim
et al., 2014; Sorajja et al., 2017; Ailawadi et al., 2019), such
that MR reduction to moderate or less is of paramount
importance. Thus, it is clear that for a successful MitraClip
therapy: (i) a multidisciplinary heart team needs to be involved,
(ii) procedural techniques need to be optimized, (iii) a
better mechanistic understanding of device-host interaction is
needed, and (iv) physicians need to perform careful patient
selection and individualize treatments in accordance with patient
characteristics.

To support this multidisciplinary approach, patient-specific
computer simulations for transcatheter cardiac interventions
can help to better understand the complex biomechanical
inter-dependence between the device and the human host,
predict device performance (efficacy), and possible complications
(safety) (de Jaegere et al., 2019). Computer simulations using
finite element (FE) and fluid-structure interaction (FSI) analyses
have been useful in assessing MV biomechanics under healthy
and diseased conditions, as well as in evaluating the functional
effects of different surgical and transcatheter MV repair
techniques (Wang et al., 2014; Caballero et al., 2018, 2019b, 2020;
Sacks et al., 2019; Kong et al., 2020). While several computer
studies have modeled the edge-to-edge and MitraClip procedures
under degenerative or primary MR (Mansi et al., 2012; Zhong
et al., 2014; Sturla et al., 2015; Morgan et al., 2017; Sturla et al.,
2017; Prescott et al., 2019), to the best of our knowledge, no
computer FSI study has to date evaluated the impact of MitraClip
on left heart (LH) dynamics under functional MR. Previously,
Lau et al. (2011) investigated the effect of the edge-to-edge
surgical technique on an idealized MV model with a dilated
static mitral annulus (MA) and healthy chordae structure with
no leaflet tethering.

In this study, a previously validated patient-specific LH model
with functional MR and heart failure (Caballero et al., 2019a) was
used to: (1) simulate and evaluate MitraClip implantation with
different clipping configurations and combined annuloplasty
procedures, and (2) investigate the post-procedure LH dynamics
throughout the cardiac cycle in order to quantify the acute
changes in MR severity and assess the immediate biomechanical
outcomes of the MitraClip procedure. Albeit a single patient case,
we believe that this study offers a novel and detailed engineering

analysis that could shed some light on the biomechanical
impact of MitraClip on cardiac function in heart failure
patients with significant MR. Further development and validation
of such computer models could provide useful information
toward proper patient selection and procedural optimization for
treatment with transcatheter MV repair devices.

MATERIALS AND METHODS

Patient-Specific LH Model With
Functional MR
In this study, we employed a patient-specific LH model with
functional MR, heart failure and reduced LV ejection fraction
(LVEF) rigorously developed and validated in Caballero et al.
(2019a). The use of de-identified patient clinical data for this
study was approved by an Institutional Review Board. Briefly,
cardiac multi-slice computed tomography (MSCT) images of a
patient referred for transcatheter AV replacement (TAVR) were
retrospectively collected from Hartford Hospital (Hartford, CT).
Transthoracic echocardiographic (echo) examination revealed
moderate-to-severe functional MR, with restricted posterior
mitral leaflet (PML) motion and reduced leaflet coaptation,
resulting in a posteriorly directed regurgitant jet. The LVEF was
estimated to be 25%. The LV thickness was normal but the
chamber was dilated with severe global hypokinesis with regional
variation. The LA was dilated despite a normal antero-posterior
diameter. Classical low-flow, low-gradient severe aortic stenosis
(AS) was also found, with a bicuspid aortic valve (AV) with fused
left and right coronary cusps.

The patient-specific LH model, as shown in Figure 1A, is
composed of the ascending aorta, aortic root, AV, calcification,
MV, and LV and left atrium (LA) endocardial walls. Additionally,
the computer model comprises detailed mitral chordae structure
and distribution, accurate leaflet geometry and thickness,
dynamic MA and chordae origins, anisotropic hyperelastic
material models, and human age- and gender-matched material
properties. Chordae tethering forces due to papillary muscle
(PM) displacement were accounted for accurate modeling of MV
dynamics under functional MR, as previously presented in Pham
et al. (2017). Further details on medical imaging segmentation,
3D model reconstruction, constitutive modeling, and model
validation can be found in Supplementary Material.

MitraClip and Annuloplasty FE Modeling
The clip device was modeled as two rectangular rigid plates
mimicking the design and dimensions of the real MitraClip, as
seen in Figure 1B. The length of each plate was 9 mm and
the width was 5 mm. A reference node was defined at the
middle bottom edge of each plate, allowing each arm to rotate
with respect to its own reference node. A connector element
connecting the two reference nodes was defined in order to
impose mutual kinematic constraints. During the simulations,
the relative motion of the two clip arms was constrained by
the connector element to prevent relative displacement between
them. Based on the location of the regurgitant gap, three
MitraClip placement locations were simulated in this study: (i)
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FIGURE 1 | (A) Patient-specific LH model, (B) Real and simulated MitraClip devices, (C) Aortic and LA pressure waveforms, (D) MV geometrical parameters. AV,
aortic valve; LV, left ventricle; LA, left atrium; MV, mitral valve; AML, anterior mitral leaflet; PML, posterior mitral leaflet is divided into lateral P1 scallop, central P2
scallop and medial P3 scallop.

lateral positioning, between the anterior mitral leaflet (AML)
and P1 scallop, (ii) central positioning, between the AML and
P2 scallop, and (iii) double positioning, by combining lateral
and central clips.

