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Humans spend nearly a third of their life sleeping, yet, despite decades of research
the function of sleep still remains a mystery. Sleep has been linked with various
biological systems and functions, including metabolism, immunity, the cardiovascular
system, and cognitive functions. Importantly, sleep appears to be present throughout
the animal kingdom suggesting that it must provide an evolutionary advantage. Among
the many possible functions of sleep, the relationship between sleep, and cognition
has received a lot of support. We have all experienced the negative cognitive effects
associated with a night of sleep deprivation. These can include increased emotional
reactivity, poor judgment, deficit in attention, impairment in learning and memory, and
obviously increase in daytime sleepiness. Furthermore, many neurological diseases like
Alzheimer’s disease often have a sleep disorder component. In some cases, the sleep
disorder can exacerbate the progression of the neurological disease. Thus, it is clear
that sleep plays an important role for many brain functions. In particular, sleep has been
shown to play a positive role in the consolidation of long-term memory while sleep
deprivation negatively impacts learning and memory. Importantly, sleep is a behavior
that is adapted to an individual's need and influenced by many external and internal
stimuli. In addition to being an adaptive behavior, sleep can also modulate plasticity in
the brain at the level of synaptic connections between neurons and neuronal plasticity
influences sleep. Understanding how sleep is modulated by internal and external stimulli
and how sleep can modulate memory and plasticity is a key question in neuroscience.
In order to address this question, several animal models have been developed. Among
them, the fruit fly Drosophila melanogaster with its unparalleled genetics has proved
to be extremely valuable. In addition to sleep, Drosophila has been shown to be an
excellent model to study many complex behaviors, including learning, and memory. This
review describes our current knowledge of the relationship between sleep, plasticity, and
memory using the fly model.
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INTRODUCTION

Sleep is an universal phenomenon that has been described in
a variety of species ranging from worms to humans (Keene
and Duboue, 2018). In addition to animals with complex and
organized nervous systems, recent studies have also described
sleep in models with simpler nervous systems, such as jellyfish
(Nath et al, 2017). At first look, sleep could appear to
be a detrimental behavior. This is because when animals
are sleeping they are not gathering food or attending to
their progeny, they also are not performing vital evolutionary
functions like reproduction and perhaps more importantly they
are subject to predation. However, despite all the negative
outcomes attached to it, sleep has been maintained throughout
evolution, emphasizing its essential value (Miyazaki et al,
2017). This nearly ubiquitous presence of sleep in the animal
kingdom strongly supports the view that sleep must provide
an evolutionary advantage and perform a vital function for
the organism. While this has been widely accepted by the
scientific community, it is worth mentioning that a recent
study challenged the notion that sleep performs a vital function
(Geissmann et al., 2019).

Over the last 100 years, the fruit fly, Drosophila melanogaster
has been used as a model to study many biological questions. The
unparalleled genetic tools, cost effectiveness, short developmental
time and relevance to human physiology of the fly has
positioned it as a prominent model organism. One particular
aspect of biology where Drosophila contributed extensively is
neurobiology. Starting with the discovery of the period gene in
1971 by Konopka and Benzer (1971), Drosophila has been a
workhorse in the study of complex behaviors, such as courtship
(Yamamoto and Koganezawa, 2013), aggression (Kravitz and
Fernandez, 2015), feeding (Bhumika and Singh, 2018), drug
addiction (Kaun et al., 2012), learning and memory (Kahsai and
Zars, 2011), circadian rhythms (Franco et al., 2018), and sleep
(Ly etal., 2018).

While Drosophila has been the pioneer model used to elucidate
the molecular mechanisms underlying circadian rhythms,
leading to the 2017 Nobel Prize in Physiology and Medicine
awarded to Hall, Rosbash and Young, whether flies displayed a
behavioral state similar to mammalian sleep was unclear for many
years. It is only in 2000, that two independent groups clearly
demonstrated that fruit flies were indeed sleeping (Hendricks
et al., 2000; Shaw et al., 2000).

