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Early life stress in the neonatal intensive care unit (NICU) can predispose premature

infants to adverse health outcomes and neurodevelopment delays. Hands-on-care and

procedural pain might induce apneas, hypoxic events, and sleep-wake disturbances,

which can ultimately impact maturation, but a data-drivenmethod based on physiological

fingerprints to quantify early-life stress does not exist. This study aims to provide

an automatic stress detector by investigating the relationship between bradycardias,

hypoxic events and perinatal stress in NICU patients. EEG, ECG, and SpO2 were

recorded from 136 patients for at least 3 h in three different monitoring groups.

In these subjects, the stress burden was assessed using the Leuven Pain Scale.

Different subspace linear discriminant analysis models were designed to detect the

presence or the absence of stress based on information in each bradycardic spell.

The classification shows an area under the curve in the range [0.80–0.96] and a

kappa score in the range [0.41–0.80]. The results suggest that stress seems to

increase SpO2 desaturations and EEG regularity as well as the interaction between the

cardiovascular and neurological system. It might be possible that stress load enhances

the reaction to respiratory abnormalities, which could ultimately impact the neurological

and behavioral development.

Keywords: preterm infants, perinatal stress, pain, bradycardia, desaturation, network physiology, EEG, HRV

1. INTRODUCTION

Premature infants are at risk of maladaptive outcomes and neurodevelopment delays. Patients who
spend their early life in the neonatal intensive care unit (NICU) can undergo profound alterations
of sleep-patterns as well as exposure to painful procedures and noxious stimuli (Grunau, 2013;
Barbeau and Weiss, 2017). Grunau (2013) have shown how stress exposure can induce a cascade
of physiological consequences, behavioral and hormonal responses. In addition, Brummelte et al.
(2012) highlighted how procedural pain can affect structural connectivity of the subcortical areas
during neurodevelopment.

In particular, routine day-care has been reported to affect sleep quality inside the NICU (Barbeau
andWeiss, 2017). Levy has shown that prolonged contact in NICU can havemultiple consequences.
57% of the sleeping infants experience awakening because of hands-on care. Handling is usually
followed by respiratory events, such as hypoapneas and apneas, or desaturations. Surprisingly,
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clinical handling is more likely to initiate oxygen desaturation
and bradycardias. Monitoring of respiratory and hypoxic events
is pivotal since experience of long bradycardias and apneic spell
in very-low weight infants are known to impact the development
of the patients (Pichler et al., 2003; Janvier et al., 2004; Horne
et al., 2017). In particular, Janvier et al. (2004) have shown that
a higher apnea burden (total amount of apnea days in the ward)
is associated to a worsening of the cognitive and motor outcome.
Prolonged oxygen desaturations associated with bradycardias are
known to have greater negative effect on cerebral oxygenation
(Pichler et al., 2003) and the persistence of their effect can be
even prolonged at 5–6 months corrected age, with worse SpO2

and heart-rate drops compared to full-term infants at equivalent
age (Horne et al., 2017). Furthermore, bradycardias were under
scrutiny in different studies as sign of autonomic nervous system
development. Gee et al. (2017) has shown how the heart-rate
variance and entropy dramatically change before any heart-rate
drop. This could be the consequence of a dysfunction of vagal
stimulation, which induces the bradycardia, according to the
polyvagal theory by Porges. Those events are usually preceded by
low-heart rate variability as sign of fetal distress (Porges, 1995).

Although a possible link exists between stress burden and
cardiorespiratory events, an automated method to quantify stress
exposure in the NICU based on physiological signal activity,
especially during oxygen desaturations or bradycardias, has
not been described yet. However, the literature provides an
overview how physiological signals can be used to investigate
pain and apneic spells in adults. Multiple authors described
machine-learning models to classify pain-patterns using different
modalities, such as EEG or EMG (Gruss et al., 2015; Misra et al.,
2017). In parallel, other authors described an algorithm to detect
apnea events based on SpO2 analysis (Deviaene et al., 2018). In
addition, some authors have already investigated a possible link
between modalities that describe brain activity and modalities
that describe cardiovascular activity in the case of apneic spells
or desaturation events. Specifically, a recent study proposed a
model to explain how pre-frontal cortex dysfunctions in adults
and children can be caused by obstructive sleep apneas due to
disruption of sleep and chemical homeostasis (Beebe and Gozal,
2002). Pitson et al. showed that SpO2 dips due to apneas are
related to the patients’ daily sleepiness, which can affect the
emotional and behavorial state. Interestingly, those desaturation
events seem to significantly correlate to other physiological
events, such as EEG and heart-rate arousals (Pitson and Stradling,
1998).

This inherent coordination of different physiological systems
in case of apneas, as highlighted by Pitson and Stradling (1998),
or the necessity to rely on different modalities to classify
biopotential information, as shown by several authors (Gruss
et al., 2015; Misra et al., 2017), strongly suggest a horizontal
interaction among organs, which might be altered in case of
stress or hypoxia and might require different tools to approach
the alteration of the physiological state of the patients (Ivanov
et al., 2016). This synchronization among different organs or
signal modality is known as Network Physiology and was
specifically applied to show the alteration between brain activity
and parasympathetic tone of the HRV (Jurysta et al., 2006)

and the synchrony between the neonatal EEG bursts and the
heart-rate accelerations of the infants (Pfurtscheller et al., 2008).
However, one might investigate network physiology in the
infants and relate that to a specific physiological condition.
As highlighted by Bashan et al. (2012), physiological systems
under neural regulation exhibit a high degree of complexity
with non-stationary, intermittent, scale-invariant and non-linear
behavior and change in time under different physiological states
and pathological conditions. One can not only simply derive
the integration among the different physiological systems, but
might also try to summarize the topological properties of the
physiological network and investigate their evolution over time
(Bartsch and Ivanov, 2014; Bartsch et al., 2015). The clinical
literature also suggested that the overall activity of the individual
physiology cannot simply be summarized as the sum of the
individual organs’ physiology, but it requires an investigation of
the interaction among the different sub-systems, especially in the
intensive care setting (Moorman et al., 2016).