Because multiple mechanistic etiologies of MR frequently
coexist, there is a high clinical interest in combining or
sequentially staging transcatheter approaches to eliminate MR,
such as combined MitraClip with percutaneous annuloplasty
(Rogers et al., 2018). Due to the lack of geometrical data for these
novel transcatheter rings, the 3D profile of a well-established
surgical annuloplasty ring (Carpentier-Edwards Classic) known
to successfully treat functional MR by reducing the antero-
posterior annular diameter was used in this study. Following the
selection guidelines (Borghetti et al., 2000), a 38 ring size was
chosen based on the surface area of the device and the AML.
However, rather than modeling the implantation of the actual
ring with its full cross-sectional geometry, ring implantation was
simplified by displacing the nodes of the MA to the 3D shape
of the ring, as previously presented in Kong et al. (2018). The
3D ring shape and dimensions were obtained from literature.
Combined annuloplasty ring implantation was simulated for the
central and double clip models. The MV repair procedures were
modeled in three major FE steps:

Step 1: MV Closure
Simulation of MV closure under systolic pressure and chordae
tethering has been described in detail in our previous studies
(Pham et al., 2017; Kong et al., 2018). Briefly, since the heart
failure patient had moderate-to-severe MR with PML tethering

and dilated LV, pre-existing forces within the chordae at diastole
were modeled in the first sub-step of the simulation. Thus,
before running the FE simulation, a total of 8 posterior chordae
were shortened by translating the chordae origins toward the
MA plane along the original direction of the chordae. At
the beginning of the step, those chordae origins were initially
displaced to their original locations to generate the tethering
tension. After those chordae origins reached their original
locations on the PM tips, a rough contact with no separation
behavior was enforced to connect the chordae with the PM
tips (Pham et al., 2017). The reaction force on each node
of the MA was output at the end of this first sub-step.
Next, the dynamic motion of the MA and chordae origins
from diastole to systole obtained from the MSCT images was
applied as a nodal displacement boundary condition (Pham
et al., 2017). The clinically measured trans-mitral pressure
gradient of 114 mmHg was then applied to the ventricular
surface of the leaflets to simulate MV closure. At the end
of this step, the two MitraClip arms rotated so that the clip
opened at 120 degrees.

Step 2: Clip Grasping
Clip grasping to the mitral leaflets was modeled at diastole when
the valve just started to open. Initially, displacement boundary
conditions on the MA and chordae were applied so that the mitral
apparatus restored to a diastolic position and the leaflets opened
due to the release of the pressure on the ventricular surface. Next,
the MA nodal displacement boundary condition was replaced by
the MA reaction forces obtained in Step 1 from the pretension
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simulation at diastole to account for the tension within the MA
during diastole. Meanwhile, to grasp the leaflets, the two clip arms
rotated back to a closed position until a gap of 4 mm was left
between the upper end of the two arms (Magruder et al., 2016).
At the end of the step, rough contact with no slippage and no
separation behavior was initiated between the clip arms and the
mitral leaflets. The arms remained mutually parallel but could
rotate/tilt following the interaction with the leaflets.

Step 3: Annuloplasty Ring Implantation
To align the virtual ring with the MA plane, least-square planes
were created for both the ring and the MA. Next, middle anterior
and posterior portions of the ring were aligned with the middle
anterior and posterior portions of the MA until the ring was
positioned such that the anterior portion of the ring overlapped
with the anterior MA, avoiding excessive displacement of the LV
outflow tract (LVOT). Following ring alignment, a total of 18
node clusters uniformly distributed along the MA were identified
as boundary nodes; each cluster contained 3 adjacent nodes.
On the virtual ring, 18 uniformly distributed nodes were also
identified. Suturing of the annuloplasty ring to the MA was
simulated by imposing kinematic displacements on the 18 node
clusters on the MA from their original locations to the locations
of the 18 corresponding nodes identified on the virtual ring
(Kong et al., 2018).

During all FE simulation steps that modeled the MitraClip
and annuloplasty implantation procedures, nodes on the
septal wall of the LV myocardium were fixed to prevent
excessive cardiac motion. The rest of the LV was not
constrained to allow deformation near the MA during the repair
therapies. The resulting deformed LH geometries after MitraClip
and annuloplasty procedures were extracted from the FE
simulations and used to assess the post-procedure LH dynamics
using FSI.

FSI Modeling of Pre- and Post-procedure
LH Dynamics
The FSI modeling framework used in this study has been
previously developed, validated and implemented to evaluate
the LH dynamics under a variety of physiologic, pathologic and
repaired states (Mao et al., 2016a, 2017; Caballero et al., 2017,
2018, 2019a,b). Briefly, the FSI approach combines smoothed
particle hydrodynamics (SPH) for the blood flow and non-
linear FE analysis for the heart valves. As seen in Figure 1C,
time-dependent pressure boundary conditions were applied at
the two LA inlets (pulmonary veins) and at the aortic outlet
of the pre- and post-procedure models. In functional MR, the
regurgitant volume in the LA results in an elevated V-wave
pressure during systole (Mokadam et al., 2011). After MitraClip,
the LA pressure decreased by 33% (Kuwata et al., 2019; Turyan
Medvedovsky et al., 2019). On the outlet, a physiologic aortic
pressure waveform was employed. These waveforms were fitted to
match this particular patient’s pressure values clinically measured
(Caballero et al., 2019a).

Endorcardial LV and LA wall motion and chordae origins
motion during the pre- and post-procedure FSI simulations
were imposed as a time-dependent nodal displacement boundary

condition based on the MSCT images (Caballero et al., 2017;
Mao et al., 2017). This cardiac wall motion was kept the same
for all pre- and post-procedure models, simulating immediate
post-operative LH dynamics, without considering any possible
cardiac remodeling mechanisms that occur over time after
MV repair. SPH particles were uniformly distributed in the
LH domain with a spatial resolution of 0.8 mm and given
Newtonian blood properties with a density of σ = 1056
kg/m3 and a dynamic viscosity of µ=0.0035 Pa.s. SPH particle
sensitivity (Mao et al., 2016b; Caballero et al., 2017) and FE
mesh sensitivity (Wang and Sun, 2013) studies were previously
performed. The patient’s heart rate was approximately 60 bpm,
corresponding to a cardiac cycle of 1 s. Two cardiac cycles
were conducted and the results from the second cycle were
analyzed in this study. Abaqus/Explicit 6.17 (3DS, Dassault
Systéms, Paris, France) was used for all FE and FSI simulations
presented in this work.

