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Macrophages are key components of innate immunity, and they play critical roles
in heart health and diseases. Following acute myocardial infarction (MI), infiltrating
macrophages undergo drastic phenotypic transition from pro-inflammatory in the early
stage to pro-healing in the late stage. Transcriptome analyses of macrophage in the
infarct zone show a time-dependent reprogramming of mitochondrial and metabolic
functions, which parallels the changes of macrophage function. These observations
suggest that mitochondrial and metabolic targets could be exploited for therapeutic
opportunities. In this article, we reviewed the recent work on immunometabolic features
of macrophage over the MI time continuum. In addition, we summarized currently
proposed mitochondrial pathways involved in the functional polarization of macrophage
and discussed their potential relevance to the outcome of MI. We expect that these
findings will stimulate further investigations in metabolic modulation of innate immunity
in the post-MI setting, which could ultimately lead to new strategies for therapy.
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INTRODUCTION

Ischemic heart disease is a leading cause of morbidity and mortality in developed countries.
Cell death caused by myocardial infarction (MI) or ischemic/reperfusion (IR) injury invokes the
recruitment of immune cells to the infarcted myocardium, which triggers inflammatory response
in the early stage followed by wound healing and eventual scar formation (Van der Borght and
Lambrecht, 2018; Bajpai et al., 2019). It has been shown that excessive inflammation and/or
inadequate wound healing leads to poor clinical outcome after MI (Jia et al., 2019). Innate immune
cells, particularly macrophages and monocytes, play a primary role in the tissue damage/repair
process. Emerging studies suggest that macrophage function is intricately linked to its metabolic
profile (Palmieri et al., 2017; Yurdagul et al., 2020). After acute MI (AMI), the majority of resident
macrophages in the infarct zone die and are subsequently replenished by macrophages derived from
circulating monocytes (Heidt et al., 2014; Ma et al., 2018). These macrophages undergo complex
phenotypic changes that are central to post-MI healing. For example, infiltration and activation
of macrophages in the infarcted region lead to strong inflammatory response, cytokine release,
and further cell death immediately after MI (Mezzaroma et al., 2011; Chen et al., 2019). As the
tissue repair commences, macrophage population evolves from pro-inflammatory to pro-healing,
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which promotes collagen deposition and extracellular matrix
remodeling and scar formation (DeLeon-Pennell et al., 2017;
Honold and Nahrendorf, 2018). Moreover, recent studies suggest
that macrophages are critical mediators of the functional benefit
associated with adjunctive cell therapy post-MI (de Couto et al.,
2015; Vagnozzi et al., 2020). Therefore, regulatory mechanisms
governing the transitions of macrophage functions during the
post-MI period has recently become a fervid area of investigation.
In this mini review, we will summarize the recent advances
regarding the role of mitochondrial metabolism in regulating the
phenotypic changes of macrophage post-MI.

METABOLIC REPROGRAMMING OF
MACROPHAGE POST-MI

A global rewiring of metabolic pathways takes place in
macrophages during the transition from a quiescent state
to an activated state (Kelly and O’Neill, 2015). A hallmark
of pro-inflammatory macrophage is a metabolic shift from
oxidative metabolism toward glycolysis to meet the bioenergetic
and biosynthetic demand (Rodriguez-Prados et al., 2010;
Figure 1). In the case of pathogen invasion, upregulation of
glycolysis rapidly generates ATP for activated macrophages.
Furthermore, increased glycolytic intermediates feed into the
pentose phosphate pathway (PPP) to produce NADPH, which is
used to generate reactive oxygen species (ROS), through NADPH
oxidase reaction, for bactericidal function (West et al., 2011a).
On the other hand, mitochondrial oxidative metabolism in pro-
inflammatory macrophages is suppressed, and the tricaboxylic
acid (TCA) cycle flux is disrupted and rewired (Figure 1; Jha
et al., 2015; Lampropoulou et al., 2016). In a sterile condition,
infiltrating monocyte/macrophage in the infarct zone post-MI
mounts a similar inflammatory response in the early stage
post-MI (Lee et al., 2012). For instance, damage-associated
molecular patterns (DAMPs) released by the dead cells activate
toll-like receptors (TLRs) and promote glycolytic polarization
of macrophages within the injured heart (Williams et al.,
2018). The metabolic profile of macrophages in the infarct
zone is not well described. However, a recent study examining
macrophage transcriptome in the post-MI hearts showed a robust
reprogramming of mitochondrial genes during the transition
from tissue injury to repair (Mouton et al., 2018), suggesting
that mitochondrial function could also be central to macrophage
phenotype and cardiac remodeling post-MI.