Since the clinical literature has already shown a unique
relationship between handling of infants and apneas or hypoxic
events, the aim of this study is the development of a classification
model to relate hypoxias to patient’s stress exposure. A binary
classifier was developed to classify whether a bradycardic event
belonged to a patient with stress or without stress burden.
Due to the interdisciplinary nature of hypoxic events and stress
exposure, the study aimed not only to derive the features from
different modalities, but assess the network physiology of the
patients and its relationship with stress load and bradycardias.
In this article, stress is defined as accumulation of procedural
pain, based on a previous study (Grunau, 2013). The paper is
organized as follows: in section Material and Methods, the data
collection and stress classification models are outlined. In section
Results, the results of the study are presented, while the last
section focuses on the implication of this research.

2. MATERIALS AND METHODS

2.1. Patient Sample
Data from pre-term infants were collected as part of the
Resilience Study, which has been carried out in the Neonatal
Intensive Care Unit (NICU) of the University Hospitals Leuven,
Belgium. Parents of pre-term infants born before 34 weeks
gestational age (GA) and/or with a birth weight <1,500 g were
approached for informed consent within the first 3 days after
birth. A total of 136 patients was included in the cohort from
July 2016 to July 2018. Exclusion criteria were as follows:
parents’ age < 18 years, limited knowledge of Dutch or English,
medical (somatic or psychiatric) condition in the parent(s) that
impeded participation, and the presence of a major congenital
malformation or central nervous system pathology (grade
3 or grade 4 intraventricular hemorrhage or periventricular
leukomalacia) at the time of consent.

The research protocol has been examined and approved by
the Ethical Committee of University Hospitals Leuven, Belgium.
The Resilience Study was performed in accordance with the
Guidelines for Good Clinical Practice (ICH/GCP) and the latest
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TABLE 1 | Summary of patient data demographics at different time points: GA

(gestational age), birth weight (in g), PMA (post-menstrual age) at EEG and ECG

recording, LPS (Leuven Pain Score).

5 days (n = 118) 34 weeks (n = 67) PSG (n = 117)

GA (weeks) 31.14 [28.86–32.43] 28.86 [26.86–30.71] 30.29 [27.29–31.71]

Birth weight (g) 1475 [1120–1725] 1140 [900–1480] 1225 [950–1540]

PMA (weeks) 32.14 [30–33.43] 34.14 [33.86–34.29] 38.43 [37.29–39.57]

LPS 1 [0–3] 0 [0–2] 0 [0–2]

Data is reported as q50 [q25–q75 ], where q50 is the median and q25–q75 is the IQR.

version of the Declaration of Helsinki. It has been registered at
Clinical Trials.gov (NCT02623400).

2.2. Data Acquisition
During the NICU stay, pain levels were daily recorded with
a multidimensional scale for premature infants known as the
Leuven Pain Scale (LPS). This scale varies in the range [0,14]
and is obtained as the sum derived by seven categories (such
as crying, grimace or heart-rate) (Allegaert et al., 2003, 2013).
LPS scores were routinely daily recorded by bed-side nurses,
every hour for the intensive care patients and every 3 h for the
intermediate care.

Based on the association between stress and pain, perinatal
stress has been defined as the presence of non-zero LPS in the
patient record the day before the recording, i.e., LPS > 0, which
means experience of any pain the day before the recording.

According to the clinical protocol, EEG, ECG, and SpO2

measurements were recorded for at least 3 h in three monitoring
groups: the first measurement took place around 5 days after
birth (5days), while the second and the third recording were
respectively planned around 34 weeks post-menstrual age (PMA)
(34w) and in the week before discharge home. The last recording
usually consisted of a 24 h polsomnography, therefore the
last group was labeled as PSG. Only one of the first two
recordings was performed for infants born at 33–34 weeks. In
the course of their NICU stay, some infants were transferred
to level II units in hospitals closer to home. Therefore, not
all infants have multiple recordings and some LPS measures
are missing. A total of 245 recordings had corresponding pain
scores available and were analyzed. A total of 39 patients had
three recordings with associated pain score. A set of 38 patients
had two recordings and the remaining 52 had 1 recording
(39 ∗ 3 + 38 ∗ 2 + 52 = 245). Table 1 summarizes the
clinical characteristics of patients at each measuring point.
EEG set-up included nine monopolar electrodes (Fp1, Fp2,
C3, C4, Cz , T3, T4, O1, O2) and the EEG signals were
referenced to the electrode Cz . The sampling frequencies for
EEG, ECG and SpO2 were 256, 500, and 1 Hz, respectively.
They were monitored with the OSG system (OSG BVBA,
Brussel). The R-peaks of the ECG were detected via the R-
DECO toolbox (Moeyersons et al., 2019) and the tachogram
or HRV signal was derived as subsequent R-peak to R-peak
intervals (RRi).