Data Analysis
MV Geometrical Parameters
Morphologic changes in the MV during MitraClip were evaluated
in terms of the geometrical parameters shown (Figure 1D).
The following measurements were obtained during systole: (a)
antero-posterior (AP) distance, (b) anterolateral-posteromedial
(AL-PM) distance, (c) MA spherecity index (ASI), defined as the
ratio between AP and AL-PM distances, (d) inter-commissural
(CC) distance, (e) MA height to inter-commissural width ratio
(AHCWR), defined as the ratio between MA height and CC
distance, (f) MA area, and (g) aortic-mitral distance, defined as
the centroid distance between the mitral and aortic annuli.

Fluid Parameters
The following hemodynamic parameters were quantified
throughout the cardiac cycle: (a) stroke volume in the AV
(SVAV ) and MV (SVMV ), obtained by integrating the positive
aortic and mitral flow over time, respectively (Figure 2), (b)
regurgitant volume in the AV (RVAV ) and MV (RVMV ), obtained
by integrating the negative aortic and mitral flow over time,
respectively (Figure 2). The regurgitant volume was defined
as the sum of the valve closing and the leakage volumes, (c)
regurgitant fraction, RFMV = RVMV /LVSV where LVSV is the
total SV of the LV (SVAV+ RVMV ), (d) MR severity, graded
using the RFMV criterion (Zoghbi et al., 2003), (e) LVEF, (f) LV
mean systolic pressure (LV-MSP), (g) LV end-diastolic pressure
(LV-EDP), (h) peak systolic pressure gradient (PSPG), (i) mean
systolic pressure gradient (MSPG), (j) AV peak velocity, (k)

AV effective orifice area, EOAAV =
MSF

51.6
√

MSPG
, where MSF

is the root mean square systolic flow rate (Saikrishnan et al.,
2014), (l) peak diastolic pressure gradient (PDPG), (m) mean
diastolic pressure gradient (MDPG), (n) E and A wave velocities,

(o) MV effective orifice area, EOAMV =
MDF

31
√

MDPG
, where

MDF is the root mean square diastolic flow rate (Chandran
et al., 2012), (p) MR mean pressure gradient (MR-MPG), q)
MR mean velocity, and (r) effective regurgitant orifice area,
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FIGURE 2 | Flow rate (ml/s) across the (A) AV and (B) MV throughout the cardiac cycle.

EROA =
MRF

31
√

MR−MPG
, where MRF is the root mean square

regurgitant flow rate.

Structural Parameters
Pre- and post-procedure MV biomechanics were evaluated by
the average maximum principal stress (SI

AVRG) in the MV
leaflets during peak systole and diastole. To avoid the bias
caused by local high stress concentration, only the 99-percentile
values of the peak stress values were evaluated (Auricchio et al.,
2011). Moreover, MA regions were not included in the average
stress calculation in order to avoid boundary effects. AML and
PML chordae forces (Fchordae) were also reported. The force
experienced by a particular chordae group was calculated as the
sum of vectors representing the tension in each individual chorda
attached to a specific leaflet. Finally, the anatomic MV orifice area
(AMVOA) was quantified throughout the cardiac cycle. The least
square plane of the MA was calculated at each time point of the
cardiac cycle. The AMVOA was then measured as the projected
2D area of the mitral leaflets free edge on the MA least square
plane. The anatomic regurgitant and opening orifice areas were
obtained by selecting the minimum and maximum AMVOA
values during systole and diastole, respectively.

RESULTS

MitraClip Impact on MV Geometry
Table 1 summarizes the changes in MV geometry during
MitraClip implantation. The AP distance and ASI markedly
decreased (>20%) for the central and double clip models, with or
without ring. Similarly, the MA area and aortic-mitral distance
had a tendency to decrease for all clip models, but these changes
were only important for the double+ ring model when compared
to the pre-clip state. Furthermore, the AL-PM and CC distances
showed a trend to increase after MV repair, however, these
changes were relatively small and comparable before and after
the procedure. Generally, using a lateral clip led to the smallest

changes in MV geometry, while using a double clip + ring led to
the biggest anatomic changes.

MitraClip Impact on Intraventricular
Hemodynamics
Figure 2 shows the flow rate waveforms across the valves
throughout the cardiac cycle for the pre- and post-clip models.
The positive flow indicates the forward flow toward the aorta
(Figure 2A) and the LV (Figure 2B) during systole and diastole,
respectively. In contrast, the negative flow indicates the backward
blood flow due to valve closure and regurgitation. Based on mass
conservation and since blood is incompressible, SVAV + RVMV
during systole = SVMV + RVAV during diastole (Mao et al.,
2020). Additionally, Table 2 summarizes the main hemodynamic
parameters quantified for the pre- and post-clip models from the
FSI simulations.

Several important findings can be quantified during systole:
First, MitraClip therapy led to an immediate hemodynamic
improvement by decreasing the RVAV , and due to the
coupled aortic-mitral valve dynamics and mass conservation,
a concomitant increase in the forward SVAV (Table 2). The
greatest degree of MR improvement was for the central + ring
model (46%). Moreover, all post-clip models can now be classified
as moderate MR. Second, an increase in the LV-MSP of 8–
13 mmHg was quantified immediately after MitraClip, reflecting
the increase in the SVAV . Third, the MR-MPG increased after
the procedure (Figure 3B) due to a better closure of the mitral
leaflets, the decrease in the LA pressure, and the increase in
the LV-MSP. The peak MR velocity and EROA consequently
decreased after MitraClip. Fourth, improvement in the systolic
hemodynamic profile after clip implantation was also associated
with a decrease in the PSPG and MSPG (Figure 3A), and an
increase in the EOAAV .

