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Knowledge about the molecular basis of SARS-CoV-2 infection is incipient. However,

recent experimental results about the virus interactome have shown that this

single-positive stranded RNA virus produces a set of about 28 specific proteins grouped

into 16 non-structural proteins (Nsp1 to Nsp16), four structural proteins (E, M, N, and

S), and eight accessory proteins (orf3a, orf6, orf7a, orf7b, orf8, orf9b, orf9c, and orf10).

In this brief communication, the network model of the interactome of these viral proteins

with the host proteins is analyzed. The statistical analysis of this network shows that it

has a modular scale-free topology in which the virus proteins orf8, M, and Nsp7 are the

three nodes with the most connections (links). This result suggests the possibility that a

simultaneous pharmacological attack on these hubs could assure the destruction of the

network and the elimination of the virus.
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INTRODUCTION

SARS-CoV-2 has infected over 11,000,000 people since the end of 2019 and killed about 500,000
people worldwide. The SARS-CoV-2 virion is formed by four proteins: the envelope protein E,
the membrane protein M, the nucleocapsid protein N, and the spike protein S. A detailed review
of the structure of these proteins can be found in the work of McBride and Fielding (2012).
Infection begins when the protein S of the virion binds with high affinity to the cell-surface receptor
ACE2 (Angiotensin-Converting Enzyme 2), which is highly abundant in lung alveolar type II cells
(Hamming et al., 2004). The formation of the complex S-ACE2 initiates the process of fusion
between the virion envelope and the cell membrane, leading to the liberation of the nucleocapsid
with the viral genome into the cytoplasm (Letko et al., 2020; Walls et al., 2020).

The SARS-CoV-2 genome consists of a positive-sense non-segmented single-stranded mRNA
[(+)ssRNA] of ∼ 30 kb. The open reading frames 1a (orf1a) and 1b (orf1b) are located near the

5
′

UTR of the (+)ssRNA, and they code for the polyproteins pp1a and pp1ab. Maturation of these
polyproteins results in 11 non-structural proteins (Nsp) from the orf1a segment (Nsp1 to Nsp11)
and five non-structural proteins from the orf1b segment (Nsp12 to Nsp16). Nsp proteins form
the replication-transcription complex (RTC) in a double-membrane vesicle where a set of nested
subgenomic minus-strands of RNA [(–)sgRNA] are synthesized in a process of discontinuous
transcription. These (-) sgRNAs serve as the templates for the production of subgenomic mRNAs
from which the structural proteins E, M, N, and S, together with the accessory proteins orf3a, orf6,
orf7a, orf7b, orf8, orf9b, orf9c, and orf10 are synthesized (Sevajol et al., 2014). The information for
the production of these proteins is coded in the one-third of the viral genome near the 3′-UTR. A
more detailed description of the function of each viral protein is presented in the work of McBride
and Fielding (2012). Viral proteins interact with the molecular machinery of the host cells, take
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control of it, and redirect the host activity toward the production
of more virus particles (Masters, 2006). Figure 1 shows the host
functions that are altered by the presence of this set of proteins
(Masters, 2006; Gordon et al., 2020; Wu et al., 2020).

Network theory is a powerful tool for understanding the
organization and dynamics of complex systems (Breitling, 2010).
A theoretical approach to biological network structure and
function allows the integration of dispersed experimental data
into a coherent model of the spatiotemporal dynamics of
interconnected cellular processes. In virology, a model of the
dynamics of the gene regulatory network (GRN) of HIV-1 has
recently been published (Bensussen et al., 2018). The model is
used to analyze the form in which HIV-1 utilizes latency to evade
the cellular mechanisms that can destroy it. Results obtained
from this analysis were used to propose some therapeutic agents
with probable clinical application against HIV-1.