Sleep is highly sensitive to internal and external factors
and can be modulated accordingly to satisfy an individual’s
need. For example, in great frigatebirds, sleep manifests itself
in a very different manner whether the birds are flying or
on land (Rattenborg et al., 2016). Furthermore, some animals
can function without sleep for various time durations, such
as in neonates killer-whales and their mother during the first
postpartum month (Lyamin et al., 2005) or in elephants if falling
asleep puts them at risk of being killed (Gravett et al., 2017).
In humans, sleep is not as efficient when sleeping in unfamiliar
surroundings (Agnew et al,, 1966). This so-called first-night
effect appears to be caused by the fact that one hemisphere of
our brain is more vigilant than the other when we sleep in a

novel environment, probably reflecting a protective mechanism
(Tamaki et al., 2016).

Beyond environmental and external stimuli, internal stimuli
can also modulate sleep. For example, sleep deprivation leads
to a homeostatic sleep rebound, illustrated by an increase in
sleep quantity and depth following deprivation (Borbely, 1982).
This increase in sleep is especially due to an increase in slow-
wave sleep (Dijk et al., 1987). Finally, sleep interacts with many
biological functions. For instance, there are bidirectional links
between sleep and immunity, with immune system activation
capable of modulating sleep (Besedovsky et al, 2019) and
between diet/metabolism and sleep (Huang et al., 2011; Frank
etal., 2017).

In this review, I will describe sleep in the Drosophila model and
introduce the many brain regions involved in sleep regulation. I
will then address the relationships between sleep and plasticity
and between sleep and memory.

SLEEP IN Drosophila

Daily rhythms of rest/activity in flies have been extensively
studied starting in the 1970’s (Konopka and Benzer, 1971). Under
laboratory conditions, flies are crepuscular animals displaying
two peaks of activity centered on the dark to light and light to
dark transitions. However, it remained unclear until the year
2000 whether the rest observed in flies could be considered as
sleep or whether it was simply inactivity. From a behavioral
point of view, human sleep is a period of reduced activity;
it is associated with a typical posture, such as lying down;
it leads to a reduction in responsiveness to mild external
stimuli but it can be easily reversed if the stimuli is strong
enough; that is sleep is different from other states of reduced
responsiveness like coma. Mammalian sleep is also characterized
by a change in brain electrical activity that can be measured by
electroencephalography (EEG). Importantly, sleep is regulated by
two processes, a circadian process that dictates when sleep can
occur and a homeostatic process that controls how much sleep
an individual needs (Borbely, 1982).

In Drosophila, assessing sleep using an electrophysiological
criteria is a challenging task. Thus, in order to unequivocally
characterize sleep in the fly model, two independent groups relied
on a behavioral definition of sleep (Hendricks et al., 2000; Shaw
et al., 2000). These groundbreaking studies demonstrated that
locomotor inactivity lasting at least 5 min was associated with
an increased arousal threshold, as assessed using mild mechanical
stimulation. However, if the stimulus was strong enough, flies that
had been inactive for 5 min or more would respond (Hendricks
et al, 2000; Shaw et al., 2000). Importantly, both studies
also found that the rest observed in flies was homeostatically
regulated. Following rest deprivation, flies showed an increase
in rest (Hendricks et al., 2000; Shaw et al., 2000). Video analysis
of Drosophila rest/activity behavior revealed that flies adopt a
specific posture to engage in rest periods. Moreover, they do so
in a specific location within the tubes where they are housed
(Hendricks et al., 2000). Additionally, rest is abundant in young
flies and reduced in older flies; an observation that parallels
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what we see in human sleep (Shaw et al., 2000). Rest is also
modulated by stimulants and hypnotics (Hendricks et al., 2000;
Shaw et al., 2000). The observations made in these two studies
demonstrated that periods of rest lasting 5 min or more satisfy all
the behavioral hallmark of sleep in humans, a typical posture, and
withdrawal from the environment, higher arousal threshold and
homeostatic regulation (Hendricks et al., 2000; Shaw et al., 2000).
In addition, in Drosophila like in mammals, sleep is sexually
dimorphic; male flies sleep more than female, especially during
the day (Isaac et al., 2010; Khericha et al., 2016; Wu et al., 2018).
Interestingly, sleep is also present in larvae, and is important
for neurogenesis (Szuperak et al., 2018). Because of the strength
of the Drosophila model, these seminal studies gave rise to new
avenues of research that could help understand our knowledge of
sleep regulation and function.