Following MI, clearance of apoptotic cells by immune cells,
i.e., efferocytosis, is a critical step leading to inflammation
resolution and tissue repair (Serhan and Savill, 2005; Wan et al.,
2013; Gordon, 2016). Distinct from microbial phagocytosis,
efferocytosis after MI has been shown to fill the phagocytic
macrophage with a heavy substrate load almost equal to
the phagocyte itself (Zhang et al., 2019). The presence of
metabolic cargo is accompanied by a marked elevation of
oxygen consumption in phagocytic macrophages relative to non-
efferocytes. In parallel, fatty acid oxidation (FAO) and oxidative
phosphorylation (OXPHOS) are upregulated in phagocytic
macrophages, while glycolysis decreases as cytokines and DAMPs

decline in the microenvironment. These changes constitute a
reversal of metabolic profile as the inflammation resolves (Park
et al., 2011; Figure 1). The importance of mitochondria in
macrophage is supported by a recent study showing poor wound
healing and increased cardiac rupture in mice with myeloid-
specific deficiency of Complex III in the electron transport chain
(ETC) (Zhang et al., 2018). While these findings introduce a
new role of mitochondria in cardiac repair and remodeling, they
raise many questions in regard to mechanisms and therapeutic
implications. In the section below, we will discuss briefly the
proposed mechanisms linking mitochondrial metabolism to
macrophage phenotype.

ROLE OF MITOCHONDRIAL
METABOLISM IN MODULATING
MACROPHAGE FUNCTION

Besides producing ATP for the cell, mitochondria play multiple
regulatory roles in cellular signaling, redox balance, cell
growth, and survival (Zhou and Tian, 2018; Ritterhoff et al.,
2020). Changes in mitochondrial function have been observed
in activated macrophages, but the molecular mechanisms
connecting mitochondrial function and macrophage phenotypes
are not fully understood. In this section, we will summarize
emerging findings on the role of mitochondrial ROS,
intermediary metabolism, and NAD(H) redox state in
modulating macrophage function, as well as the role of
mitochondrial DNA (mtDNA) in triggering inflammatory
response (Figure 2).

Mitochondrial ROS
Reactive oxygen species is a by-product of mitochondrial
respiratory activity. Under physiologic conditions, electron
leakage in Complexes I and III of the ETC is a major
source of ROS in mitochondria (mtROS) (Wong et al., 2017).
Enzymes localized on the outer membrane of mitochondria,
such as monoamine oxidase A, also generate ROS in activated
macrophages, which has been thoroughly reviewed (Cathcart
and Bhattacharjee, 2014). In pro-inflammatory macrophages,
parallel studies show that impairment of TCA flux results in
succinate accumulation via succinate oxidation by succinate
dehydrogenase (SDH). Under conditions of reduced OXPHOS,
succinate oxidation generates high mitochondrial membrane
potential and drives the reverse electron transport (RET) at
Complex I to produce ROS (Mills et al., 2016; Robb et al.,
2018). In macrophages stimulated by lipopolysaccharide (LPS),
succinate oxidation boosts mtROS generation and enhances
interleukin-1β (IL-1β) production (Mills et al., 2016). It
has been reported that the NOTCH signaling pathway is
required to reprogram mitochondrial metabolism, thus leading
to mtROS generation and pro-inflammatory gene expression
(Xu et al., 2015). Blocking Complex I by alternative oxidase
(AOX) or rotenone or scavenging mtROS by Mito-TEMPO
inhibits inflammatory phenotype in macrophages (Jin et al.,
2014; Scialo et al., 2017). Interestingly, blocking mtROS also
reduces the population of anti-inflammatory macrophages with
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FIGURE 1 | Immunometabolic transition of macrophage post-MI. Macrophages undergo an immunometabolic transition post-MI. At the early phase, macrophages
secrete pro-inflammatory cytokines in the injured myocardium. Their energy metabolism shifts toward glycolysis and increased flux through the pentose phosphate
pathway (PPP), accompanied by TCA cycle rewiring and a high level of mtROS. Substrate oxidation and ATP synthesis through OXPHOS are reduced. When the
infarcted region enters the wound healing phase, macrophages become phagocytotic. Changes in the microenvironment, efferocytosis, and metabolic
reprogramming promote the phenotype transition to pro-healing. Macrophages at this stage revert to oxidative metabolism and engage in collagen deposition and
remodeling of the extracellular matrix (ECM).