Similarly, important findings were quantified during the
diastolic phase: First, narrowing of the MV orifice after MitraClip
caused higher PDPG and MDPG (Figure 3B), as well as higher
MV inflow velocities (Table 2). The MDPG increased from
1.35 mmHg pre-clip up to 9.2 mmHg when using a double
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TABLE 1 | MV anatomical parameters pre- and post-clip.

Pre-clip Lateral Central Double Central + Ring Double + Ring

AP distance (mm) 34.37 31.90 27.37 (−20) 27.66 (−20) 25.28 (−26) 24.74 (−28)

AL-PM distance (mm) 39.83 41.96 43.28 43.51 45.71 46.80

ASI 0.86 0.76 0.63 (−27) 0.64 (−26) 0.55 (−36) 0.53 (−39)

CC distance (mm) 33.87 35.22 34.90 35.36 37.42 37.98

AHCWR 0.14 0.16 0.11 0.12 0.12 0.14

MA area (cm2) 11.40 10.37 10.04 9.58 9.40 9.14 (−20)

Aortic-mitral distance (mm) 28.32 25.06 24.43 23.71 23.38 22.78 (−20)

Marked percentage variations (%) with respect to the pre-clip model are reported in parenthesis.

TABLE 2 | Pre- and post-clip LH hemodynamics.

Pre-clip Lateral Central Double Central + Ring Double + Ring

SVAV (ml) 46.28 58.81 58.55 60.94 61.21 57.13

RVAV (ml) 9.34 13.18 10.42 6.37 4.78 4.85

SVMV (ml) 74.64 70.22 71.57 74.45 75.70 75.38

RVMV (ml) 37.59 23.88 23.59 20.86 19.51 23.98

RFMV (%) 44.82 28.88 28.72 25.50 24.17 29.56

MR severity (RFMV) Moderate-to-severe Moderate Moderate Moderate Moderate Moderate

LVEF (%) 28.55 28.15 27.96 27.84 27.47 27.61

LV-MSP (mmHg) 97.64 105.7 105.43 110.31 110.38 103.94

LV-EDP (mmHg) 15.96 9.67 8.39 0.03 0.92 0.01

PSPG (mmHg) 34.82 30.74 30.58 34.14 33.90 31.50

MSPG (mmHg) 23.97 20.97 20.7 21.68 21.34 20.84

AV peak velocity (m/s) 2.82 2.76 2.8 2.81 2.8 2.77

EOAAV (cm2) 0.77 0.94 0.93 0.95 0.96 0.93

PDPG (mmHg) 4.32 8.91 9.05 10.4 9.17 10.78

MDPG (mmHg) 1.35 4.33 6.16 9.17 7.47 9.2

E wave (m/s) 0.79 0.96, 1.46 1.41, 1.29 1.15, 0.92, 1.44 1.43, 1.36 1.2, 0.74, 1.47

A wave (m/s) 0.54 0.71, 1.2 1.30, 1.15 1.31, 1.28

EOAMV (cm2) 4.1 2.19 1.76 1.32 1.53 1.32

MR-MPG (mmHg) 57.25 75.24 76.65 79.84 79.56 74.25

MR peak velocity (m/s) 5.42 4.81 4.83 4.9 4.89 4.82

EROA (cm2) 0.5 0.28 0.26 0.24 0.24 0.28

E and A wave velocity values from left to right correspond to the double/triple orifices located from P1 to P3 scallops.

clip + ring. Second, MR reduction promoted a decrease in the
preload, manifested by a decrease in the LV-EDP (Figure 3C).
The double clip models presented the greatest decrease in LV
preload. Third, as seen in Figure 2B, the MV inflow curve profile
changed after repair. Due to the decrease in the EOAMV and the
greater resistance to flow in the multiple-orifice MV, there was a
decrease in the early E-wave dominant flow. This decrease was
more dominant for the double clip models, which presented the
lowest EOAMV .

Figure 4 shows the intraventricular velocity streamlines
colored by velocity magnitude during peak systole. Due to
restricted PML motion, the pre-clip model displayed a posteriorly
directed regurgitant jet in the P1 region, which qualitatively and
quantitatively matched the regurgitant jet measured clinically
(Caballero et al., 2019a). The overall regurgitant jet direction
was similar between pre- and post-clip states, with an eccentric
“wall-hugging” jet that impinged the postero-lateral LA wall.

The strength and velocity of the jet, however, decreased
following MitraClip (Table 2). Moreover, when a double
clip + ring was implanted, a second small regurgitant jet
structure was visible in the postero-medial MA region, which
supports the finding of the highest RVMV between all post-clip
models (Table 2).

Finally, Figure 5 shows the velocity streamlines during
peak diastole. Marked differences in the inflow flow structure
and magnitude were observed pre- and post-clip, as well as
between the different clip/ring configurations. Clip implantation
significantly altered the intraventricular hemodynamics by
creating a multiple-jet flow due to the double-orifice MV for
the lateral and central clip models, and the triple-orifice MV for
the double clip models. Moreover, the post-clip jets were not
oriented toward the apex, but toward the LV wall where they
impinged, leading to higher near-wall velocities than the pre-
clip state, especially for the clip models with a ring. As shown
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FIGURE 3 | (A) AV pressure gradient, (B) MV pressure gradient, (C) LV pressure, and (D) AMVOA throughout the cardiac cycle.

in Table 2, due to the reduced EOAMV , the inflow jets had
much higher velocities than the central jet observed before clip
implantation.

MitraClip Impact on Tissue Mechanics
Table 3 and Figure 6A present the average stress in the mitral
leaflets during peak systole. From Figure 6A it can be seen that
both AML and PML were subjected to a higher systolic stress
after the procedure. This increase in leaflet stress was significant
(>50%) in the PML for all post-clip models except when using a
central clip. Additionally, Figure 7 shows the stress distribution
across the MV leaflets at peak systole. Before clip implantation,
peak stresses in the AML were located at the right and left
trigones, while peak stresses for the PML were distributed along
the MA region and close to the basal chordae insertion regions.
Following clip attachment, areas of high stress concentration
were relocated near the clip arms for all MitraClip configurations,
and extended above the leaflet portion grasped by the clip arms
toward the annular region. Repaired-induced leaflet stresses in
areas remote from the devices were not significant.