In this sense, the application of network theory to the analysis
of SARS-CoV-2 infection could be a guide for the design and use
of antiviral drugs against specific viral proteins. However, due to
the novelty of this virus species, there is a lack of the quantitative
information necessary to propose an ODE-based continuous
model for the analysis of the spatiotemporal dynamics of the
infection. However, Gordon and collaborators (Gordon et al.,
2020) cloned, tagged, and expressed 26 viral proteins in human

FIGURE 1 | Interaction of viral proteins with host processes in SARS-CoV-2 infection. This is a circuit representation of the production of the viral proteins and the

host processes targeted by them. The circuit shows that viral proteins mainly alter the host vesicular trafficking process. Viral proteins also modify other host

processes such as signaling pathways and RNA processing, among others. The circuit was drawn from the experimental data of Gordon et al. (2020).

cells using affinity-purification mass spectrometry to identify
the human proteins physically associated with each each viral
protein. They found∼332 SARS-CoV-2-human protein–protein
interactions that form the virus interactome. This result allows
the construction of a viral network representation of the
interactome and its statistical analysis.

Thus, the objective of this brief communication is to publish
the results obtained from statistical analysis of the SARS-CoV-
2 network. These results suggest the possibility that the network
has a hierarchical scale-free modular structure with three highly
connected viral proteins or hubs (orf8, M, and Nsp7) that control
most of the cellular processes (Figure 1). As a consequence, the
present work proposes the hypothesis that, to defeat the infection,
the combination of at least three different medicaments is
necessary for a successful pharmacological attack on these hubs.

METHODS

The SARS-CoV-2 undirected network was built by using
the qualitative experimental data obtained by Gordon et al.
(2020) and additional data reported in the literature (Masters,
2006; Wu et al., 2020). Gephi 0.9.2 was used to do most
of the statistical analysis of the network and to draw
its graphical representation with the Fruchterman-Reingold
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TABLE 1 | Basic statistical analysis of the SARS-CoV-2 network and

FDA-approved drugs.

Protein Degree Clustering

coefficient

Modularity

class

FDA-approved drugs

orf8 47 0.00185 13 Rapamycin, FK-506

M 29 0.002463 19 Bafilomycin A1?

Nsp7 26 0.003077 3 Entacapone, Indomethacin,

Metformin

orf9c 23 0.003953 15 Haloperidol, Metformin,

Daunorubicin, S-verapamil

Nsp12 21 0.004762 6 Ponatinib

Nsp13 20 0.005263 8

Nsp8 19 0.040936 4

Nsp9 11 0 0 Dabrafenib

orf1a 11 0 2

orf9b 11 0 14 Midostaurin, Ruxolitinib

Nsp2 8 0 2 Rapamycin

orf3a 8 0.035714 9

N 7 0 18 Rapamycin, Silmitasertib

Nsp4 6 0 2

orf10 6 0 16

E 6 0 17 JQ1

Nsp10 5 0 5

Nsp1 4 0 2

Nsp5 4 0 2 Valproic Acid

Nsp14 4 0 1 Migalastat, Mycophenolic

acid, Ribavirin

Nsp15 4 0 1

orf1b 4 0 1 Remdesivir?

Nsp6 3 0 2 Haloperidol, Chloroquine

orf6 3 0 11

NGDN 3 1 4

algorithm (Fruchterman and Reingold, 1991). Supplementary
statistical analysis was performed with Biostat ver. 5.8.4.3 (2010)
and NCSS Data Analysis Software (2020).

The basic statistical analysis of the network includes the
determination, for each node, of the value of the following
parameters: degree, clustering coefficient, closeness centrality,
betweenness centrality, and modularity class. The average
clustering coefficient and the degree distribution of the complete
network were also calculated. Table 1 summarizes the values of
the degree, clustering coefficient, and modularity class for the top
25most connected nodes.Table S1 shows the values of all of these
parameters for each node of the complete network.

The number of links of a nodeNi to its neighbor nodes defines
its degree ki. The degree distribution of an undirected network is
defined as the number of nodes with degree k (mk) divided by the
total number of nodesm:

P
(

k
)

=
mk

m
(1)

P(k) is a probability distribution where k = 0, 1, 2,. . .
and

∑

k

P
(

k
)

= 1. In random networks, P(k) is a binomial

distribution, while in scale-free networks, P(k) is a decaying
exponential. In the last case, P(k) obeys a power-law distribution:

P
(

k
)

∼ k−γ (2)

where the exponent γ has a value between 2 and 3. This power-
law property is independent of the size (scale) of the network and
indicates that a few nodes or hubs determine the connectivity of
the network, establishing a hierarchical form of organization.

