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The molecular mechanisms underlying obesity-related cardiomyopathy (ORCM)
progression involve multiple signaling pathways, and the pharmacological treatment for
ORCM is still limited. Thus, it is necessary to explore new targets and develop novel
therapies. Microarray analysis for gene expression profiles using different bioinformatics
tools has been an effective strategy for identifying novel targets for various diseases.
In this study, we aimed to explore the potential genes related to ORCM using the
integrated bioinformatics analysis. The GSE18897 (whole blood expression profiling of
obese diet-sensitive, obese diet-resistant, and lean human subjects) and GSE47022
(regular weight C57BL/6 and diet-induced obese C57BL/6 mice) were used for
bioinformatics analysis. Weighted gene co-expression network analysis (WGCNA) of
GSE18897 was employed to investigate gene modules that were strongly correlated
with clinical phenotypes. Gene Ontology (GO) functional enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on
the co-expression genes. The expression levels of the hub genes were validated
in the clinical samples. Yellow co-expression module of WGCNA in GSE18897 was
found to be significantly related to the caloric restriction treatment. In addition, GO
functional enrichment analysis and KEGG pathway analysis were performed on the co-
expression genes in yellow co-expression module, which showed an association with
oxygen transport and the porphyrins pathway. Overlap analysis of yellow co-expression
module genes from GSE18897 andGSE47022 revealed six upregulated genes, and
further experimental validation results showed that elongation of very-long-chain fatty
acids protein 4 (ELOVL4), matrix metalloproteinase-8 (MMP-8), and interleukin-33 (IL-
33) were upregulated in the peripheral blood from patients with ORCM compared to
that in the controls. The bioinformatics analysis revealed that ELOVL4 expression levels
are positively correlated with that of IL-33. Collectively, using WGCNA in combination
with integrated bioinformatics analysis, the hub genes of ELVOL4 and IL-33 might
serve as potential biomarkers for diagnosis and/or therapeutic targets for ORCM.
The detailed roles of ELVOL4 and IL-33 in the pathophysiology of ORCM still require
further investigation.
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INTRODUCTION

The number of overweight and obese individuals has dramatically
increased. In China, more than 10% of the adult population is
obese (He et al., 2017; Qasim et al., 2018; Wang and Ren, 2018).
While in America, the prevalence of obesity among adults is
about 39.6% (Hales et al., 2018). China is the most populous
country with a total population of 1.4 billion compared to 0.32
billion in America (in 2018). Although the prevalence of obesity
is much higher in America than in China, the obese population
is comparable in these two countries. In 2014, China ranked first
worldwide, with 43.2 million obese men and 46.4 million obese
women (Collaboration, 2016).

According to the WHO classification, individuals with a body
mass index (BMI) ≥ 30 kg/m2 are defined as obese (WHO,
2000). However, the universal BMI criteria are not suitable among
diverse Asian populations, as Asian populations show different
associations between BMI, percentage of body fat, and health
risks than European populations (Consultation, 2004). According
to the classification of the Chinese Ministry of Public Health,
Chinese individuals with a BMI ≥ 28 kg/m2 are defined as obese.
Waist circumference is another important indicator for obesity,
which provides both independent and additive information to
BMI for predicting morbidity and risk of death. As BMI alone is
not sufficient to properly assess or manage the cardiometabolic
risk, the combination of BMI and waist circumference can
identify the highest-risk phenotype of obesity far better than
either measure alone (Ross et al., 2020).

Obesity is the second leading cause of preventable death
and has been identified as a risk factor for heart diseases, type
2 diabetes, certain types of cancers, and metabolic syndromes
(Qasim et al., 2018). Overweight and obesity adversely affect
cardiovascular (CV) function and serve as an independent
risk factor for both systolic and diastolic heart dysfunction,
resulting in heart failure (HF) (Wang and Ren, 2018). Obese
women are at higher risk of CV disease (CVD), as increased
aldosterone and mineralocorticoid receptor activation, aberrant
estrogenic signaling, and elevated levels of androgens are
among some of the proposed mechanisms explaining the
heightened CVD risk. Except for the traditional CV risk
factors, excess weight gain during pregnancy, preeclampsia,
gestational diabetes, and menopause are central to designing
personalized interventions aimed to curb the epidemic of
CVD (Manrique-Acevedo et al., 2020). Maternal obesity
(MO) during pregnancy exhibits intergenerational effects
by programming offspring to CVD. The animal experiment
indicates that MO impairs fetal cardiomyocyte contractility
through altered intracellular Ca2+ handling, overloading fetal
cardiomyocyte intracellular Ca2+, and aberrant myofilament
protein composition (Wang Q. et al., 2019).