Figure 6B presents the chordae tension during peak systole.
Since this patient had a postero-lateral regurgitant gap with PML
tethering, it can be seen that the pre- and post-clip models
experienced a significantly higher total PML chordae tension
when compared to AML chordae tension. After MitraClip, the
chordae attached to the AML were subjected to a lower tension
compared to the pre-clip model, while PML chordae were under

a higher tension. These differences were significant (>50%) when
two clips were implanted, with or without ring.

Regarding the diastolic phase, Table 4 and Figure 6C show
a significant increase (>50%) in AML and PML average stress
for all post-clip models. Moreover, the central clip + ring model
gave the lowest increase in leaflet stress, while the double clip
model gave the highest increase. As seen in Figure 8, similar stress
distribution patterns were observed in the MV leaflets for all post-
clip models during diastole. In the AML, peak stresses relocated
near the clip arms and along strut and marginal chordae insertion
regions. In the PML, peak stresses extended from the free edge at
the level of the clip arms toward the P2 annular region, close to
the insertion of the basal chordae.

In regard to diastolic chordae forces, Figure 6D shows that
although AML and PML chordae tension had a tendency to
increase after the procedure, these changes we only important
(>30%) for the double clip models. When comparing systolic and
diastolic chordae forces (Figures 6B,D) between each pre- and
post-clip model, we observed a higher chordae tension during
diastole, which could be attributed to the diastolic restriction of
the mitral leaflets caused by PM relocation and LV dilatation.

Finally, Figure 3D shows the AMVOA throughout the cardiac
cycle. During systole, the AMVOA markedly decreased (>28%)
from 0.51 cm2 pre-clip up to 0.25 cm2 after MV repair, with
the highest reduction (52%) obtained for the central clip + ring
model (Table 3). During diastole, the AMVOA decreased
significantly (>50%) for all post-clip models, with the highest
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FIGURE 4 | Pre- and post-clip velocity showing the regurgitant jet structures during peak systole.

reduction (71%) quantified for the double clip models (Table 4).
Furthermore, as seen in Figure 3D, the pre-clip double-peaked
AMVOA curve waveform changed to a flat curve post-clip,
similarly as the MV inflow curves seen Figure 2B.

DISCUSSION

The results of this first-in-human experience with patient-
specific computer simulations of MitraClip under functional MR
can be summarized as follows: First, MitraClip induced acute
morphologic changes in the mitral apparatus. Clip implantation
resulted in a marked decrease of the AP distance by up to 28%,
together with a small increase of the AL-PM. Consequently,
there was a significant reduction of the ASI by up to 39%,
together with a non-significant decrease in the AHCWR and
MA area, suggesting that MitraClip leads to a more elliptical
and planar MA. Second, the immediate reduction in the RVMV
achieved by MitraClip resulted in an acute increase in the forward
flow (>23%), a decrease in preload, and overall improved
hemodynamic profile. For this patient case, while implanting a
central clip + ring resulted in the highest MR reduction (46%),
this configuration also led to mitral stenosis (MS) by increasing
the MDPG to 7.47 mmHg. Third, the MV leaflets were subjected
to a higher loading state throughout the cardiac cycle after the
procedure, with a significant increase in the diastolic leaflet
average stress by up to 210 and 145% for the AML and PML,
respectively. All post-clip models resulted in a concentrated high
stress pattern at the region of clip grasp. Fourth, MitraClip was

accompanied by the reduction of the anatomic opening area
by up to 71% for the double clip models, while the anatomic
regurgitant area decreased by up to 52% for the central clip+ ring
model, resulting in improved but incomplete MV coaptation.
Finally, MitraClip altered the temporal course of the MV inflow
and AMVOA diastolic waveforms from double-peaked to more
flattened curves.

Effects on MV Geometry
The acute effects of MitraClip on MV geometry under functional
MR have been investigated in a few clinical studies using echo
(Schmidt et al., 2013; Schueler et al., 2014; Noack et al., 2019b).
Similar to these investigations, we found a marked reduction of
the AP distance together with a relatively small increase of the
AL-PM distance, especially when a ring was added (Table 1).
These changes were accompanied by comparable changes in the
CC distance pre- and post-clip (Donmez et al., 2019), and by a
non-significant reduction in the MA area, as found in previous
studies (Mantegazza et al., 2018; Noack et al., 2019b). Some
studies, however, quantified a significant decrease of the MA
area after MitraClip (Schmidt et al., 2013; Schueler et al., 2014).
Nonetheless, this decrease in MA area appears to be secondary
to reduced AP distance after the procedure. Our results suggest
that reshaping of the MA with a significant reduction of the AP
distance contributes to a reduction of MR after MitraClip, which
might be an indicator of clinical benefit (Schueler et al., 2014;
Patzelt et al., 2017; Schueler et al., 2017). As a whole, it appears
that MitraClip limits MV further dilation by exerting traction on
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FIGURE 5 | Pre- and post-clip velocity showing the intraventricular blood flow during peak diastole.

the MA (Mantegazza et al., 2018); mainly in the antero-posterior
direction. The small changes in the CC distance can be explained
by the presence of the aortic-mitral continuity and the fibrous
trigones, which is a region less prone to large deformations than
the posterior MA, which is mainly muscular and more susceptible
to dilation (McCarthy et al., 2010).