For a node Ni with l links with its neighbors in an undirected
graph, the clustering coefficient is defined as:

Ci =
2l

ki
(

ki − 1
) (3)

where Ci represents the density of links associated with node Ni,
i.e., the proportion of links between node Ni and its neighbors
divided by the number of links that could possibly exist between
the neighbors.

The average clustering coefficient of the network with m
modes is defined as:

CN =
1

m

∑m

i=1
Ci (4)

which is simply the average of the clustering coefficient of each
node Ni.

Modularity is the fraction of links that fall within a cluster
minus the expected fraction if links were distributed at random.
Modularity indicates the nodes that are more densely connected
with each other than with the rest and reveals clues about
the structure and the vulnerable spots of a network. The
modularity of a non-random network has a value between
0 and 1. The software Gephi uses the Louvain method for
community detection:

Q =
1

2m

∑

i,j

[

Ai,j −
kikj

2m

]

δ
(

ci, cj
)

(5)

where Q is the modularity of the network, Aij is the weight
of the link between node i and node j, ki =

∑

j
Aij are the

weights of the links attached to node i, ci is the cluster to which
node i is assigned, and m =

1
2

∑

i,j
Aij. In Equation (5), δ(ci, c2)

= 1 if c1 = c2, and 0 otherwise (Blondel et al., 2008). Gephi
finds the modularity classes of a network with an algorithm that
compares the number of links among clusters to the number of
links expected in a random network.

The closeness centrality of a node (σi) is a measure of
centrality in a network, calculated as the reciprocal of the sum
of the length of the shortest paths (geodesic paths) between node
i and the rest of the nodes in the graph (Newman, 2010). Thus,
the more central a node is, the closer it is to all other nodes.

Denoting by dij the length of the geodesic path between node
i and node j, the mean shortest distance from i to j, averaged over
all nodes j of the network (n) except i itself, is:

Li =
1

n− 1

∑

j

dij (6)
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Thus, the closeness centrality of node i is:

σi =
1

Li
=

(n− 1)
∑

j
dij

(7)

Betweenness centrality measures the extent to which a node lies
on paths between other nodes by determining all the shortest
paths (geodesic paths) between every pair of nodes and then
counting how many times a node is on the shortest path between
two others (Newman, 2010). If node i lies on the geodesic path
from node s to node t, then the variable nist is 1, and it is
0 otherwise. The betweenness centrality xi of node i is then
given by:

xi =
∑

st

nist (8)

RESULTS

Figure 1 shows the circuit of interactions of SARS-CoV-2
proteins with host processes, which was drawn from the
experimental data available (Gordon et al., 2020; Wu et al., 2020).
This circuit indicates that the virus principally alters the normal
vesicular trafficking process of the host. Nine viral proteins
(Nsp6, Nsp7, Nsp10, Nsp13, Nsp15, orf8, E, and M) modify the
structure and function of the Endoplasmic Reticulum (ER) and
Golgi Apparatus (GA) (Masters, 2006; McBride and Fielding,
2012; Steward, 2020). The presence of viral proteins also modifies
other cellular processes like nuclear transport (Nsp 9, Nsp
15, and orf6), mitochondrial activity (Nsp4, Nsp8, and orf9c),
cytoskeleton structure and function (Nsp1 and Nsp13), lipid
synthesis and modification (Nsp2 and S), host DNA replication
and regulation (Nsp1, Nsp5, Nsp8, and Nsp13), and host–virus
RNA processing (Nsp2, Nsp8, and N) (Gordon et al., 2020).
Figure 1 also points to the fact that Nsp8, Nsp13, N, orf6, and
orf9b modify and take control of different signaling pathways.
Orf6 produces alterations in signaling pathways that include
activation of apoptosis via caspase-3-mediated, ER stress, and
JNK-dependent pathways (Ye et al., 2008; McBride and Fielding,
2012). Orf6 is also a type I Interferon (IFN) antagonist, and its
expression suppresses the induction of both IFN and the IFN
signaling pathways (Frieman et al., 2007). N protein modifies the
TGF-β signaling pathway to block apoptosis of infected host cells
but can also induce apoptosis by activation of the mitochondrial
pathway. This protein promotes NF-κB binding to the COX-
2 promoter, causing inflammation of the lungs by activating
COX-2 gene expression (Weiss and Leibowitz, 2011).