Although the definition of sleep in flies is a behavioral
one, local field potential recordings demonstrated that sleep
is a state of reduced neuronal activity (Nitz et al., 2002).
Later studies, using the calcium indicator GCaMP, confirmed
this electrophysiological observation and also reinforced the
notion that sleep is a state of reduced behavioral responsiveness
(Bushey et al., 2015).

Not surprisingly, in the years following the characterization
of sleep in Drosophila, many progresses have been made
regarding the genes that regulate sleep. Importantly, these studies
demonstrated that the signaling mechanisms that regulate sleep
are conserved between the fly and mammalian models (Sehgal
and Mignot, 2011). For example, the role of monoamines in sleep
regulation is similar in Drosophila and mammals (for instance,
dopamine promotes wakefulness while serotonin promotes sleep
in both models; Nall and Sehgal, 2014).

BRAIN REGIONS MODULATING SLEEP
IN Drosophila

There are many brain regions involved in sleep regulation in
the mammalian brain (Saper and Fuller, 2017). Similarly, the fly
brain contains many sleep regulating centers. Chronologically,
the Mushroom Bodies (MBs) was the first identified by two
independent groups in 2006 (Joiner et al., 2006; Pitman et al.,
2006). MBs are essential bilateral structures in the fly brain
involved in learning and memory (Figure 1, blue; Hige,
2018). The Kenyon Cells (KCs), neurons intrinsic to the MBs
synapse on to 21 different types of Mushroom Body Output
Neurons (MBONSs, Figure 1, yellow) to modulate attraction or
avoidance (Aso et al., 2014a,b). These KCs-MBONs connections
are modulated by dopaminergic neurons (DANs, Figure 1,
red). In addition to learning and memory, the MBs and its
associated MBONs and DANS regulate sleep; some KCs-MBONs
connections promote sleep while other promote wake (Aso et al.,
2014b; Sitaraman et al., 2015a,b).

Sleep is regulated by both a circadian process and a
homeostatic process (Borbely, 1982), so perhaps it is not
surprising that neurons regulating circadian rhythms are also
capable of modulating sleep. Among the roughly 150 clock cells
in the fly brain (Franco et al., 2018), Pigment-Dispersing factor

DANS,

MBONsO ()

PDF g%

FIGURE 1 | Sleep-regulating circuits in the fly brain. Schematic representation
of neurons and circuits involved in sleep regulation including Mushroom
Bodies (MBs, blue); Mushroom Body Output Neurons (MBONS, yellow);
dopaminergic neurons (DANS, red); circadian clock neurons (black) including
Pigment-Dispersing Factor (PDF) neurons and Dorsal Neurons 1 (DN1);
Ellipsoid Body neurons (EB, orange); dorsal Fan-Shaped Body neurons (dFB,
green); Pars Intercerebralis neurons (Pl, gray) and Dorsal-Paired Medial
Neurons (DPM, purple).