In obesity-related cardiomyopathy (ORCM), obesity
affects the cardiac function and remodeling in the aspects
of myocardial fibrosis, hemodynamic load, and impaired
ventricular contractility, which eventually results in HF (Alpert
et al., 2014; Carbone et al., 2017). Leptin exerts profound
functions in the regulation of food intake, energy expenditure,
glucose metabolism, reproduction, and immune response.

Therapeutic applications of leptin in the management of obesity
and metabolic syndrome are also discussed (Zhang and Ren,
2015). Autophagy pathway may play a pivotal role in the
development of cardiac anomalies induced by obesity (Xu and
Ren, 2013; Zhang and Ren, 2016).

In vivo study revealed high-fat intake downregulated leptin
receptor and PPARγ, insulin signaling, phosphorylation of
AMPK, ACC, upregulated GATA-4, ANP, NFATc3, PPARα,
m-TOR/p70s6k signaling in obesity cardiomyopathy, while
knocking out ET-1 receptor A (ETA) attenuated the exception
of AMPK/ACC. In vitro study indicated high-fat diet-induced
hypertrophic and autophagic responses can be abolished by
the ETA receptor antagonist (Ceylan et al., 2018). However,
direct and indirect pathophysiologic factors related to obesity
interplay in ORCM, the underling mechanism of ORCM had
not been full studied. Meanwhile, current pharmacological
treatments have limited curative effects on the clinical outcomes
of ORCM. It is essential to broaden our understanding for the
precise mechanisms behind these therapeutic modalities in the
management of cardiometabolic diseases (Ren and Zhang, 2018).
In this regard, it is urgent to explore the molecular mechanisms
underlying ORCM progression and to develop novel therapeutic
strategies to prevent the progression of ORCM.

Recently, the system biology analysis of microarrays has
become an efficient tool for deciphering possible meaningful
genes and pathophysiological pathways of various diseases.
Sonne et al. (2017) performed microarray analysis to examine
the gene expression profiles in adipocytes from diet-induced
obese mice and obese ob/ob mice, and identified nine genes
in epididymal adipocytes that are possibly involved in immune
type1/type2 balance. Rendo-Urteaga et al. (2015) analyzed 28,869
genes using microarray analysis in peripheral blood mononuclear
cells (PBMCs) of obese boys and suggested that changes in the
gene expression profile of PBMCs in obese boys may help to
understand the weight-loss response. Keustermans et al. (2017)
used an Illumina microarray platform to analyze gene expression
profiles in sorted monocytes from obese and lean children
and revealed that monocyte gene expression in childhood
obesity might be correlated with obesity and complexity
of atherosclerosis in adults. In terms of cardiomyopathy,
Zhao et al. (2018) analyzed the gene expression profiles
(GSE3585 and GSE42955) of patients with cardiomyopathy and
healthy controls and revealed that 89 differentially expressed
genes (DEGs) might be associated with cardiomyopathy. In
addition, Li et al. (2018) used four data profiles (GSE5406,
GSE26887, GSE42955, and GSE57338) for microarray analysis
and revealed a common differential gene expression signature in
ischemic cardiomyopathy. However, the systematic and thorough
microarray analysis for ORCM is still lacking.