2.3. Bradycardia Detection and Data
Pre-processing
Multiple studies have shown that hands-on-care and clinical
handling can disrupt the sleep cycle and induce oxygen
desaturations and apneic spell (Barbeau and Weiss, 2017; Levy
et al., 2017). The most threatening desaturations for the brain
physiology and the development of the infant are usually events
concurrent with bradycardia, i.e., a sudden drop in heart-rate
(Pichler et al., 2003; Horne et al., 2017). Since Levy et al. (2017)
has shown that bradycardias, apneas, hypoapneas, and hypoxic
events are linked to stress exposure and Porges (1995) relates
bradycardias to fetal distress, the definition of apnea prematurity
was followed to detect cardiorespiratory events or desaturations
in the physiological signal (Paolillo and Picone, 2013). Clinically
relevant apneas were characterized by RR elongation above 1.5 ∗
RRi for at least 4 s, where RRi is the average of the entire
tachogram, with a variation of SpO2 > 10% with respect to
the baseline (Janvier et al., 2004). Consequently, hypoxic events
were detected as events with concomitant variations of HRV
and oxygen saturation, defined by increases above 1.5 ∗ RRi for
more than 4 s and SpO2 desaturations exceeding the following
different thresholds: 3%, 5% and 10%. The saturation drops from
the baseline were detected according to Deviaene et al. (2018) and
the different thresholds were used to test whether stress exposure
induces more pronounced hypoxic events. Normally, apneas are
defined as breathing cessation for more than 20 s. However, both
Barbeau andWeiss (2017) and Levy et al. (2017) have shown that
events due to NICU handling are not necessary full apneic spells,
but mostly physiological events like hypopneas and desaturations
which last shortly and do not reach the level of clinical alarm. Gee
et al. (2017) and Porges (1995) outlined the solely and specific
importance of bradycardias as sign of dismaturity and distress of
the premature infant. In addition, the respiration signal in our
study was frequently distorted by artifacts and usually derived
from the ECG for the younger patients. Therefore, the event
detection specifically targeted bradycardias, instead of looking
at the general breathing cessations. For each of those events, a
window of 3 min before and after each bradycardia peak was
the starting interval to develop a stress classifier. Specifically,
a bradycardia peak is the moment of maximal heart-rate drop
or RR intervals elongation. For each epoch, the EEG signal
was filtered between [1–20] Hz and possible EOG artifacts were
filtered using independent component analysis.

2.4. Features Extraction
Multiple features were extracted from the EEG, HRV, SpO2 from
each bradycardic spell to assess its relationship with stress. They
were computed at least in two moments: the period before
the bradycardic event, i.e., from the start of the window until
the RRi exceeds 1.5 ∗ RRi threshold, and the period after the
bradycardic event, which goes from the moment RRi comes back
to stationarity until the end of the window. According to the
different methodologies, features were also computed during the
bradycardia or during the entire hypoxic spell. The computation
within the bradycardia was not always possible since indices
like fractality require higher number of samples that were
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not available. Furthermore, the epoch durations were variable
depending on the length and the intensity of the bradycardic
event. An overview of the different features are reported in
Tables 2, 3.

2.4.1. Cardiovascular Analysis: HRV and SpO2

Features
The tachogram’s reactivity was investigated with classical
temporal and spectral indices. Specifically, the power spectral
density (PSD) of the tachogram was computed with the
continuous wavelet transform using analytical Morlet as mother
wavelet. The absolute powers in the high-frequency (HF) and
low-frequency (LF) range were derived as sum of the PSD bins
in the following frequency bands: HF = (0.2 − 4] Hz and
LF = (0.08 − 0.2] Hz (David et al., 2007). The indices LF

HF

and HF
LF+HF were used to assess the contribution of the multiple

autonomic branches (Hoyer et al., 2013). Since the wavelet-
approach derives the time-frequency distribution of a signal, both
the mean and the standard deviation of those indices, together
with the temporal mean and standard deviation of the HRV, were
derived as features in the epochs before, during and after each
bradycardic spell. Additionally, the heart-beat dynamics were
assessed via the Poincaré Plot (PP) analysis. The PP are two-
dimensional scatter-plots where RR(t) is plotted vs. the lagged
sample RR(t+τ ). This graphical representation is a simplification
of Taken’s theorem to represent the phase space in order to assess
the non-linear behavior of the signal. The lag τ was estimated as
the first zero of the autocorrelation function of the signal and the
PP can then be described by the matrix X = [RR(t),RR(t + τ )],
where RR(t) is a vectorial representation of the HRV time series
of dimension R

(N−τ )×1, where N represents the length of the
signal. Most commonly, the standard deviations SD1 and SD2

of the minor and major axis of the cloud defined by X are
computed to represent the short and long-term RR variability. In
this study, the information in the PP was quantified via SD2 and
SD1 as the first two singular values of X and via the centroids Cx

and Cy of the same matrix as the column-wise mean of matrix
X. The PP was represented and investigated using the entire
bradycardic window.

Similarly to HRV, temporal features, such as mean and
standard deviation, as well as the PP features were derived from
SpO2. Concerning the epochs for SpO2 features computation,
the epoch before and after SpO2 dips were considered, i.e., the
epoch that starts from the beginning of the window until SpO2

exceeds the considered threshold and the epoch that starts from
the moment that SpO2 goes back to stationarity until the end of
the window.

Desaturation events and bradycardic spells never occur alone,
especially when driven by hands-on-care. The periodicity of
both SpO2 dips and heart-rate can be characterized by Phase
Rectified Signal Averaging (PRSA), which searches for all time
points where the signal goes downward (or upward) in the 6 min
segments (Bauer et al., 2006). Fragments of 120 s duration were
extracted around each time point, known as anchor point, and
they were subsequently aligned and averaged. From this average
curve, the overall slope and the slope before and after each anchor
point were derived to describe the rate of increase or decrease,

such as a desaturation trend or bradycardia increase (Bauer et al.,
2006). However, the computed average rate is sensitive to the
definition of the anchor points, which ultimately represent an
increase or decrease for a specific time window of length T
according to the properties of the signal. Therefore, multiple
parameters T were investigated in the range [1, 5, 10, 20, 50, 100]
s to define the best set of PRSA features.