Figure 2 shows the detailed SARS-CoV-2 undirected network
representation made from the interactome obtained by Gordon
et al. (2020), in which orf8, M, and Nsp7 are the most connected
nodes. The network consists of 298 nodes, and Table 1 shows the
basic statistics of its top 25 most connected nodes. The statistical
properties of the complete network are presented in Table S1.

Figure 2, Table 1 and Table S2 show that most of the links
are concentrated to only three virus proteins: orf8 with 47
links, M with 29 links, and Nsp7 with 26 links. The rest of
the nodes have a degree value that decays in an exponential
form, as shown in Figure 3A. Furthermore, Figure 3B clearly

indicates that the degree distribution (Equation 1) is a decaying
exponential, with 246 nodes with degree 1 and only six nodes
with a degree above 20. This degree distribution obeys the power
law P

(

k
)

˜k−γ (Equation 2), in which the estimated value of
the exponent is γ = 1.1973 (R-squared = 0.7148). The 95%
confidence interval for the value of γ is 0.7368 < γ < 1.6308,
which is lower than the value calculated for most scale-free
biological networks (Voit, 2013) but high enough to assure that
the SARS-CoV-2 network has a scale-free structure in which orf8,
N, Nsp7, orf9c, Nsp12, and Nsp13 are the most connected nodes
(hubs) of the net.

Table 1 shows the value of the clustering coefficient (Equation
3) for the top 25 nodes of the network, and Table S1 shows the
values for all nodes. Figure 3C shows the clustering coefficient
distribution for the complete network, in which the hubs orf8,
M. Nsp7, orf9c, Nsp12, Nsp13, and Nsp8 have a small clustering
coefficient, indicating that their neighbors are scarcely connected
between them. Furthermore, 267 nodes have a clustering
coefficient of zero, indicating that their neighbors have no links
between them. The viral proteins Nsp9, orf1a, orf9b, Nsp2, N,
Nsp4, orf10, E, Nsp10, Nsp1, Nsp5, Nsp14, Nsp15, orf1b, Nsp6,
orf6, Nsp11, orf7, S, Nsp3, and orf3b belong to this group. None
of the viral proteins has a clustering coefficient of 1. Finally,
the average clustering coefficient of the network (Equation 4) is
0.463, which corresponds to a network with a small density of
connections between the neighbors of each node.

The network has a modularity value of 0.85 (Equation 5),
which is far from the negative value for a random network.
Figure 3D shows that the network has 21 clusters with sizes that
range from 1 to 49 modes in this example (Table 1 and Table S1),
indicating that the number of nodes distributed between the 21
clusters is larger than the expected number due to randomness.
Besides the original cellular proteins that belong to a high
modularity class (Table S1), viral proteins orf8, M, orf9b, N,
orf10, E, orf6, orf7, and S also belong to a high modularity class
[see diagrams in Gordon et al. (2020)]. The values of closeness
centrality (Equation 7) and betweenness centrality (Equation 8)
presented in Table S1 suggest that SARS-CoV-2 is not a random
network but has a hierarchical structure.

DISCUSSION

Every biological system can be represented as a network. A
network is a simplified representation of reality that reduces
a system to an abstract structure, capturing only the basics of
connection patterns. A certain amount of information about
the original system is usually lost in the process of reducing
it to a network representation. However, the particular pattern
of connections between components, i.e., the structure of the
network, has a big effect on the behavior of the system (Newman,
2010). As a consequence, the knowledge of the structure of a
network and is properties (degree, clustering degree distribution,
etc.) is a tool for understanding the particular form of operation
of a net.

Thus, the construction of the SARS-CoV-2 network, as
a first approximation, involves the simplification (maybe the
oversimplification) of some processes. Some nodes and links
were not taken into consideration (the activity of Mprot, the
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FIGURE 2 | SARS-CoV-2 network. Network representation of the SARS-CoV-2 interactome was produced with the Fruchterman-Reingold algorithm. Red circles

represent viral proteins. Green circles represent host proteins. Blue lines represent undirected links. The most connected viral protein is orf8.

frame-shift that allows the expression of orf1b, and details of
the vesicular trafficking process, among others) because the
principal objective of this work is to determine the overall pattern
of connections created by viral proteins during infection and
to evaluate the basic statistical properties of the network. As
a consequence, a second objective is to use this knowledge
to determine which nodes of the network can be targets of
therapeutic drugs (Steward, 2020).