In this study, we constructed a co-expression correlation
network using the expression data from GSE18897 (whole
blood expression profiling of obese diet-sensitive, obese diet-
resistant, and lean human subjects) and identified the DEGs
from murine datasets (GSE47022, regular weight C57BL/6, and
diet-induced obese C57BL/6 mice) using linear models for
microarray (LIMMA) data. Selected co-expression modules and
DEGs were further subjected to enrichment analysis of Gene
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Ontology (GO) and Kyoto Encyclopedia of Genes and Genome
(KEGG) pathway. Furthermore, the hub genes derived from
bioinformatics analysis were validated in the clinical samples
from ORCM patients and lean controls. The present study
provides preliminary insights into the molecular mechanisms
underlying the progression of ORCM.

MATERIALS AND METHODS

Data Collection and Processing
The dataset (GSE18897) including 80-whole-genome expression
profiles of the whole blood of obese diet-sensitive, obese diet-
resistant, and lean human subjects; and the dataset (GSE47022)
including lean individuals and murine data, including the cardiac
samples of parallel regular weight C57BL/6, and diet-induced
obese C57BL/6 mice, were downloaded from the GEO database.
The GSE18897 series were performed on the GPL570 [HG
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array
platform (Affymetrix, Santa Clara, CA, United States); the
GSE47022 series were performed on GPL8321 [Mouse430A_2]
Affymetrix Mouse Genome 430A 2.0 Array (Affymetrix). The raw
data were extracted from the CEL files using the oligo package in
the Bioconductor1 and subsequently processed using the robust
multiarray average algorithm (Carvalho and Irizarry, 2010). The
human and mouse genes were matched by Gene database2. The
gene symbols of probes were annotated using the annotation
profiles provided by Affymetrix. The DEGs were detected using
the R package LIMMA (Ritchie et al., 2015). The cut-off criteria
were set as log2-fold change (log2 FC) ≥ 0.5 and P < 0.05.

Construction of Co-expression Network
Global gene expression profiles and co-expressed genes were
identified using weighted gene co-expression network analysis
(WGCNA; v1.49) package downloaded from Bioconductor. The
possibility of two transcripts to construct a weighted network
was determined using the soft-threshold method of the Pearson
correlation analysis. Average linkage hierarchical clustering
was performed to group transcripts based on the topological
overlap dissimilarities in the network connection strengths. The
restricted minimum gene number was set to 30 for each module,
and a threshold of 0.25 was used to merge the similar modules.

Enrichment Analysis Using GO and
KEGG Pathway Analysis
Functional enrichment analysis of the selected genes was
performed using the cluster Profiler package (Ritchie et al., 2015).
P < 0.05 was considered statistically significant, and the identified
significant analyses were sorted by gene counts.

Protein–Protein Interaction (PPI)
Network Construction
The protein–protein interaction (PPI) network of the selected
genes was constructed using the search tool for the retrieval

1http://bioconductor.org/biocLite.R
2https://www.ncbi.nlm.nih.gov/gene/

of interacting genes (STRING) database, and the threshold of
medium confidence ≥ 0.4 was applied in the analysis. The
constructed PPI network was visualized using Cytoscape software
(v3.6.13).

Blood Sample Collection
A total of six ORCM patients were recruited between July
2018 and June 2019 in the Sun Yat-sen Memorial Hospital
of Sun Yat-sen University. The diagnosis of ORCM was
based on previous reports (Lavie et al., 2013). The inclusion
criteria for ORCM patients were: (1) age > 18 years old;
(2) patients with BMI ≥ 28 kg/m2 (Chinese classification of
obesity) and class II cardiac function according to the NYHA
functional classification; and (3) color Doppler ultrasound
examination indicating myocardial injury, including diastolic
dysfunction, myocardial hypertrophy, or systolic dysfunction
(EF < 60%). Healthy volunteers (six) were recruited during
routine physical examination. The inclusion criteria for healthy
subjects were: (1) age > 18 years; (2) 18.5 < BMI < 23.9;
(3) no hyperlipidemia; and (4) color Doppler ultrasound
examination indicating no myocardial injury. Exclusion criteria
were: (1) pregnancy or breastfeeding; (2) patients with tumors
or infection; and (3) patients having heart valve disease. The
peripheral blood was collected from both ORCM patients and
healthy controls. The serum was extracted from the peripheral
blood and was stored at −80◦C until further analysis. All the
procedures were approved by the Ethics Committee of Sun
Yat-sen Memorial Hospital of Sun Yat-sen University (Ethics
approval#:SYSEC-KY-KS-2019-019), and each patient submitted
written informed consent in accordance with the Declaration
of Helsinki. Clinical characteristics of all patients enrolled are
summarized in Tables 1, 2.