(PDF) lateral neurons (Renn et al., 1999) play an essential role
in controlling rhythmic locomotor activity (Grima et al., 2004;
Stoleru et al., 2004). In addition to their central role in controlling
the clock, studies demonstrated that PDF cells (Figure 1, black)
are promoting wake (Parisky et al., 2008; Shang et al., 2008;
Sheeba et al., 2008). Interestingly, PDF neurons are important
for memory induced by courtship conditioning (Donlea et al,,
2009). Furthermore, more recent studies demonstrated that
another group of clock neurons, the Dorsal Neurons 1 (DN1s,
Figure 1, black) can modulate sleep (Kunst et al.,, 2014; Guo
et al., 2016, 2017; Lamaze et al, 2017), by making synaptic
connections with tubercular-bulbar (TuBu) neurons (Guo et al.,
2018; Lamaze et al.,, 2018). These TuBu neurons, are forming
synaptic connections with R-neurons innervating the ellipsoid
body (EB, Figure 1, orange) (Guo et al., 2018; Lamaze et al., 2018),
a region involved in the control of homeostatic sleep drive (Liu
etal., 2016). These data provide an anatomical and functional link
between clock controlling neurons and sleep regulating centers.
The Fan-Shaped Body (FB) is part of the central complex (CX)
in the Drosophila brain. It is a region organized into multiple
layers that plays a role in many functions, including locomotion
control (Strauss, 2002), courtship behavior (Sakai and Kitamoto,
2006) and memory (Joiner and Griffith, 1999; Sakai et al., 2012),
nociception (Hu et al., 2018), visual feature recognition (Liu
et al.,, 2006) and processing (Weir and Dickinson, 2015), and
social behaviors (Kacsoh et al.,, 2019). Neurons that project to
the dorsal Fan-Shaped Body (dFB, Figure 1, green) are sleep
promoting (Donlea et al., 2011), and acute activation of these
neurons can help convert short-term memory (STM) into long-
term memory (LTM) (Donlea et al.,, 2011). However, a recent
study questions whether this memory benefit is actually caused
by dFB or by ventral Fan-Shaped Body (vFB) neurons activation
(Dag et al., 2019). Nevertheless, vFB neurons can also promote
sleep when activated, confirming that the FB is an important
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sleep-regulating hub in the fly brain (Dag et al., 2019). The dFB
is particularly important for the homeostatic regulation of sleep
(Donlea et al., 2014). The electrical activity of dFB is modulated
by sleep pressure, a point illustrated by the fact that sleep
deprivation increases the excitability of dFB neurons (Donlea
etal., 2014). dFB neurons are modulated by dopaminergic inputs
(Liu et al., 2012; Ueno et al., 2012; Pimentel et al., 2016; Ni et al.,
2019) with dopamine capable of switching dFB neurons from
an electrically active ON state to an electrically silent OFF state
(Pimentel et al., 2016). Importantly, this switching mechanism
is reminiscent of the FLIP-FLOP switching model between sleep
and wake in mammalian brains (Saper et al., 2010). Further
work demonstrated that dFB neurons form inhibitory synaptic
connections with helicon cells (Donlea et al., 2018). Interestingly,
helicon cells themselves provide excitation to R2 neurons of the
EB (Donlea et al., 2018), which as mentioned previously control
homeostatic sleep drive (Liu et al., 2016).

Other regions regulating sleep include the Pars intercerebralis
(PL Figure 1, gray), a neuroendocrine structure in the fly brain
(Foltenyi et al., 2007; Crocker et al., 2010). Interestingly, the
PI is connected to the clock network and is an important
component of the circadian output pathway for rest/activity
rhythms (Cavanaugh et al., 2014). In addition, the dorsal paired
medial (DPM, Figure 1, purple) neurons, which innervate the
MBs and are involved in memory consolidation (Waddell et al.,
2000; Keene et al., 2004), are sleep promoting cells (Haynes et al.,
2015). Finally, and confirming data obtained from mammalian
models (Halassa et al., 2009), glia is involved in sleep regulation
in Drosophila (Seugnet et al., 2011b; Chen et al., 2015; Dissel
et al.,, 2015¢; Farca Luna et al., 2017; Gerstner et al., 2017b;
Vanderheyden et al., 2018).

These data illustrate that similarly to the mammalian
brain, the fly brain contains many regions that regulate sleep.
Interestingly, many of these are also involved in learning and
memory positioning them perfectly to modulate the interaction
between these two processes.