FIGURE 2 | Mitochondrial mechanisms involved in macrophage activation. Mitochondria provide triggers and mediators of the inflammatory response in
macrophages via mtROS, metabolites, NAD(H) redox balance, and leakage of mtDNA. See text for details. HIF1α, hypoxia-inducible factor 1α; SDH, succinate
dehydrogenase; NLRP3, nod-like receptor family pyrin domain containing 3; cGAS-STING, GMP-AMP synthase/stimulator of interferon genes; PKM2, pyruvate
kinase M2; JHDM, Jumonji domain-containing histone demethylase; PHD, prolyl hydroxylases; Tet, T5-methylcytosine hydroxylases.

isoprenaline treatment (Shan et al., 2017), suggesting mtROS
may modulate macrophage phenotype transition in a context-
dependent fashion.

How does mtROS modulate inflammation? Increased
mtROS is associated with increased gene expressions of
pro-inflammatory cytokines, such as tumor necrosis factor
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α (TNFα) and IL-1β (van de Veerdonk et al., 2010; O’Neill
and Pearce, 2016). mtROS could stabilize hypoxia-inducible
factor 1α (HIF1α) through inhibiting the activity of prolyl
hydroxylases (PHDs). Enhanced HIF1α is considered central
to the upregulation of glycolysis and inflammatory cytokine
expression (Calvani et al., 2012; Kelly and O’Neill, 2015). In
monocytes and macrophages derived from atherosclerotic
coronary artery disease patients, mtROS promotes dimerization
and nuclear translocation of the glycolytic enzyme pyruvate
kinase M2 (PKM2), phosphorylating the transcription
factor signal transducer and activator of transcription
(STAT3), thus boosting IL-6 and IL-1β production (Shirai
et al., 2016). mtROS also serves as a key regulator of nod-
like receptor family pyrin domain containing 3 (NLRP3)
inflammasome activation (Afonina et al., 2017; Chen et al.,
2017). In the early phase after AMI, NLRP3 senses danger
signals both extracellularly and intracellularly, such as
DAMPs, and assembles an inflammasome to mediate the
downstream response (Mauro et al., 2019). On the other
hand, mitochondrial antiviral protein (MAVS) facilitates the
recruitment of NLRP3 to the mitochondria and hence enhances
its oligomerization and activation by bringing it close to mtROS
(Park et al., 2013; Figure 2).

Intermediary Metabolism
Disruption of the TCA cycle in the pro-inflammatory
macrophages resulted in accumulations of metabolic
intermediates such as citrate, succinate, fumarate, and malate
(Ryan and O’Neill, 2017). As alluded to earlier, accumulation of
succinate promotes mtROS generation via SDH. Succinate has
also been shown to stabilize HIF1α by inhibiting the activity of
PHD, an α-ketoglutarate (α-KG)-dependent dioxygenase. α-KG,
on the contrary, depletes HIF1α by promoting the activity of
PHD (Tannahill et al., 2013). The activity of other dioxygenases,
e.g., Jumonji domain-containing histone demethylase (JHDM)
or T5-methylcytosine hydroxylases (Tet), also requires α-KG as
a co-substrate and can be inhibited by succinate, fumarate, or
malate (Xu et al., 2011; Sinton et al., 2019; Figure 2). A recent
study showed that increased glutaminolysis drove fumarate
production via the TCA cycle, leading to enhanced TNFα and
IL-6 expressions via boosting H3K4 trimethylation (H3K4me3)
at the respective promoter regions (Arts et al., 2016). Moreover,
α-KG derived from glutaminolysis is shown to be important
for the alternative activation of macrophage via epigenetic
regulations of pro-reparative genes (Liu et al., 2017).