2.4.2. Neurological Analysis: EEG Features and

Multivariate Attributes
Pitson and Stradling (1998) have shown how EEG arousals are
related to SpO2 dips in respiratory events due to obstructive
sleep apneas. Those arousals have been defined as an increase
in the main carrier frequency of EEG in windows of 10s or
more. Furthermore, different authors have shown swings in
burst activity as a consequence of HR variations in premature
infants (Pfurtscheller et al., 2008; Schwab et al., 2009). The
increase in discontinuity and burst-like type of activity are known
biomarkers for brain dismaturity or pain elicitation (Fabrizi et al.,
2011; Pavlidis et al., 2017). Therefore, multiple features have been
computed from the EEG to describe the level of discontinuity in
terms of slow-wave persistence, regularity and lack of smoothness
(Pavlidis et al., 2017). In addition, the concurrent variations of
heart-rate, SpO2 and EEG were investigated to assess whether
they are related to the stress load or not.

2.4.3. EEG Time-Frequency Analysis
The cortical activity was analyzed both in the time and frequency
domain. The EEG power in the band δ = (0.5 − 4] Hz.
was computed via the continuous wavelet transform, using the
analytical Morlet as mother wavelet. The reason to focus on the
delta band is 2-fold. On the one hand, the δ band represents
the sensitive band to pain stimuli and contains the dominant
frequency of the neonatal EEG, which is the frequency with the
highest power (Wallois, 2010; Abdulla and Wong, 2011; Fabrizi
et al., 2011). On the other hand, this frequency band represents
subcortical areas, such as the thalamus, which are involved
in stress management and autonomic control of the nervous
system (Pfurtscheller et al., 2017). Similarly to the cardiovascular
variables, the mean and the standard deviation for the EEG and
the power in the δ band in each channel was derived for the three
epochs around the bradycardic peak.

2.4.4. Multifractality
A more discontinuous EEG signal is characterized by higher
regularity or self-similarity. Signals with such property are
defined as fractals or scale-free signals. These time series have
long-exponentially decaying autocorrelation functions (ACF) or
a power-law spectrum, whose rates of decay can be defined by the
Hurst exponent (H), which assess the level of similarity (Doret
et al., 2015). However, complex and discontinuous signals can
vary in fractal properties over time, i.e., the Hurst exponent
and therefore the rate of ACF decay can differ (Jaffard et al.,
2007). Wendt proposed an efficient way to estimate the different
fractal properties based on wavelet leaders (Doret et al., 2015).
His method estimates the spectrum of singularities D(h) (SS),

Frontiers in Physiology | www.frontiersin.org 4 June 2020 | Volume 11 | Article 741

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Lavanga et al. A Bradycardia-Based Stress Calculator for the NICU

which measures the different Hurst Exponents in the signal and
the associated fractal dimension (Wendt et al., 2007).

The most interesting attributes of the singularity spectrum are
the location of the maximum and its width which are usually
defined as c1, c2 (Jaffard et al., 2007). According to Jaffard
et al. (2007), c1 is usually considered the main Hurst exponent
(Hexp) of the multifractal signal, while c2 is a variational index
to represent the amount of fractals inside the signal. Wendt
et al. (2007) reported further details of the methodology and of
the WLBFM toolbox implemented in MATLAB to estimate the
fractal parameters. The parameters c1, c2 were estimated for each
EEG channel and the associated δ oscillations.

2.4.5. Multivariate Analysis: Brain-Heart Interactions
The interaction among the cortical activity and the
cardiovascular variables can be estimated with the time-
frequency coherence between the δ oscillations derived with
CWT, the HRV and the SpO2 (Piper et al., 2014). In order to
match the temporal scale, all signals were resampled at 8 Hz.
The continuous wavelet coherence is then computed as the
following ratio:

Cxi↔xj (t, f ) =
sxi↔xj (t, f )

sxi (t, f )sxj (t, f )
, (1)

where sxi↔xj (t, f ) is the cross-scalogram between the signal xi and
xj, sxi (t, f ) and sxj (t, f ) are the autoscalogram of the signals. The
signal xi can be the delta oscillation of an EEG channel, HRV
or the SpO2. The wavelet transform was computed with analytic
Morlet as mother wavelet and the coherence was investigated in
the very-low-frequency band VLF = (0.033 − 0.08] Hz in the 5
days group and the low-frequency band LF in the 34 weeks group
and the PSG group. As discussed in previous studies (Hoyer et al.,
2013; Lavanga et al., 2019), this shift in frequency band is due to
undergoing maturation of the autonomic nervous system. The
coupling was derived as the maximum absolute imaginary part of
Cxi↔xj in the band of interest Lavanga et al. (2018). The statistical
validity of each coupling was then tested with amplitude adjusted
Fourier transform (AAFT) surrogates. Specifically, each coupling
must be greater in value than the coupling estimated for 19
surrogates, in order to guarantee a level of statistical significance
α = 0.05. However, due to the large number of channels and
exponential number of associations, the pairwise coupling risks
to produce collinear features for stress discrimination. Therefore,
topological indices were derived via graph theory. The structure
of a graph is defined by a set of nodes, that corresponds to one
particular signal or specific information derived from a signal
(like the power in a specific band). A link is then defined among
nodes in case of a significant interaction and a weight value is
associated to indicate the strength of the coupling. A weighted
graph is then represented by an adjacency matrix A, whose
entries A = Aij represent the coupling between nodes i and
j (Bullmore and Sporns, 2009). More precisely, Aij = Cxi↔xj ,
where Cxi↔xj is the general coupling intensity and i, j = 1, ..,M,
with M as the total number of signals. Since the direction of
interaction is not specified (as underlined by xi ↔ xj), Aij