SLEEP AND PLASTICITY

As mentioned previously, sleep is a plastic behavior, it is
modulated by both internal, and external/environmental stimuli.
Examples include the bidirectional relationship between sleep
and the immune system (Williams et al., 2007; Dissel et al.,
2015¢; Toda et al., 2019). Interestingly, both neurons and glia
are implicated in this process (Dissel et al., 2015¢) with different
outcomes in learning and memory. Another example is the strong
bidirectional link between metabolism/diet and sleep (Catterson
et al.,, 2010; Keene et al.,, 2010; Thimgan et al., 2010; Murphy
et al., 2016; Yurgel et al., 2019). Because the focus of this review
is on sleep and plasticity/memory, these relationships won’t be
described further but are nevertheless very important.

During wakefulness, when animals are performing their daily
behavioral tasks, for instance exploring their surroundings,
reacting to sensory stimuli, interacting with other individuals,
making decisions, forming memories, they learn about their
environment. These waking experiences are the behavioral

basis of learning and memory. Within the brain, learning and
memory can be seen as long-lasting changes in the strength
or number of synaptic connections between neurons (Tononi
and Cirelli, 2014). Importantly, sleep is influenced by neural
activity and plasticity (Tononi and Cirelli, 2014). One of the
prominent theories to explain the function of sleep is the synaptic
homeostasis hypothesis (SHY) (Tononi and Cirelli, 2003). In the
SHY model, the function of sleep is the downscaling of synaptic
connections that have been strengthened during previous waking
experiences (Tononi and Cirelli, 2003). Importantly, the SHY
model has received experimental support in the mammalian
brain (Huber et al., 2013; de Vivo et al., 2017; Diering et al., 2017;
Li et al,, 2017; Norimoto et al., 2018). However, it is important
to note that synaptic potentiation has also been observed during
sleep (Frank et al., 2001; Aton et al., 2013, 2014; Seibt and Frank,
2019). Nevertheless these data reinforce the strong relationship
between synaptic plasticity and sleep.

Waking experiences modulate sleep and sleep and neuronal
plasticity have a bidirectional relationship (Tononi and Cirelli,
2014). This is also true in flies. Obviously, the most important
internal factor than can modulate sleep is sleep pressure.
Following sleep deprivation, animals are subject to a strong drive
to increase the duration and depth of sleep. The same observation
was made in flies, where sleep deprivation triggers a homeostatic
sleep rebound (Hendricks et al., 2000; Shaw et al., 2000; Huber
et al., 2004). Studies have demonstrated that the dFB and the EB
are important circuits regulating sleep homeostasis in Drosophila
(Donlea et al., 2014, 2018; Liu et al., 2016). Importantly, dFB
and EB interact to regulate sleep homeostasis (Liu et al., 2016;
Donlea et al., 2018).

Extended waking periods not only increase sleep pressure,
they also increase the strength of synaptic connections (Tononi
and Cirelli, 2014). This potentiation of synaptic connections
constitutes the mechanism that underlies learning and memory.
In Drosophila, waking, whether spontaneous or imposed by sleep
deprivation, led to an increase in several key synaptic proteins in
the brain (Gilestro et al., 2009; Dissel et al., 2015a). Importantly,
the level of these synaptic markers was reduced following sleep
(Gilestro et al., 2009; Dissel et al., 2015a). Reinforcing this notion
is the finding that the number and size of synapses in three
different circuits, including MBs and PDF neurons, increases
following wake and decreases following sleep (Donlea et al., 2009;
Bushey et al., 2011). While these data support the hypothesis that
sleep plays a role in downscaling synaptic connections that have
been strengthened during previous waking experiences (the SHY
model) (Tononi and Cirelli, 2003) in Drosophila, it is important
to note that sleep has been found to potentiate some synaptic
connections. This is especially important in the developing brain
(Frank et al., 2001). Newborn babies spend a lot of time sleeping
and this sleep is very important for their development (Bathory
and Tomopoulos, 2017). Similarly, and as previously mentioned,
newly hatched flies sleep a lot in the first days of their life
(Shaw et al., 2000). This early-life sleep plays an essential role
in brain development. Studies have demonstrated that early-
life sleep deprivation caused long lasting behavioral defects that
are linked to impaired development in key brain areas (Seugnet
et al., 2011a; Kayser et al,, 2014). Taken together, these data
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clearly demonstrate that sleep and neuronal plasticity are tightly
interconnected. However, they also suggest that this relationship
is not unidirectional, sleep could both downscale and potentiate
specific types of synaptic connections. Supporting this view are
data collected in a classical memory mutant, where induction of
sleep could restore learning and memory as well as increase levels
of a key synaptic protein (Dissel et al., 2015a). It is thus very likely
that sleep can modulate plasticity in both directions, in a manner
adapted to specific needs or circuits.