Quantitative Real-Time PCR Analysis
(qRT-PCR)
The RNA from the serum was extracted using TRIzol reagent
(Invitrogen, Carlsbad, CA, United States) according to the
manufacturer’s instructions. The mRNA was reverse transcribed
into cDNA using the First Strand Synthesis kit (Thermo
Fisher Scientific, Waltham, MA, United States). Real-time
PCR was performed on an ABI7900 Real-time PCR system
(Applied Biosystems, Foster City, CA, United States) using
the SYBR Green Master Mix kit (Takara, Dalian, China).
GAPDH was used as the control for mRNA expression.
The relevant gene expression levels were calculated using the
comparative Ct method. The primers for the relevant genes are
summarized in Table 3.

Enzyme-Linked Immunosorbent Assay
(ELISA) Analysis
The protein levels of elongation of very-long-chain fatty acids
protein 4 (ELOVL4), matrix metalloproteinase-8 (MMP8), and
interleukin-33 (IL-33) were determined by respective enzyme-
linked immunosorbent assay (ELISA) kits (Abcam, Cambridge,
MA, United States) according to the manufacturer’s instructions.

3http://www.cytoscape.org/
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TABLE 1 | Clinical characteristics of patients enrolled.

Characteristics ORCM (N = 6) Control (n = 6)

Age (years) 51.8 ± 14.8 51.5 ± 10.5

Men (N,%) 5 (83.3%) 3 (50%)

Women (N,%) 1 (16.7%) 3 (50%)

CAD (N,%) 1 (16.6%) 0 (0%)

Hypertension (N,%) 2 (33.3%) 0 (0%)

Diabetes (N,%) 0 (0%) 0 (0%)

BMI (kg/m2) 30.9 ± 3.5 24.2 ± 3.5

Echocardiography parameters

LA (mm) 40 ± 4.4 35 ± 4.9

LVDd (mm) 58.1 ± 5.4 49.3 ± 5.0

IVSTd (mm) 10.5 ± 1.5 8.8 ± 1.1

EF (%) 54.8 ± 16.7 70.3 ± 2.8

Diastolic dysfunction (N,%) 2 (33.3%) 0 (0%)

NYHA grading

Grade I (N,%) 2 (33.3%) 6 (100%)

Grade II (N,%) 4 (66.7%) 0 (0%)

Grade III (N,%) (0%) 0 (0%)

Grade IV (N,%) (0%) 0 (0%)

Data are present as mean ± SD; CAD, coronary artery disease; BMI, body
mass index; EF, ejection fraction; LA, left atrial; LVDd, left ventricular end
diastolic diameter; IVSTd, intel-ventricular scptum end-diastolic thickness; EF,
ejection fraction.

Statistical Analysis
qRT-PCR and ELISA data were analyzed using GraphPad Prism 5
(GraphPad Software, La Jolla, CA, United States). The data were
presented as mean ± standard deviation. Significant differences
between groups were analyzed using unpaired t-test. ∗P < 0.05
was considered statistically significant.

RESULTS

The Workflow of Study Strategies
Figure 1 illustrates the workflow of the experimental design and
data processing. One microarray-based gene expression dataset

TABLE 3 | Primer sequences for qRT-PCR.