Citrate transported from mitochondria can be converted
to acetyl-CoA by ATP-citrate lyase (ACLY) in the cytosol.
This mechanism has been implicated in the regulation of
histone acetylation of cancer cells (Wellen et al., 2009).
While upregulation of ACLY is observed in pro-inflammatory
macrophages, it remains to be determined whether increased
histone acetylation is responsible for the associated increase
of inflammatory mediators, e.g., nitric oxide (NO), ROS, and
prostaglandin E2 (PGE2) (Infantino et al., 2013). Another
metabolite derived from the TCA cycle is itaconate, which is
converted from aconitate (O’Neill and Artyomov, 2019). A recent
study suggests that itaconate functions as an anti-inflammatory

mediator in metabolic remodeling of macrophages via inhibition
of SDH during IR injury (Lampropoulou et al., 2016).

In contrast to the pro-inflammatory macrophages, oxidative
metabolism is robust in alternatively activated macrophages
which phenotypically resemble reparative macrophages. During
the clearance of injured tissues, phagocytes gain lipid load
via efferocytosis, which likely stimulates fatty acid utilization.
A recent study suggests that fatty acid is the preferred substrate
in pro-healing macrophages after cardiac injury (Zhang et al.,
2019). Increased fatty acid metabolism and associated activation
of peroxisome proliferator-activated receptor (PPAR α/β/δ) in
macrophages appear to play an important role in polarizing
macrophages into a pro-reparative phenotype (Chawla, 2010).
This led to the conjecture that the lipid load macrophages
acquired via efferocytosis may potentially stimulate fatty acid
utilization. Interestingly, elevated utilization of glucose is also
necessary for pro-reparative macrophage polarization, and this
may be mediated through increased production of UDP-GlcNAc
(Jha et al., 2015; Huang et al., 2016). A major limitation in
interpreting these observations is that most studies are done
in vitro. Technical innovations, such as isolation procedures
that preserve in vivo phenotype or genetic strategies for specific
lineage tracing or perturbations, are required to allow for
metabolic analysis of macrophages in vivo.

NAD(H) Redox Balance
Nicotinamide adenine dinucleotide (NAD+) accepts electrons
from glycolysis, TCA cycle, and β-oxidation to form NADH,
which then feeds its reducing potential to the ETC for
OXPHOS. Therefore, NAD(H) redox is a major determinant
of mitochondrial function and vice versa. Decreased OXPHOS
lowers the NAD+/NADH ratio and reduces the availability
of NAD+ for other NAD+-dependent proteins, such as poly
ADP-ribose polymerase (PARP), cyclic ADP-ribose synthase, and
sirtuins (Verdin, 2015; Katsyuba and Auwerx, 2017; Figure 2).
Recently, Zhang et al. demonstrated that mitochondrial Complex
III deficiency in macrophages impaired transcriptional activation
of IL-10 induced by efferocytosis post-MI, resulting in poor
healing and rupture of the infarcted ventricle. The defect was
attributed to impaired Sirt1 function and could be rescued
by supplementing nicotinamide mononucleotide (NMN), a
NAD+ precursor (Zhang et al., 2019), suggesting that NAD(H)
redox imbalance caused by mitochondrial dysfunction is
an important regulatory mechanism of immune response.
Impairment of the Sirt2 function due to NAD+ depletion leads
to the hyperacetylation of α-tubulin, which in turn promotes
colocalization of apoptosis-associated speck-like protein
containing a caspase recruitment domain (ASC) and NLRP3,
and drives IL-1β production in macrophages (Zhang et al., 2018).
NAD(H) redox balance is also a powerful regulator of epigenetics,
likely via supporting the activity of sirtuin deacetylases (Class
III HADCs) on histone (Halili et al., 2010; Ciarlo and Roger,
2016). Recent studies show that DNA and histone methylation
also regulate macrophage function (Yu et al., 2019; Li et al.,
2020). One carbon metabolism, which supplies the methyl
group for methylation, is regulated by mitochondrial function
and the NAD+/NADH ratio (Tibbetts and Appling, 2010;
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Kuhl et al., 2017). Together, these observations substantiate the
role of NAD(H) redox in the modulation of innate immunity
(Tibbetts and Appling, 2010; Zhang et al., 2019).