While awake, Drosophila engage in a variety of behaviors,
ranging from simple motor actions to very complex social
interactions. One such waking experience is social enrichment,
which consists of housing many flies within a single vial,
increasing the likelihood of social interactions. Flies that are
kept in a socially enriched environment display an increase in
synapse numbers in the PDF expressing large Lateral Neurons
(Donlea et al., 2009) and sleep more than flies that are socially
isolated (Ganguly-Fitzgerald et al., 2006). Importantly, PDF cells
are essential for the sleep increase triggered by social enrichment
(Donlea et al., 2009).

Other waking experiences include different types of memory
training. In Drosophila, such a memory training is courtship
conditioning. In courtship conditioning, naive males learn to
suppress their drive to court by pairing them with non-receptive
females (Griffith and Ejima, 2009). This training protocol can
create long lasting memories that are dependent on the MBs
(McBride et al, 1999). Importantly, courtship conditioning
protocols that create LTM increase post-training sleep (Ganguly-
Fitzgerald et al., 2006; Dag et al,, 2019), and this post-training
sleep is essential for the manifestation of LTM (Ganguly-
Fitzgerald et al., 2006; Dag et al, 2019). Interestingly, during
post-training sleep, the neurons that were engaged in memory
acquisition are reactivated and this reactivation is essential
for LTM formation (Dag et al., 2019). This finding parallels
the memory consolidation processes observed in mammals
(Stickgold, 2005; Born, 2010).

Altogether, these data clearly support the notion that sleep is
plastic, and that sleep and neuronal plasticity mutually influence
each other. Uncovering the molecular mechanisms underlying
this relationship is an essential aspect of neurobiology that will
help us understand how the brain can optimize its functions in
oscillating behavioral states.

SLEEP AND MEMORY

We spend nearly a third of our life asleep, but despite years of
research in humans and animal models, we still do not know
why we sleep. The function, or probably the functions of sleep
remain one of neuroscience biggest mystery (Krueger et al,
2016). Such an enigma has obviously attracted the curiosity of
countless number of scientists and many theories to explain the
function of sleep have been proposed over the years (Krueger
et al., 2016). While some have more merits than others, one of
the most attractive one is the one pertaining to the influence of
sleep on learning and memory (Chen and Wilson, 2017). That is,
on one hand, sleep plays a positive role in memory consolidation

(Pavlides and Winson, 1989; Wilson and McNaughton, 1994;
Walker and Stickgold, 2004; Stickgold, 2005; Born, 2010) while
sleep deprivation and sleep disruption impairs learning and
memory (Killgore, 2010; Havekes et al., 2015; Krause et al., 2017).
In the brain, learning and memory can be observed at the level
of synaptic connections between neurons. Importantly, sleep
has been demonstrated to strongly modulate synaptic plasticity
(Diekelmann and Born, 2010).