Genes Forward (5′–3′) Reverse (5′–3′)

KCTD12 GCTCGGGCTACATCACCATC GGTCCCGGCTTTCGTTCAG

CD45 ACCACAAGTTTACTAACGCAAGT TTTGAGGGGGATTCCAGGTAAT

ZNF383 ATGGCTGAGGGATCAGTGATG GAAACCAGATTGCCGTAGTTCT

C7orf33 CGGTCCAGGTCAATTTAACTTGT TTTGGTGGGAGCTGATACAGG

MMP8 TGCTCTTACTCCATGTGCAGA TCCAGGTAGTCCTGAACAGTTT

CYPB AAGTCACCGTCAAGGTGTATTTT TGCTGTTTTTGTAGCCAAATCCT

ELOVL4 GAGCCGGGTAGTGTCCTAAAC CACACGCTTATCTGCGATGG

SNCA AAGAGGGTGTTCTCTATGTAGGC GCTCCTCCAACATTTGTCACTT

IL33 GTGACGGTGTTGATGGTAAGAT AGCTCCACAGAGTGTTCCTTG

GAPDH AGGTGAAGGTCGGAGTCAAC CGCTCCTGGAAGATGGTGAT

(GSE18897) included 80-whole-genome expression profiling of
the whole blood from obese diet-sensitive, obese diet-resistant,
and lean human subjects. The human datasets were used for
constructing gene networks with WGCNA, and the expression
models were subjected to GO term enrichment and KEGG
pathway enrichment analysis. The top highest degree genes were
chosen to overlap with the murine heart DEGs. The murine
GSE47022 datasets include the cardiac samples of parallel regular
weight C57BL/6 and diet induced obese C57BL/6 mice. The
GSE47022 datasets were processed using LIMMA to reveal the
DEGs in the heart samples. In addition, the overlap hub genes
were verified in the clinical samples.

Construction and Analysis of Gene
Co-expression Network With DEGs in
Obese Individuals
The co-expression network of 5121 genes was analyzed using
WGCNA to explore the gene expression network in obesity. First,
as shown in Figure 2A, sample clustering was undertaken to
detect outliers. The sample clusters were summarized based on
the flash-cluster method by combining a heuristic cut-off, and
the top 25% most variably expressed genes were selected for
analysis (Figure 2A). The power value is a critical parameter and

TABLE 2 | Anthropometric information of patient enrolled.

Group Sex CAD Hypertension DM Hight (cm) Weight (kg) BMI (kg/m2) LA (mm) LVDd (mm) IVSTd (mm) EF (%) DS

ORCM group Male Yes Yes No 168 86 30.47 43 55 9 74 No

Male No Yes No 175 88 28.73 39 55 12 73 Yes

Male No No Yes 172 89.5 30.25 38 68 10 30 No

Female No Yes No 144 60 28.94 46 63 13 38 No

Male Yes Yes No 160 99 38.67 42 54 9 51 No

Male No Yes No 175 88 28.73 32 54 10 63 Yes

Control group Female No Yes No 153 60 25.63 38 48 9 73 No

Female No No No 150 37 16.44 25 39 7 69 No

Male No No No 158 64 25.64 35 52 8 70 No

Male No No No 178 79 24.93 35 54 9 67 No

Male No Yes No 167 72.5 26.00 36 50 10 75 No

Female No No No 151 61 26.75 41 53 10 68 No

CAD, coronary artery disease; DM, diabetes mellitus; BMI, body mass index; LA, left atrial; LVDd, left ventricular end diastolic diameter; IVSTd, intel-ventricular scptum
end-diastolic thickness; EF, ejection fraction; DS, diastolic dysfunction.
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FIGURE 1 | Workflow of the study strategies using datasets including GSE18897 and GSE47022.

affects the average connectivity degree and independence of the
co-expression modules. In this regard, we screened the network
topology using different soft thresholding powers, and β = 16
was chosen for further analysis (Figure 2B). Provided that the
appropriate soft power parameter was chosen, the eigengenes
were used as representative profiles to quantify module similarity
by the eigengene correlation (Figure 2C).