is symmetric and its entries represent statistical correlations

without any specific direction. In order to describe the graph
topology, a list of topological indices have been introduced, such
as the path length, the clustering coefficient and the eccentricity
(Bondy and Murty, 1976; Bullmore and Sporns, 2009). The path
length is the average shortest path to reach a graph node from any
other one. The eccentricity of a node represents the maximum
distance from one network node to any other, while the clustering
coefficient is defined as the average of all weighted triangles
around a node. In addition, a graph can risk to be redundant
and superfluous connections can emerge as significant, even after
surrogate testing (Peters et al., 2013). The capacity of the network
to keep the global connectivity in case of connections removal is
known as resilience, which can be computed as the number of
superfluous connections. Suppose that all couplings of A = Aij

are ordered in descending order and the set of original weights of
A is defined as w0

ij. The number nsup of superfluous connections

is derived as the number that maximizes the following quantity

max
n

H(wij(n))+ E(wij(n)) = −

∑

ij

wij(n) log(wij(n))

+

∑

ij

(wij(n)− w0
ij)

2 (2)

where H(wij(n)) is the entropy of the matrix A where n weights
were removed. The value wij(n) represents the remaining non-
zero weights, while E(wij(n)) is the squared error between the
new matrix A and the original matrix. In general, a higher
redundant network will have a higher nsup, since the superfluous
connections represent the removed connections to maintain the
global connectivity high without deviation from the original
matrix. In this study, graph theory was applied as follows: EEG
delta oscillations (8 channels), HRV and SpO2 were involved in
the analysis as nodes setting the number M of processes to 10.
Since the interaction estimation is based on wavelet coherence,
the adjacency matrix was computed for each time sample and
therefore it was possible to derive the charts of the different
topological indices. The average and the standard deviation of
each topological feature was computed before, during and after
each bradycardic spell. In order to test the contribution of a
specific modality or signal to the stress classification, graph
theory indices were not only computed for the entire set of
processes, but we used also partitions of the adjacency matrix
Aij. Specifically, we considered connections only related to EEG
channels (EEG-EEG), the connections between EEG channels
and SpO2 (EEG-SpO2), the connections between EEG channels
and RRi (EEG-RRi) and the entire set of connections (EEG-SpO2-
RRi), as reported in Table 3. For each of those partitions, the
described list of topological indices was computed.

2.5. Bradycardia-Based Classification
A customized software tool was developed with MATLAB
libraries to detect whether each bradycardic event belonged to a
patient with or without stress burden. In summary, the following
groups of features were derived for each hypoxic event:

• Temporal and periodicity features: 14 features in total for HRV,
14 features for SpO2 and 16 features for the EEG
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• Spectral features for both HRV and EEG: 8 features for HRV
and 16 features for EEG

• Non-linear features: 4 features for HRV, 4 features for SpO2

and 32 features for EEG
• Brain-heart connectivity topological indices: 168 features in

total for HRV, EEG and SpO2.

A complete overview is reported inTables 2, 3. Given the fact that
features were derived for three epochs (before, during and after
each bradycardia), the total number of extracted features was 748.

The power-features were log-transformed. The study
investigated whether there was any association between those
features and the bradycardic spell in a patient with a stress
exposure in the NICU. As mentioned earlier, the presence of
stress was defined as experience of pain the day before the
recording (LPS > 0). However, Gruss et al. have shown that
more intense pain can be discriminated in an easier way (Gruss
et al., 2015). On top of that, there is no clear consensus on the
level of desaturation that can be considered threatening for
premature infants (Janvier et al., 2004; Poets, 2010; Levy et al.,
2017). Therefore, different levels of hypoxia were tested in the
classification, i.e., SpO2 > 3%, SpO2 > 5%, SpO2 > 10%.

The objective of the classification was to discriminate whether
a bradycardic event belonged to a patient with or without stress.
After testing different classification algorithms, such as support
vector machines (SVMs) and linear discriminant analysis (LDA),
a classifier based on subspace ensemble with LDA has been
designed to separate bradycardic spell in two groups (Ho, 1998).
Subspace LDA is an ensemble method like random forest, where
the bagging process (random subsampling of the training set) is
performed together with a random subsampling of the features
to find the best feature subsets to separate the data (Ho, 1998).
The clear advantage is to span a greater number of features and
allow the model to tune for the best subset. The model was tested
according to a leave-one-patient-out (LOPO) scheme for each
monitoring group (5 days, 34 weeks, PSG), which meant that all
bradycardic event belonging to one patient were put in the test
set. The tuning in training-set followed a 10-fold cross-validation
and the following set of performance indices were derived each
monitoring group: the area under the curve (AUC) and Cohen’s
kappa between machine learning labels and the clinical labels. It
is important to remind the only one set of indices was obtained
for each classifier since they were obtained by pooling all test sets
of the different patients together.

Given that the number of features should be below one tenth
of the training dataset, the subspace of features has been restricted
to 1/10 (one-tenth) of the data (Misra et al., 2017). However,
before tuning of the model, features were further reduced before
the subspace ensemble algorithm was applied. The considered
attributes had intra-feature correlation below 90% and the
highest F-scores. The F-score is a simple measure to assess the
discrimination between the positive and the negative class. It is
computed as the ratio between the separation between positive
and negative class (intra-class variability) and the separation
within each class (inter-class variability). The details of the
procedure are reported here (Chen and Lin, 2006). In addition,
the features were corrected by the baseline effect of age in case

TABLE 2 | Overview of the univariate features derived from the physiological

signal in the study.