mtDNA Is a Potential Pro-inflammatory
Mediator of Post-MI Macrophage
Increased levels of circulating cell-free mtDNA (CCF-DNA) have
been observed in a number of disease conditions including MI
(West and Shadel, 2017; Nakayama and Otsu, 2018). Due to
the structural features resembling prokaryotic DNA, mtDNA is
a potent pro-inflammatory trigger for immune cells in sterile
inflammation (Collins et al., 2004) and is widely accepted as
an integral member of the DAMPs. Hypomethylated CpG-
rich mtDNA serves as an endogenous ligand for TLR9 to
trigger the innate immune system governed by the NLRP3
inflammasome in response to cellular stress, infection, and
AMI injury (West et al., 2011b). In the canonical pathway of
sterile inflammation, upon sensing extracellular mtDNA released
during necrotic tissue death, TLR9 recruits adaptor proteins
MyD88 and TRIF to activate transcription factors NF-kB and
NLRP3 to promote production, maturation, and secretion of pro-
inflammatory cytokines, such as IL-1β, IL-6, and IL-18, to amplify
the inflammatory signals (Chen and Nunez, 2010; Nakayama and
Otsu, 2018).

The presence of mtDNA in the cytosol also triggers
inflammation. Defective autophagy in bone-marrow-derived
macrophages (BMDMs) resulted in enhanced cytosolic
translocation of mtDNA via the mitochondrial membrane
permeability transition pore (MPTP) in an mtROS- and NLRP3-
dependent fashion to activate caspase 1, promoting IL-1β and
IL-18 secretions (Nakahira et al., 2011). Key players in autophagy,
Beclin-1 and LC3, have been found critical in the regulation
of macrophage phagocytosis and efferocytosis, as well as the
clearance of apoptotic cells, inflammatory resolution, and tissue
repair following MI (Konishi et al., 2012; Heckmann et al., 2017;
Heckmann and Green, 2019). More recently, cytidine/uridine
monophosphate kinase 2 (CMPK2)-dependent mtDNA synthesis
was shown to be required for NLRP3 inflammasome activation in
LPS-primed macrophages, in that the newly synthesized mtDNA
was oxidized by mtROS and translocated to the cytosol to
activate NLRP3 inflammasome via direct binding (Zhong et al.,
2018). Together, these studies demonstrate the co-dependence
of mtDNA’s cytosolic translocation and the activation of
NLRP3/caspase I axis of macrophage in a pro-inflammatory
milieu such as the early phase of the post-MI myocardium.

GMP-AMP synthase (cGAS)/stimulator of interferon genes
(STING) is another cytosolic mtDNA-sensing pathway which
governs the gene expressions of interferons, such as CD14,
CXCL10, and IRFs. In dendritic cells and macrophages, cGAS

can be activated by cytoplasmic mtDNA to resist infection
(Carroll et al., 2016; Chen et al., 2016). In the context of
mtDNA stress induced by transcription factor A, mitochondrial
(TFAM) deficiency in BMDMs, aberrant mtDNA packaging
results in the cytosolic translocation of mtDNA. Upon sensing
cytosolic fragmented mtDNA, cGAS activates STING, which then
activates TBK1, resulting in the translation of interferon genes
(West et al., 2015). Recently, cGAS-dependent mtDNA sensing
has been demonstrated to mediate macrophage polarization.
cGAS−/− mice displayed an improved outcome after MI,
which is associated with an augmented reparative macrophage
population. However, a loss of cGAS does not alter the mRNA
levels of canonical cytokines (Cao et al., 2018). Together,
these findings suggest that cGAS/STING is a pro-inflammatory
pathway parallel to the TLR9/NF-kB axis to sense aberrant
cytosolic mtDNA in post-MI macrophages.

CONCLUSION AND PERSPECTIVES

As discussed above, mitochondrial metabolism is a key regulator
of macrophage response. Substrate metabolism, mtROS, and
NAD(H) redox state influence macrophage phenotype through
epigenetic, transcriptional, and posttranscriptional mechanisms.
Microenvironment, such as oxygen and nutrient availability,
DAMPs, and metabolic cargo from cell debris, also modulates
functional properties of macrophage via mitochondria and
metabolic mechanisms. These observations not only provide
mechanistic links between mitochondrial responses and the
functional transition of macrophages during the remodeling after
MI but also suggest a novel class of targets for therapy. Given the
broad implication of innate immunity in human diseases, these
findings will drive future work to identify molecular mechanisms
connecting mitochondria and immune cell functions in a wide
variety of diseases.
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