The decrease of the AP distance together with the increase
in the AL-PM distance resulted in a significant reduction of the
ASI in the central and double clip models, which confirms the
reshaping of the MA from a rounder to a more oval shape.
The reduction in the MA sphericity has been quantified in
patients with functional MR undergoing surgical MV repair with
annuloplasty ring (Mahmood et al., 2010). AHCWR and aortic-
mitral distance also had a tendency to decrease after MitraClip,
but these changes were comparable pre- and post-clip. The
AHCWR is a measure of the MA non-planarity and describes its
3D shape. Our results suggest a flatter MA post-clip, which can

be related with the increased LV pressure and the more elliptical
MA (Jimenez et al., 2006; Warraich et al., 2012). Overall, these
geometric findings might be of interest for future biomechanical
studies to determine independent anatomic features that can be
correlated to sustained procedural success.

Effects on MV Tissue Mechanics
MV leaflet stress increased throughout the cardiac cycle after
MitraClip, especially in the vicinity of clip insertion (Zhang et al.,
2019). More importantly, this increase was significant (50–210%)
in all post-clip models during diastole (Table 4 and Figure 6C).
These results are congruent with the findings from Lau et al.
(2011) that showed that during diastole the MV leaflet stress
can be up to 200% higher after MitraClip when treating MA
dilatation. This important local increase in leaflet peak stress
could be a key factor in triggering mitral leaflet remodeling after
MitraClip. In vitro studies have shown that increased leaflet stress
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FIGURE 6 | (A) Average MV leaflet stress during peak systole, (B) Chordae tension during peak systole, (C) Average MV leaflet stress during peak diastole, and
(D) Chordae tension during peak diastole. ** highlight a 50% increase/decrease with respect to the pre-clip model, and * highlight a 30% increase/decrease with
respect to the pre-clip model.

can alter proteoglycan and collagen synthesis, resulting in leaflet
thickening with an increased compliance (Quick et al., 1997;
Kunzelman et al., 1998). Moreover, under in vivo conditions
the MitraClip has been reported to gradually be encapsulated
by connective tissue, have thicker fibrous capsules, and incite a
fibrous reaction that results in the formation of a tissue bridge
within the clip arms (Ladich et al., 2011).

Although AML and PML had comparable stress values for
each post-clip model during diastole (Table 4 and Figure 6C),
the leaflets were subjected to abnormal stresses up to 52%
higher with respect to the systolic phase (Figure 6A). For the
clip models with ring, however, the leaflets were subjected to
comparable stress values during systole and diastole. Thus, the
use of an annuloplasty ring in combination with MitraClip
appears to induce a more homogeneous stress state in the leaflets
throughout the cardiac cycle. This key finding can have an
important impact upon transcatheter MV repair techniques and
their durability, whereby MitraClip is the only repair procedure
currently performed.

Effects on Anatomic MV Orifice Area
We report, to our knowledge, the first set of time-dependent
AMVOA measurements pre- and post-clip under different
clipping configurations and combined annuloplasty procedures

(Figure 3D). The computer-based approach implemented herein
allowed us to directly quantify the true MV orifice area at
the level of the leaflet free edge with high reproducibility
and accuracy. Clinically, this parameter could be assumed to
represent an invasive measurement using catheterization or
the “ground truth.” Nevertheless, for better comparability with
clinical data, we also quantified the EOAMV and EROA by
using the mathematical formulation that relates the pressure
drop across the valve and the flow rate (Chandran et al., 2012;
Saikrishnan et al., 2014). We measured a reduction in the EOAMV
and EROA after MitraClip by up to 68 and 52%, respectively
(Table 2). Congruent with our results, a recent 3D TEE study
by Noack et al. (2019b) found that the EOAMV and EROA
decreased by up to 65 and 67%, respectively. Previous works have
shown a decrease in the EOAMV of ∼53% after the procedure
(Altiok et al., 2012; Biaggi et al., 2013). In these studies, the
EOAMV was calculated with 3D planimetry in the proximity of
the commissures, which can lead to an overestimation of the post-
clip EOAMV . This could help to explain the larger decrease in
EOAMV quantified in our study.

Clinical assessment of the continuous MV orifice area during
MitraClip is technical challenging due to the 3D dynamic MV
orifice, the limited capacity for echo measurement of areas
below 0.5 cm2, and the different TEE and Doppler-derived
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FIGURE 7 | Stress distribution on the MV leaflets during peak systole.

measurement techniques (Biaggi et al., 2013). When comparing
our AMVOA values (Tables 3, 4) with the EOAMV and EROA
values (Table 2), we observed the same trend toward a decrease
of the MV opening and regurgitant orifice areas after MitraClip.
However, we also quantified that overall, the echo-based method
(EOAMV and EROA) underestimates the true MV orifice
(AMVOA) (Biaggi et al., 2013), especially the regurgitant orifice
area, with an error up to 24% for the double clip + ring model.
Interestingly, out study also showed that MitraClip therapy
altered the temporal MV leaflet kinematics, especially during
diastole. A seen in Figure 3D, before MitraClip, a twin-peaked
AMVOA curve was quantified, which can be explained by early
MV inflow (E wave) followed by atrial contraction (A wave). After
clip implantation, the double-peaked AMVOA curve changed to
a more flattened curve as more clips were implanted. Although
some clinical studies have detected this diastolic flattening of
the AMVOA curve, it was suggested this was caused by the
prevalence of atrial fibrillation in the patients studied (Noack
et al., 2019a). But unlike previous reports, we prescribed the same
LA wall motion pre- and post-clip in our virtual patient-specific
model. Thus, we hypothesize these diastolic changes in the profile
of the AMVOA and MV inflow curves post-clip are related to the
MS caused by the narrower and multiple-orifice MV.