The relationship between sleep and memory can be
investigated in flies that have spontaneously reduced levels
of sleep or in wild-type flies that are sleep deprived (Dissel et al.,
2015b). Flies with spontaneously fragmented sleep are STM
impaired as assessed with Aversive Phototaxic Suppression assay
(APS) (Le Bourg and Buecher, 2002; Seugnet et al., 2008, 2009a).
In the APS, an individual fly is inserted in a T-maze and has a
choice between two paths leading to two independent vials. One
of them is illuminated while the other is in dark. The lighted
portion of the maze contains an aversive stimulus, quinine. Once
the fly has made a choice (light or dark), it is removed from the
maze and reinserted at the entry point. Each individual fly goes
through the maze 16 consecutive trials. At first, wild-type flies
will go to the lighted vial where they will encounter the aversive
stimulus. As the training progresses, flies will start to visit the
dark vial more often. Performance in the APS is calculated as
the percentage of dark choices in the last 4 trials of a training
session. Typically, wild-type flies never make more than one visit
to the dark vial in the last 4 trials if no quinine is present on the
lighted vial. Thus, a performance index close to or superior to
50% (at least 2 dark visits in the last 4 trials) indicate learning
(Seugnet et al., 2009a). Interestingly, performance in the APS
requires the expression of the dopamine D1 receptor in the MBs
(Seugnet et al., 2008).

Some studies have looked at memory impairments in mutant
flies that display reduced sleep. Loss of function mutations in
the 3 modulatory subunit of the Shaker potassium channel,
encoded by the Hyperkinetic (Hk) gene reduce sleep (Bushey
et al,, 2007). Interestingly, when tested for STM using the
heat-box paradigm, Hk mutants were impaired (Bushey et al,
2007). The heat-box is an operant conditioning paradigm where
flies learn and remember to avoid one-half of a dark chamber
associated with a temperature that is aversive (Wustmann et al.,
1996; Diegelmann et al., 2006). Another study demonstrated
that mutations in the Rho-GTPase-activating protein encoded
by the crossveinless-c (cv-c) gene lead to decreased sleep time
and STM deficits as assessed with aversive olfactory conditioning
(Donlea et al., 2014). In aversive olfactory classical conditioning,
the fly learns to associate an odor and a mild electric shock
(Krashes and Waddell, 2011).

In an effort to develop a fly model of insomnia, an insomnia-
like strain was created by crossing short sleeping flies together
for 60 generations (Seugnet et al., 2009b). These flies only slept
60 min a day and were memory impaired as assessed with the
APS (Seugnet et al., 2009b).

These data indicate that a reduction in sleep quantity and
quality can lead to learning and memory impairments, however,
it is important to note that this is not always the case. For
example, when looking at individual flies within a wild-type

Frontiers in Physiology | www.frontiersin.org

May 2020 | Volume 11 | Article 533


https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

Dissel

Sleep, Plasticity, and Memory

stock, one can find individuals with fragmented sleep that have
normal performance using the APS (Dissel et al., 2015c¢). Thus,
these individuals have developed resilience to the negative effects
of sleep degradation (Dissel et al., 2015c).

The remarkable capacity of sleep to benefit learning and
memory was further demonstrated when sleep was increased in
the classical memory mutants rutabaga (rut) and dunce (dnc)
(Dissel et al., 2015a). Sleep was increased using three independent
strategies (feeding the flies the GABA-A agonist THIP, genetic
activation of the dFB and increasing the expression of Fatty
acid binding protein) prior to APS training in both mutants.
Surprisingly, both memory mutants could form STM following
sleep induction (Dissel et al., 2015a). Furthermore, the capacity
to form LTM as assessed with courtship conditioning was also
restored by sleep induction before and after memory training
(Dissel et al., 2015a). Importantly, THIP has been validated as
a potent sleep-promoting drug in several subsequent studies
(Berry et al., 2015; Dissel et al., 2017; Stahl et al., 2017; Yap
et al., 2017; Artiushin et al., 2018; Hill et al., 2018; Ki and Lim,
2019; Liu et al,, 2019). In particular, inducing sleep with THIP
was shown to block dopamine neuron mediated forgetting of
olfactory memories (Berry et al., 2015).