Temporal Spectral Non-linear

HRV µRR, σRR, µHF , σHF , µLF , σLF Cx , Cy

SlopeOV (T ), SlopeAP (T ) µHFnu , σHFnu , µ LF
HF
, σ LF

HF
SD1, SD2

SpO2 µSpO2
, σSpO2

, Cx , Cy

SlopeOV (T ), SlopeAP (T ) SD1, SD2

EEG µEEG, σEEG, µP(δ), σP(δ) Hexp,EEG, Hexp,P(δ)

c2,EEG, c2,P(δ)

For each signal (HRV, SpO2, EEG), the temporal, spectral and non-linear attributes are

reported. The total count for HRV is 26: 2 temporal features, 8 spectral features, 4 non-

linear features from the Poincaré plot (PP) and 12 PRSA features. The total count for SpO2

is 18: 2 temporal features, 4 non-linear features and 12 PRSA features. The total count

for EEG is 64: 2 temporal features, 2 spectral features and 4 fractal features repeated

for each channel. RR and P(δ), respectively represent the tachogram or HRV and the EEG

power in the δ band.µ and σ stand for mean and standard deviation. LF and HF represent

the high and low-frequency bands of HRV. Hexp and c2 are the main Hurst exponent and

the width of the singularity spectrum derived with the multifractality framework. Cxy and

SD12 are the PP features. SlopeOV (T ) represents the overall PRSA slope from the start of

its window, while slopeAP (T ) is the slope around each anchor point. Six different window

lengths T were selected to define each anchor point: [1,5,10,20,50,100] s.

TABLE 3 | Overview of the multivariate features derived from the different

monitoring groups and the possible interaction combinations among the different

modalities (EEG-SpO2, EEG-RRi , EEG-EEG, EEG-SpO2-RRi ).

EEG-SpO2 EEG-RRi EEG-EEG EEG-SpO2 − RRi

5days Pathlength (VLF ), Pathlength(VLF ), Pathlength (VLF ), Pathlength(VLF ),

Efficiency(VLF ), Efficiency(VLF ), Efficiency(VLF ), Efficiency(VLF ),

Clustc,node(VLF ), Clustc,node(VLF ), Clustc,node(VLF ), Clustc,node(VLF ),

Eccnode(VLF ), Eccnode(VLF ), Eccnode(VLF ), Eccnode(VLF ),

nsup (VLF ) nsup(VLF ) nsup (VLF ) nsup (VLF )

34weeks, Pathlength (LF ), Pathlength (LF ), Pathlength (LF ), Pathlength (LF ),

PSG Efficiency(LF ), Efficiency(LF ), Efficiency(LF ), Efficiency(LF ),

Clustc,node(LF ), Clustc,node(LF ), Clustc,node(LF ), Clustc,node(LF ),

Eccnode(LF ), Eccnode(LF ), Eccnode(VLF ), Eccnode(LF ),

nsup(LF ) nsup (LF ) nsup(LF ) nsup (LF )

For 5days, the interaction was derived specifically for the VLF band, while the interaction for

other two groups was assessed in LF band. The set of attributes for eachmonitoring group

is 84: 21 features for EEG-SpO2, 21 features for EEG-RRi , 19 for EEG-EEG, 23 features

for EEG-SpO2-RRi . The clustering coefficient (Clustc ) and the eccentricity (Ecc) are node-

dependent features, which explain the variation in numbers for each interaction group.

The actual count rises to 168 since both mean and standard deviation are considered.

nsup is the number of superfluous connections. The label Efficiency represents the global

efficiency of the network. VLF and LF represent the very-low and low-frequency bands

of HRV.

subject’s PMA was a covariate of the feature of interest (i.e.,
significant Pearson correlation or p < 0.05).

3. RESULTS

The results for the bradycardia-based stress classification are
reported for the three monitoring groups in Figure 1. The AUC
and kappa scores are reported in function of the desaturation
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threshold used to define which events should have been included
in the classifier. Each color represent a threshold: blue for
desaturations higher than 3%, yellow for desaturations higher
than 5% and red for desaturations higher than 10%. The results
suggest a moderate association between the bradycardia features
and the clinical labels: the AUC lies in the range [0.80–0.96]
and the kappa score lies in the range [0.41–0.80]. The SpO2

threshold for the desaturation seems to have a mild effect on
classification: only the PSG group reports an increasing Kappa
score for higher threshold.

The effect of the threshold is also reported in Figure 2, where
the classification results are shown based on the different feature
groups. The left panel shows the AUC for a 3% desaturation
threshold, while the right panel shows results for the 10%
threshold. The feature group are respectively indicated with
the labels EEG, HR SpO2 and BH for the EEG features, the
cardiorespiratory features and the brain-heart features. In the 5
days group and 34 weeks group, either the brain-heart features or
the EEG features outperform the HR-SpO2 group. In addition,
the desaturation threshold seems to increase the AUC for the
brain-related attributes. On the contrary, the performance seems
to be comparable for all different groups at PSG and the effect of
the threshold is equally beneficial for the three groups.

In order to give an idea of the selected features or the most
discriminative information for stress classification, Figures 3–
5 reported either the behavior of the selected time-series or
the boxplots of the most-discriminative features in epochs
before, during and after each bradycardia for the three different
monitoring groups. Figure 3 reports the desaturation charts for
the 5 days group with LPS > 0 (in blue) and LPS = 0 (in
green) on the left panel, while the Hurst regularity is reported in
the period before and after each bradycardia for a 10% threshold
on SpO2. The Hurst exponent shows a higher regularity in case
of stress and the SpO2 charts show higher desaturation in case
of stress. Figure 4 reports the desaturation charts and the path
length among EEG channels and HRV in the LF band for the
34 weeks group with a 10% threshold on SpO2. Results reveal
a higher desaturation in case of stress as well as a stronger
association between the tachogram and the delta-oscillations
of the EEG. It is important to remember that the lower the
path length, the higher the connectivity. Figure 5 reports the
normalized power in the HF band both as time-series and as
boxplots for the PSG group with a 10% threshold on SpO2.
The figure does not only suggest a higher and more intense
bradycardic spell, but also a more variable bradycardia.