Figure 3A demonstrates the construction of co-expression
modules with no merge and merge cut height at 0.25, and
the WGCNA analysis, which produced a hierarchical clustering
tree (dendrogram) of 5121 genes. A total of eight co-expression
modules were generated based on the analysis (Figure 3B).
The smallest co-expression module contained 50 genes, while
the largest co-expression module contained 3000 genes, and
on average, each co-expression module contained 1250 genes.
We further determined if any co-expression module was
associated with the caloric restriction treatment and investigated
the relevance between each module and traits of the caloric
restriction treatment. Among eight modules, the co-expression
module significance of the yellow co-expression module was
higher than that of any other, suggesting it had a greater
correlation with the caloric restriction treatment (Figure 3B).
The yellow co-expression module showed a positive correlation
with the caloric restriction treatment (r = 0.74, p = 4e-7) and

was chosen for further investigation. GO function and KEGG
pathway enrichment analyses were performed using DAVID
functional annotation to determine the function of these genes
in the yellow module. For GO biological processes, genes in
the co-expression module were significantly enriched in oxygen
transport (Figure 3D); for the KEGG analysis, the genes were
mainly enriched in the metabolism of porphyrins (Figure 3D)
and the datas can be found in Supplementary Tables S1, S2 in
Supplementary Material.

The yellow co-expression module genes were used on the
STRING database to clarify high confidence hub genes. The
genes were ranked by the PPI nodes, and the top 50 genes
were selected (Figure 3E). Among these genes, FECH, SNCA,
GLRX5, BPGM, SENSN, BNIP3L, and RAB2B showed the
highest connectivity (Figures 3C,E).

Overlap Analysis of Hub Genes From
Human and Mouse DEGs
The genes in the yellow co-expression module and DEGs
from the murine datasets were subjected to KEGG pathway
enrichment analysis and the datas can be found in
Supplementary Table S3 in Supplementary Material. As
shown in Figure 4A, for the murine datasets, metabolic, AMPK,
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FIGURE 2 | Selection of the proper soft-threshold power β for WGCNA. (A) Outliers were determined using sample clustering method, and the analysis was
performed according to the expression data of DEGs from whole blood of well-matched obesity and lean individuals. (B) The scale-free fit index of network topology
was determined by soft-thresholding power analysis. (C) Heatmap plot of the adjacencies in the hub gene network. The trait weight was included. Each column and
row correspond to one co-expression module hub gene (labeled by color) or weight. In the heatmap, red represents high adjacency (positive correlation) and blue
represents low adjacency (negative correlation). Red squares along the diagonal are the meta-modules.

fatty acid, PPAR signaling, insulin signaling, biosynthesis of
antibiotics, biosynthesis of unsaturated fatty acids, glucagon
signaling, insulin resistance pathways were enriched; for the
yellow co-expression module genes, Alzheimer’s disease, MAPK
signaling, oxidative phosphorylation, ABC transporters cardiac
muscle contraction signaling pathways were enriched. The
overlap showed that six common hub genes (ELOVL4, CYPB,
SNCA, ZFN383, MMP8, and IL-33) were detected (Figure 4B).
The volcano plot results showed that the six common hub genes
were all upregulated (Figure 4C).

Validation of Hub Genes in the Human
Clinical Samples
To validate the results from bioinformatics analysis, we examined
the gene expression levels of these hub genes in human peripheral
blood from patients with ORCM and healthy controls. As shown

in Figure 5A, the expression levels of ELOVL4, MMP8, and IL-33
were significantly upregulated in the ORCM group compared to
normal controls, while no significant difference was detected in
the other hub genes. Furthermore, the increased protein levels of
ELOVL4, MMP8, and IL-33 in the peripheral blood from patients
with ORCM were confirmed using ELISA (Figure 5B).

Correlation Analysis of ELOVL4 and IL33
Gene Expression Levels Using GEO
Database
The KEGG pathway analysis revealed that the hub genes derived
from the overlap analysis were involved in the fatty acid
metabolism and IL33/sST2 signaling pathways (Figure 6A). The
correlation analysis showed that ELOVL4 expression levels were
positively correlated with IL-33 expression levels (Figure 6B).
More importantly, analysis of ELOLV4 and IL-33 using GEO
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FIGURE 3 | Construction of the co-expression network and identification of the most related co-expression modules. (A) Clustering of genes together with assigned
module colors. The dissimilarity was based on the topological overlap. The y-axis is the distance determined by the extent of the topological overlap. (B) Heatmap
with each cell containing the p-value correlation from linear mixed effects model. Row corresponds to different co-expression modules; column corresponds to traits
of caloric restriction treatment. (C) The gene correlation heatmap of the genes in yellow co-expression module. Each color circle represents the distance between
different genes. (D) GO enrichment and KEGG pathway analysis of 633 genes in the yellow co-expression module. (E) PPI network construction of the top 50 genes
in the yellow co-expression module.