Effects on Blood Flow Dynamics
Impact on Residual MR
The most important clinical hemodynamic parameters that
determine MitraClip procedural success are residual MR and
transmitral pressure gradient (MDPG). Even moderate MR after
the procedure has been associated with increased mortality
(Buzzatti et al., 2016), particularly in patients with impaired LV
function and heart failure (Cheng et al., 2017). Indeed, residual

MR is presented as one of the main drivers for worse patient
outcome in the MITRA−FR trial, compared with the COAPT
trial, with 50% residual MR≥ 2 in MITRA−FR, and 31% residual
MR ≥ 2 in COAPT after 1 year (Obadia et al., 2018; Stone et al.,
2018). After MitraClip, all our post-procedure models decreased
MR severity to moderate (Table 2). This finding of moderate MR
would be considered a suboptimal clinical outcome (Paranskaya
et al., 2013), leading to the consideration to deploy additional
clips. As a general guideline, additional clips should not be placed
if the patient has a mean MDPG ≥ 4 mmHg (Singh et al.,
2015), which was the case for all our post-clip models. Regardless
of whether 1 or more clips are deployed, current clinical MR
assessment relies heavily on echo evaluation by integrating
multiple parameters (Stone et al., 2015; Zoghbi et al., 2017; Mao
et al., 2020), some of which are not validated in the specific
MitraClip clinical scenario, are limited by operator dependence,
or are difficult to obtain with TEE imaging (Krieger et al., 2016;
Palmiero et al., 2017; Corrigan et al., 2018; Dietl et al., 2018).

Despite the reassuring data on efficacy and long-term
durability of MitraClip, the proportion of patients with residual
MR after therapy is not negligible. In light of the detrimental
prognostic impact of MR, there is a high clinical interest
in combining or sequentially staging transcatheter approaches
to eliminate MR. Combined percutaneous therapies can be
performed together at the time of initial treatment, or they can
be staged for the treatment of persistent or recurrent MR (Rogers
et al., 2018). For example, Latib et al. (2016) reported initially
using 2 clips in a patient with functional MR, followed by staged
CardioBand (Edwards Lifesciences, Irvine, CA, United States)
transcatheter annuloplasty for persistent MR. In our study, the
greatest degree of MR improvement was found for the central clip
model followed by annuloplasty. From surgical experience, we
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FIGURE 8 | Stress distribution on the MV leaflets during peak diastole.

know that annuloplasty as a part of MV repair stabilizes the MA
and improves long-term results. In the near future and with the
rapidly expanding arena of catheter-based technologies for MV
repair, the combined application of multiple devices will increase
the therapeutic arsenal, optimize results, and expand the pool
of treatable patients to include those with multiple mechanistic
etiologies of MR.

Impact on MV Diastolic Pressure Gradient
The benefit from MR reduction can be counterbalanced by
the formation of MS, which is associated with the creation
of a multiple-orifice MV (Herrmann et al., 2006; Boerlage-van
Dijk et al., 2014). The abrupt change of a hemodynamic status
from an elevated preload caused by MR, to an elevated after
load caused by MS and the decrease of the low-impedance
regurgitant flow into the LA can have a major impact on
procedural outcomes. A recent study by Neuss and colleagues
(Neuss et al., 2017) found that MS after MitraClip has a negative
impact on long-term clinical outcomes. A cutoff value was found
at 5 mmHg for invasively and 4.4 mmHg for echo measured
MDPG. Based on the invasively threshold value, implantation
of central and double clips, with or without ring, caused MS
in our virtual patient models. In clinical practice, the pressure
drop across the MV during MitraClip is usually calculated using
the simplified Bernoulli equation and the maximum velocity
measured by TEE or Doppler-derived echo (Bach, 2010; Zoghbi
et al., 2009). Echo measurements are operator dependent and
strongly influenced by LV function, LA compliance, and loading
conditions (Kang et al., 2013). In addition, some Doppler
methods have not been adequately validated in a multiple-orifice

MV (Kar and Sharma, 2015). Considering these limitations,
evaluation of directly measured hemodynamic parameters pre-
and post-clip should be included to support decision making
(Mao et al., 2020). In our study, all hemodynamic variables,
including the MDPG and residual MR were quantified accurately
and objectively using the pressure and velocity fields obtained
from the simulation algorithms.

Impact on Intraventricular Hemodynamics
This study detected potentially harmful changes in the LV blood
flow dynamics. While lateral clipping demonstrated a diastolic
flow field closest to that of the pre-clip state, multiple diastolic
jets were formed when central and double clips were implanted.
The peak velocities across the MV were strongly affected by
this multiple−orifice configuration (Table 2). From Figure 5
it is clear that the jets impinged the LV wall with a deeper
penetration as they were deviated laterally due to the reduction in
the MV orifice area. Moreover, the inflow velocities, trans-mitral
pressure gradients, and jet deflection angle further increased
when a ring was added. This deflection can compromise the
fluid mechanics such as rapid dissipation of the large anterior
vortex (Hu et al., 2010; Jeyhani et al., 2018), and a higher
energy loss (Hu et al., 2010; Du et al., 2014). Although previous
computer and in vitro studies have provided initial insights on
the LV flow after MitraClip (Redaelli et al., 2001; Shi and He,
2009), simplified models that considered idealized LV and MV
geometries were used. An improved understanding of human
host-MitraClip hemodynamics using patient-specific FSI models
may help to optimize device placement. We are currently working
on performing a quantitative analysis of the intraventricular
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TABLE 3 | Pre- and post-clip MV biomechanics during peak systole.

Pre-clip Lateral Central Double Central + Ring Double + Ring

SI
AVRG (MPa)

AML 0.126 0.159 (26) 0.131 (5) 0.170 (35) 0.145 (16) 0.202 (61)

PML 0.071 0.125 (76) 0.091 (28) 0.162 (128) 0.129 (82) 0.174 (145)

Fchordae (N)

AML 7.04 4.07 (−42) 5.59 (−21) 2.66 (−62) 5.88 (−16) 3.16 (−55)

PML 13.79 17.71 (28) 16.50 (20) 21.62 (57) 17.36 (26) 22.62 (64)

AMOVA - Regurgitant orifice area (cm2) 0.51 0.37 (−29) 0.32 (−38) 0.27 (−47) 0.25 (−52) 0.37 (−28)

Percentage variations (%) with respect to the pre-clip model are reported in parenthesis.