4. DISCUSSION

The current study examines the relationship between bradycardic
spells and stress burden in premature infants and suggests that
stress load can enhance the desaturation and the bradycardic
effects. Two novel findings can be reported.

First, this research supports the feasibility of the automatic
stress classification based on the physiological reactivity in
bradycardias. Levy has shown how routine contact in the NICU
could induce respiratory events, such as apneas and hypoapneas,

and long oxygen desaturations (Levy et al., 2017). This result
has been confirmed by the classification performance reported in
Figures 1, 2 and the desaturation charts displayed in Figures 4,
5. The definition of routine handling by Levy et al. follows the
notion of stress exposure or procedural pain by Grunau (2013),
who defines perinatal stress as accumulation of pain and noxious
stimuli. The experienced hands-on-care and pain might trigger a
completely different physiological reactivity which could induce
a greater desaturation or respiratory burden, as also reported
by Levy et al. (2017). Interestingly, the results show a moderate
association between the features and the classification outcome
(with kappa score between 0.3 and 0.6 for the most of the
groups). Although similar studies that perform classification of
pain stimuli based on physiological information show strong
association between features and the outcome (Brown et al., 2011;
Gruss et al., 2015; Misra et al., 2017), it is important to remind
that does not elicit any pain in the patient. And yet, it shows that
babies experiencing pain the day before the measurement react
differently to stress as shown by the stress calculator but also
by looking at individual parameters like the desaturation chart,
Hurst exponent of the EEG and the HRV in the LF andHF bands.

Second, hypoxic events can impact brain homeostasis. Sleep
fragmentation and sleepiness might result from either hands-on-
care (especially in infants, Levy et al., 2017) or from desaturation
events (especially in apneic patients, Pitson and Stradling, 1998).
Sleep fragmentation is able to impact the daily behavior of
both adult and NICU patients and is commonly considered a
category of pain scoring (Grunau, 2013). Interestingly, Pitson
and Stradling (1998) did not only show that the sleepiness
and desaturation loads are related in apneic patients, but SpO2

appears to be related to heart-rate and EEG arousals, intended
as increases in frequency. These EEG arousals can be seen in
the increase of EEG regularity (Figure 3), while the relationships
among SpO2 dips, heart-rate and EEG arousals might support the
higher connectivity between EEG andHRV in the 34 weeks group
(Figure 4). In adults, those physiological fingerprints might be
the sign of an altered cardiovascular control (Jurysta et al., 2006)
or disrupted emotional regulation by the prefrontal cortex (Beebe
and Gozal, 2002). Based on these results, one might speculate
a possible impact on the brain development and the autonomic
regulation development of those infants. However, the exact
mechanisms responsible for those events remain still unclear
even in adults and further research is still required.

The increase of EEG regularity and desaturation is normally
a feature of the first two monitoring groups (Figures 3, 4), while
the PSG group is characterized by a greater vagal activity in case
of stress exposure (Figure 5). Furthermore, Figures 1, 2 show
better classification performance for the PSG data. One might
speculate that the effect of stress on the patients’ physiology
might be easier to discriminate due a lower apnea - bradycardia
burdenwith increasing age and the overall maturation of the ANS
(Curzi-Dascalova, 1994). The autonomic development can also
explain the increase in performance of cardiovascular features
(HR − SPO2) at PSG, while the dominant features are EEG and
BH in the first two recording groups (Figure 2, Second Panel). It
seems that stress initiates a desaturation effect and regular EEG
patterns in the first days of life, while the stress-related HRV
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FIGURE 1 | Results of the bradycardia-based classification in three main datasets. The three colors represent different levels of desaturation to consider the

bradycardic event in the stress classification. The left panel displays the area under the curve in the three monitoring groups, while the right reports Cohen’s kappa.

FIGURE 2 | Results of the bradycardia-based classification in three main datasets. The figure here reports the results based on the different feature groups. The left

panel reports the area under the curve for desaturations >3%, while the right panel report the results for desaturation >10%. The three colors represent different

feature groups: EEG stands for EEG features, HR-SpO2 represent the cardiovascular features and B-H is related to the brain-heart connectivity.

FIGURE 3 | The desaturation levels and the EEG regularity are more pronounced in case of stress. The left panel reports the SpO2 during the bradycardic spell and

the right panel shows the boxplot for the Hurst exponent of channel C3 for the period before and after each bradycardia. The data are reported for the 5 days group.

All the events with a desaturation >10% were included in this figure. The p-values in the boxplot are derived via the Kruskal-Wallis test.

patterns only arise at full-term age with the maturation of ANS.
It is possible that regular EEG patterns are especially present
at younger age because of enhanced hypoxia by hands-on-care
(Levy et al., 2017) or a more dysmature EEG. Hypercapnia and

reduced cerebral blood flow are common factors to enhance
discontinuity of the cerebral activity (West et al., 2006; Weeke
et al., 2017). However, the discontinuous EEG might also be
triggered by the cumulated pain of the NICU, which increases
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FIGURE 4 | The desaturation levels and the connectivity between delta oscillations and the heart-rate are more pronounced in case of stress. The left panel reports

the SpO2 during the bradycardic spell and the right panel shows the path length derived from the network with EEG channels and the HRV. It is important to remind

that the lower the path length, the higher the connectivity. The data are reported for the 34 weeks group. All the events with a desaturation >10% were included in this

figure.