database showed that ELOVL4 and IL33 expression were both
upregulated in the obese group when compared to the lean group.
Caloric restriction for 3 and 6 months significantly attenuated the
increased expression levels of ELOVL4 in the obesity group, while
a significant reduction of IL-33 expression levels was observed in
the obese patients with a 6-month period of caloric restriction
treatment (Figure 6C).

DISCUSSION

The molecular mechanisms underlying ORCM progression
involve multiple signaling pathways and the pharmacological

treatment for ORCM is still limited (Khan and Movahed,
2013; Alpert et al., 2014; Tiwari and Ndisang, 2014; Bhatheja
et al., 2016). Thus, it is necessary to explore new targets and
develop novel therapies. Microarray analysis for gene expression
profiles using different bioinformatics tools has been an effective
strategy for identifying novel targets for various diseases. In the
present study, we performed WGCNA on the series GSE188897
combined with routine bioinformatics analysis and revealed six
potential target genes that might be involved in the development
of obesity. In addition, the DEGs from GSE47022 were analyzed.
The overlap analysis of the hub genes from the WGCNA analysis
of GSE188897 and DEGs from GSE47022 revealed six potential
genes that may be associated with ORCM. qRT-PCR and ELISA
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FIGURE 4 | Overlap analysis of hub genes from human and mouse DEGs. (A) KEGG pathway analysis of genes from yellow co-expression module and DEGs from
mice. (B) Venn diagram shows common hub genes between yellow co-expression module and DEGs from mice. (C) Volcano plot of yellow co-expression module
and DEGs from murine datasets.

FIGURE 5 | Validation of hub genes in the clinical human samples. (A) Gene expression levels of the hub genes (ELOVL4, CYPB, SNCA, ZFN383, MMP8, and IL33)
in the human peripheral blood from ORCM patients and healthy controls were determined by qRT-PCR. (B) Protein levels of ELOVL4, MMP8, and IL33 in the human
peripheral blood from ORCM patients and healthy controls were determined by ELISA assay. N = 6; ns = non-significant; **P < 0.01.

further validated the upregulation of ELOVL4, MMP8, and IL-
33 in the patients with ORCM when compared to healthy lean
controls. Collectively, in the present study, we used different
bioinformatics analytical strategies to explore the potential hub
genes related to ORCM development. Further validation studies
indicated that ELOVL4, MMP8, and IL-33 might participate in
the progression of ORCM.

WGCNA is a newly developed method to identify highly
correlated genes in microarrays (Langfelder and Horvath, 2008;
Pei et al., 2017). In contrast with the traditional gene-gene
correlation co-expression matrices by setting a hard threshold,
WGCNA can identify correlated genes using a soft-threshold
algorithm and determine the relationship between co-expression
modules and phenotypes (Kakati et al., 2019). Thus, WGCNA
has been widely used in the study of various diseases, including
CVDs (Chen et al., 2016; Wang Y. et al., 2019). Kang et al.
(2020) performed the WGCNA in GSE79962 and revealed the
potential critical roles of NDUFB5, TIMMDC1, and VDAC3
in the septic cardiomyopathy progression. Using microarray