Neurodegenerative diseases like Alzheimer’s disease (AD) are
often accompanied with sleep deficits (Wang and Holtzman,
2019). In order to study this destructive disease, several fly models
of AD have been developed over the years (Finelli et al., 2004;
Greeve et al.,, 2004; Iijima et al, 2004; McBride et al., 2010;
Chakraborty et al,, 2011; Mhatre et al, 2013; Mhatre et al,
2014), and it was demonstrated that sleep is disrupted in some
of these models (Dissel et al., 2015a; Tabuchi et al., 2015; Farca
Luna et al., 2017; Gerstner et al., 2017a; Song et al., 2017; Buhl
et al,, 2019). Importantly, inducing sleep with THIP can restore
memory in several fly models of Alzheimers disease (Dissel
et al, 2015a, 2017). Thus, inducing sleep can help the brain
overcome memory deficits created by critical genetic lesions or
neurodegenerative processes.

In addition to looking at flies with naturally occurring
low levels of sleep, the relationship between sleep and
learning/memory in Drosophila can be studied by looking at
the effect of sleep deprivation (SD) on subsequent performance.
Following SD, performance, measured as an escape response
to an aversive stimulus made of a combination of noise and
vibration was reduced (Huber et al., 2004). Furthermore, using
the APS or aversive olfactory classical conditioning, it was
demonstrated that following SD, wild-type flies are impaired
(Seugnet et al., 2008; Li et al., 2009).

In addition to SD, it is possible to reduce sleep by increasing
the activity of wake-promoting neurons. Activation of wake-
promoting neurons results in subsequent STM impairments
as assessed with an aversive-taste memory paradigm (Seidner
et al., 2015). In aversive-taste memory, flies learn to suppress
their proboscis extension reflex in response to the simultaneous
pairing of appetitive fructose to the tarsi and aversive quinine
at their proboscis (Keene and Masek, 2012). Importantly, the
formation of aversive taste memory is dependent on the MBs.

Sleep is also important for the consolidation of recently
acquired memories in long lasting LTM (Walker and Stickgold,

2004; Stickgold, 2005). For instance, a few hours of SD
immediately following a courtship conditioning protocol that
induces LTM blocked the formation of LTM (Ganguly-Fitzgerald
et al,, 2006; Dag et al, 2019). Furthermore, increasing sleep
following a courtship protocol that normally only creates STM
can create LTM (Donlea et al.,, 2011; Dissel et al., 2015a; Dag
et al., 2019). These data suggest that sleep can help the brain
recruit mechanisms that are beneficial for the formation of
LTM, further illustrating the positive role that sleep plays in
memory processing.

CONCLUSION

The nearly ubiquitous presence of sleep in the animal kingdom,
despite the obvious detrimental consequences of being in this
behavioral state, suggests that sleep must serve an absolutely
vital function for the organism. However, despite many efforts,
the function of sleep remains elusive. Among the many
possible function of sleep, the bidirectional relationship between
sleep and plasticity/memory has been extensively documented.
Sleep is important for optimal cognitive performance, and
sleep disruptions lead to defects in learning and memory.
Conversely, many experiences that change plasticity and memory
modulate sleep. In addition, neurodegenerative diseases like
Alzheimer’s disease often disrupts sleep. Thus, it is clear that
understanding the sleep-plasticity-memory relationship could
have major therapeutic impacts.

In that respect, Drosophila seems to be the perfect model. With
its considerable strength as a genetic model, coupled with low
cost and fast generation time, and almost constant technological
advances, progress can be made in Drosophila in unparalleled
ways. Importantly, the relationship between sleep and memory
has been mostly characterized using a “what goes wrong in the
brain when sleep is disrupted?” strategy using sleep deprivation,
or mutations that disrupt sleep. This approach has proved to be
extremely valuable but maybe it only gave us partial answers.
With the ability to induce sleep on demand, one can now ask the
following question “what good does sleep do to the brain?” While
these two questions may look similar, the answers to them may
be complementary and could help us get a better understanding
of the function of sleep. In conclusion, the strength of the
Drosophila model will be invaluable to help us understand how
sleep can benefit cognitive processes in the context of health and
diseases. This could prove especially important in the case of
neurodegenerative diseases like Alzheimer’s disease.
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