TABLE 4 | Pre- and post-clip MV biomechanics during peak diastole.

Pre-clip Lateral Central Double Central + Ring Double + Ring

SI
AVRG (MPa)

AML 0.074 0.165 (122) 0.156 (110) 0.230 (210) 0.135 (82) 0.179 (142)

PML 0.088 0.159 (80) 0.139 (57) 0.213 (141) 0.133 (50) 0.195 (120)

Fchordae (N)

AML 9.43 11.04 (17) 10.42 (11) 12.99 (38) 11.85 (26) 13.17 (40)

PML 16.25 19.06 (17) 20.92 (29) 21.65 (33) 17.63 (8) 27.81 (71)

AMVOA – Opening orifice area (cm2) 4.85 2.46 (−49) 2.11 (−56) 1.4 (−71) 1.66 (−66) 1.42 (−71)

Percentage variations (%) with respect to the pre-clip model are reported in parenthesis.

energetic parameters associated with maladaptive changes and
LV reshaping in these FSI models (Cimino et al., 2017;
Filomena et al., 2019).

Clinical Implications
In daily MitraClip routine, the interventional team has to face
several difficult situations from a decision-making standpoint:
What should be done in case of residual MR?, what should
be done in case of MR reduction, but a significant increase in
the MDPG?, what is an acceptable compromise between these
two parameters when implanting multiple clips? The answers to
these questions are not always clear, suggesting that procedural
assessment should be performed in a more integrated way. For
example, real-time monitoring of LA pressure during MitraClip
has been described as a helpful tool to predict clinical outcomes
(Eleid et al., 2015; Horstkotte et al., 2016). Kuwata et al. (2019)
demonstrated that an increased LA mean pressure was predictive
of worse clinical outcomes at short-term follow-up, independent
from echo findings. As intra-procedural decisions have a strong
impact on short- and long-term outcomes and prognosis, the
clinical message from these clinical studies is extremely relevant
for the interventional community: evaluation of MitraClip should
shift from a solely echo-based color Doppler assessment to a more
hemodynamic-based approach.

To the best of our knowledge, this is the first patient-specific
computer-based engineering study to quantify the coupled LH
hemodynamics and tissue mechanics pre- and post-clip under
different MitraClip/annuloplasty configurations throughout the
cardiac cycle in a virtual human beating-heart. FSI modeling
tools, as used in this study, are required to directly quantify
the RVMV , accurately simulate full dynamic AV-MV dynamics

(Lau et al., 2010; Mao et al., 2016b), and shift the conventional
MitraClip paradigm from a solely anatomic assessment, toward
a more functional and physiologic approach based on objective
biomechanical data. Much needed clinically relevant flow
indicators can be obtained by applying the computer modeling
framework herein proposed for the personalized assessment of
MitraClip therapy, as well as to gain insight into the different
clinical scenarios and implantation criteria currently critical for
this procedure. Moreover, this modeling methodology could
be easily applied to other structural MV interventions and
newer device designs.

Limitations
The present study has several limitations. The main one is its
small sample size. This work only used one previously validated
patient-specific LH model with heart failure and functional
MR (Caballero et al., 2019a), therefore no general statements
can be made. A large cohort of patient-specific LH models
under different MR conditions and MitraClip configurations
would be necessary to draw conclusions with confidence. Second,
simulations results were not validated against post-procedural
clinical data, since the patient studied herein did not undergo
a real MitraClip treatment. Nevertheless, this study allowed for
a systematic investigation of various biomechanical scenarios
resulting from combined MitraClip/annuloplasty procedures.
Such well-controlled side-by-side comparisons under the same
patient and loading conditions are challenging to obtain in a
clinical setting. Third, annuloplasty procedures were simplified
as nodal displacement boundary conditions on the MA, and the
ring geometry was based on a surgical device. Fourth, some of the
pressure and flow fluctuations seen in Figures 2, 3 after MitraClip
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implantation are thought to be caused by small numerical
artifacts in the FSI simulations. Due to the use of prescribed
cardiac wall motion and the assumption of incompressible
fluid, a small compression in volume for a closed system can
cause large changes in pressure and velocity. These fluctuations,
however, damped out rapidly due to the viscous effect of the
fluid. This numerical artifact could be resolved by including
the shock-absorbing effect of the myocardium, and modeling its
interaction with the blood considering active contraction. This is
the subject of a study that we are currently undertaking. Finally,
although cardiac tissue properties were age- and gender-matched,
they were not patient-specific. Estimation of in vivo material
parameters inversely from medical images would be ideal to
produce more accurate predictive results (Liu et al., 2017).

CONCLUSION

Percutaneous MV repair using MitraClip has been established
as an option for heart failure patients with functional MR who
failed medical therapy. Feasibility and safety of MitraClip has
been largely described in a variety of clinical trials and case-
reports. Results concerning efficacy and durability, however,
are not entirely satisfactory. Additionally, results tend to be
less impressive immediately after the procedure compared to
surgical MV repair. In this era of booming technology, the
collaboration between industry and academia is of utmost
importance in order to bring further advancements in the field
of percutaneous treatment of MV disease. The objective of this
study was to evaluate the acute LH hemodynamic, structural
and morphologic changes after MitraClip/annuloplasty therapies.
Although this patient-specific computer study provided further
evidence to support that MitraClip is a viable approach
to treat functional MR by reducing regurgitation severity
and improving LV systolic function, clip implantation also
imposed a non-physiologic configuration and loading on the
LV-valve complex, especially during diastole. Comprehensive
personalized engineering analyses, as performed in this study,
can be a powerful and versatile tool that can pinpoint
specific biomechanical implications and potentially play an
important role in elucidating the optimal setting and efficacy of
percutaneous MV repair procedures.
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