data of coronary artery diseases (CADs; GSE23561), studies
detected a co-expression module associated with hypertrophic
cardiomyopathy pathway in CAD and found that G6PD and
S100A7 were the potential targets (Liu et al., 2016). The
GSE18897 datasets were originally generated by Ghosh et al.
(2010), and further pathway analysis by gene-set enrichment
showed increased transcript levels for genes classified in the
oxidative phosphorylation, apoptosis, and ribosome pathways in
the obese cohort. In the present study, WGCNA was performed
in GSE18897 datasets, and yellow co-expression module was
chosen for further GO function and KEGG pathway enrichment
analyses. GO function enrichment revealed the genes related to
oxygen transport, which was consistent with previous studies
showing that transcripts associated with oxygen transport were
elevated with the increasing BMI (Rai et al., 2014). Moreover,
the genes related to oxygen transport are also upregulated in
the peripheral blood from patients with pulmonary hypertension
(Cheadle et al., 2012), suggesting the potential involvement
of these genes in the ORCM. The KEGG pathway analysis
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FIGURE 6 | Correlation analysis of ELOVL4 and IL33 gene expression levels. (A) KEGG pathway analysis of the hub genes. (B) The correlation between ELOVL4
and IL33 expression levels were analyzed using Pearson correlation analysis. (C) Analysis of ELOVL4 and IL33 expression levels in lean controls, obese patients, and
obese patients received 3- or 6-month period of caloric restriction treatment.

identified enriched genes related to porphyrin metabolism. The
porphyrins metabolism is associated with the heme biosynthesis,
which is functionally linked to adipogenesis via mitochondrial
respiratory activity (Moreno-Navarrete et al., 2017). Our analysis
strategies enabled us to identify important genes related to
obesity development.

Overlap analysis of hub genes from the yellow co-expression
module and DEGs from the murine datasets revealed six
upregulated genes. Further experimental validation results
showed that ELOVL4, MMP8, and IL-33 were upregulated
in the peripheral blood from patients with ORCM compared
to the lean controls. The bioinformatics analysis revealed
that ELOVL4 expression levels were positively correlated
with IL-33 expression levels. These data suggest the potential
involvement of ELOVL4 and IL-33 in the pathophysiology
of ORCM. ELOVL4 is an elongase that participates in the
biosynthesis of very-long-chain (VLC, ≥ C28) saturated fatty
acid (VLC-SFA) and polyunsaturated fatty acid (VLC-PUFA)
in different tissues (Hopiavuori et al., 2019), and plays a key
role in the retinal function (Harkewicz et al., 2012). The
increased deposition of long-chain fatty acids in adipocytes
is one of the main characteristics of obesity (Walewski et al.,

2010). In addition, ELOVL4 is involved in the biosynthesis of
VLC fatty acids in the cardiomyocytes (Agbaga et al., 2008).
Ge et al. (2012) demonstrated that accumulation of the
cardiomyocyte triglyceride and reduction in the ventricular
function in obese mice reflected enhanced VLC fatty acid
uptake and de novo fatty acid synthesis. The involvement of
ELOV4 in ORCM might be due to its regulatory effects on the
VLC fatty acid synthesis. IL-33 belongs to the IL-1 family of
cytokines and acts as an ST2 receptor ligand, and the IL-33/ST2
signaling plays an important role in regulating the progression of
cardiomyopathy (Demyanets et al., 2013). Upregulation of IL-33
has been detected in the obese adipose tissues (de Oliveira et al.,
2019). Nevertheless, the interaction between ELOVL4 and IL-33
has not been determined, which requires further investigation.

LIMITATIONS

There are several limitations to this study. First, the clinical
sample size for validation is relatively small, and future studies are
required to increase the sample size and recruit human subjects
from multiple clinical centers to confirm the findings. Second,
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the microarray data were retrieved from diet-induced obese mice,
and whether the obese mice had cardiomyopathy is not known,
which may lessen the significance of our findings. In terms of
the database selection, only one database was chosen for the
data analysis, which may have the selection bias, and future
studies should consider including more datasets to validate our
current findings. Third, whether the caloric restriction treatment
in patients with ORCM could restore the expression levels of
ELOVL4 and IL-33 requires further determination. Finally, the
present study lacks the mechanistic studies regarding the role of
ELOVL4 and IL-33 in the ORCM pathophysiology, which may be
considered in the future investigation.

CONCLUSION

Using WGCNA in combination with integrated bioinformatics
analysis, the hub genes of ELVOL4 and IL-33 might serve as
potential biomarkers for diagnosis and/or therapeutic targets
for ORCM. The detailed roles of ELVOL4 and IL-33 in the
pathophysiology of ORCM still require further investigation.
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