FIGURE 5 | The intensity of bradycardias and the parasympathetic activity are more pronounced in case of stress. The left panel reports the normalized HRV power in

the HF band and the right panel shows the normalized power in boxplots before, during and after each bradycardic event. The data are reported for the PSG group.

All the events with a desaturation >10% were included in this figure. The p-values in the boxplot are derived via the Kruskal-Wallis test.

neonatal burst activity (Slater et al., 2010). In general, dysmature
EEG patterns are especially present at younger age and any
EEG disruption might be the consequence of subtle effects that
can impact the later-life outcome (Watanabe et al., 1999). This
relationship between regularity and dysmaturity might further
support the hypothesis of an effect on brain development due to
enhanced desaturation and exposure to stress.

Similarly to Lin et al. (2016), the interaction between the
EEG delta waves showed a strong positive correlation, which
increases during the bradycardia spells and under stress exposure
(Figure 4). This stronger positive interaction between the slow
rhythm of the EEG and the HRV is normally concomitant with
a vanishing negative modulation when a sleep state shifts from
deep sleep to wake (Bartsch et al., 2015; Lin et al., 2016). This
sudden increase in connectivity might indeed be caused due to
an underdeveloped parasympathetic control, and the hypoxia
event might be considered as a sudden shift toward an awake
state. Apneas and other respiratory events are known to lead
to sleep fragmentation (Levy et al., 2017) and therefore this
increase in connectivity might be a consequence of this sleep
disruption. Bartsch et al. (2015) have shown that awake and REM
states exhibit stronger physiological connectivity than deep sleep.
Especially, the brain-heart interaction increases during REM and
awake (Liu et al., 2015). It is possible that the combination
of bradycardia and stress exposure might lead the subject to a

condition closer to an awake state, with an overall increase of
network connectivity.

However, this study has limitations, which have already been
considered in the clinical studies by Levy et al. (2017) and Janvier
et al. (2004). Bradycardias and apneas are physiological events,
whose frequency and severity vary throughout the hospitalization
(Janvier et al., 2004). Therefore, there could not be enough events
to classify stress levels for the late pre-term, since there are
fewer bradycardias and apneas at full-term age. Moreover, the
definition of stress or hands-on-care might also influence the
design of the classification. Although Levy et al. (2017) pointed
out that the clinical handling initiates apneas or hypoapneas,
technical contact was also likely to induce desaturations. This
study relies on a specific pain scale (LPS), but future research
could involve different multidimensional pain scales to have
a more in-depth view of the preterm physiology under stress
(Jones et al., 2017). The definition of bradycardias or the
physiological events of interest might also impact the current
analysis. Levy pointed out the different consequences of clinical
handling, which does not only include apneas, but also sleep
fragmentations, hypoapneas and general desaturation events
(Levy et al., 2017). Gee et al. (2017) had a more generic approach,
which include all possible bradycardias in his prediction analysis.
Specifically, Gee et al. (2017) considered any heart-rate drops
for more than 1.2 s as bradycardic event, while Paolillo and
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Picone (2013) focused only on bradycardias that last for more
than 4 s and were concurrent to desaturation events. Based on
the fact that the most dangerous de-oxygenation happens with
bradycardias (Pichler et al., 2003), the pursued strategy of this
investigation focused on events that looked both to desaturations
and bradycardias, but it might be possible to reconsider the
entire analysis to have only bradycardias. However, the long-term
studies on stress aim to quantify the impact on the development
of early-life experiences in the NICU and the specific effect of
hypoxia was proven detrimental for the development outcome of
preterm patients (Janvier et al., 2004). The current study might
also be complemented by a longitudinal analysis, using repeated
measurement ANOVA or a balanced linear mixed-effect model.
However, the current study presents an event-based dataset,
where the number of bradycardias vary for each patient and
recording time. The number of bradycardias normally reduces
with the development of the infant (Curzi-Dascalova, 1994) and
the uneven distribution of those events risk to make any within-
subject analysis invalid and unrevealing. Therefore, a future study
should be designed to monitor bradycardic spell in a longitudinal
sense in order to assess whether stress has a persistent effect over
the different recordings.

Future steps of this analysis might include a further proof of
the development delays in case of apnea load and stress. The
multiple attributes derived in this study might be included in
a regression model to assess the differences in Bayley scores or
other clinical scales (Janvier et al., 2004). Furthermore, the same
methodology can be applied to assess the effect of parents-infant
interaction with scales, such as the emotional availability scale
(Ziv et al., 2000).

In a nutshell, stress seems to induce more intense
desaturations, apneic and bradycardic events and cortical
activation, which can be the trigger of neurodevelopment
impairment. Janvier et al. (2004) have shown how apnea burden
can impact the patients’ development in terms of cognitive
and motor outcome. Pichler et al. (2003) highlighted how
long bradycardias can induce severe cerebral deoxygenation
in premature infants and Horne et al. (2017) stressed that
the cumulated effect of apneas has a long-term negative
impact on the cerebral oxygenation of the patients at 5–
6 months corrected age. Therefore, an exacerbation of
respiratory or hypoxic events due to patient handling or
procedural pain can ultimately affect the development of the
preterm infants.

5. CONCLUSION

The current study investigated the relationship between stress
experience and bradycardias in preterm infants by means of
physiological data. Two main findings have been observed.
Larger desaturation levels are associated to stress experience.
Larger brain-heart synchrony and EEG regularity are observed
during hypoxic events linked to procedural pain. The results
show that an automatic stress discrimination in premature

infants can be implemented assessing the information of the
bradycardic spell. In addition, a possible link between stress and
neurodevelopment can be envisaged. The enhanced autonomic
and hypoxic events we found in stressed infants might impact
their frontal cortex activity, which could ultimately affect their
developmental outcome. Future research might be required to
test this hypothesis.
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