With respect to the first objective, results obtained from the
statistical analysis of the SARS-CoV-2 network (Figure 2, Table 1

and Table S1) indicate that the presence of the viral proteins in
the host produces a new host–virus hybrid network (Figures 1,
2) in which the viral proteins interact with 273 host proteins
in a pattern of connections with a modular hierarchical scale-
free structure. Only six viral nodes influence the activity of 166
host nodes (59.7% of the total host nodes) in different cellular
processes (Figures 1, 2, Table 1 and Table S1). In this set of
six highly connected nodes, three of them predominate, with
102 links. Orf8 has 47 links; it is a glycoprotein that forms
spikes at the surface of the SARS-CoV-2 virion envelope and
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FIGURE 3 | Basic statistical properties of the SARS-CoV-2 network. (A) Degrees of the 25 most connected nodes of the network. The orf8, M, and Nsp7 proteins

have the largest numbers of links. The y-axis indicates the number of links per protein and the x-axis the proteins (nodes) of the network. (B) Degree distribution of the

298 nodes of the network. The degree distribution is a decaying exponential in which most of the proteins have only one link, and protein orf8 has 47 links. The

distribution follows the power-law P (k) ∼ k−1.1973. In this graph, the y-axis indicates the number of proteins that have the value of the degree indicated in the x-axis.

(C) Clustering coefficient distribution of the network. The y-axis represents the number of nodes with the corresponding clustering coefficient value indicated in the

x-axis. A high number of nodes have a clustering coefficient of 0, which indicates a poorly connected structure due to the presence of viral proteins. (D) Modularity of

the network. The y-axis represents the number of nodes that belong to one of the modularity classes indicated in the x-axis. This graph suggests that the

SARS-CoV-2 network is not random but has a hierarchical structure.

participates in the fusion of viral and cellular membranes, leading
to virus entry into the host cell (McBride and Fielding, 2012;
Walls et al., 2020). One target of orf8 is the Tor1a (Torsin-
1a) protein, whose function is related to the quality control of
protein folding in the ER (Hill et al., 2018; Gordon et al., 2020).
M protein has 29 links and is a homomultimer that synergizes
with E protein in the budding compartment of the host cell,
which is located between the ER and the GA. M protein also
interacts with N protein in the packing of viral RNA into the
virus (Masters, 2006; McBride and Fielding, 2012). Nsp7 has 26
links and forms a hexadecamer with Nsp8 (eight subunits of
each). This hexadecamer acts as a primase in viral replication. A

target of Nsp7 is COMT (Catechol O-methyltransferase) protein,
which catalyzes the O-methylation, and thereby the inactivation,
of catecholamine neurotransmitters and catechol hormones (Tai
and Wu, 2002).

The low clustering coefficient of practically all nodes
(Figure 3D and Table 1) indicates that viral infection produces
a low-connectivity network structure. Experimental data that
support this fact (Gordon et al., 2020) also show that viral
proteins practically act independently one from the other because
there are no direct links between them (Newman, 2010; Mengistu
et al., 2016). They synergize their effects when converging in
different cellular processes (Figure 1).
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An important problem in network theory is to know when a
particular network is random or has another type of structure.
Both random and non-randomnetworks can have an exponential
degree distribution and low values of the clustering coefficient
for each of their nodes. However, random networks have a
negative modularity value, in contrast with the positive value
(∼ 0.85) calculated for the SARS-CoV-2 undirected network
(Brandes et al., 2008). This result suggests that the virus does
not alter the host network at random but reorganizes it into a
hierarchical, efficient, and robust structure, in which each viral
hub has the information to execute a particular function in the
ensemble of the new virus. Figure 3D shows this tendency of
viral proteins to form clusters (Gordon et al., 2020) in which
orf8, M protein, and Nsp7 belong to clusters of high modularity
class. This kind of network structure is highly resistant to the
random deletion of a single node because the remaining ones
stay active, i.e., the elimination of a particular node does not
assure the destruction of the whole network (Mengistu et al.,
2016). However, pharmacological attacks capable of deleting the
more connected hubs can fracture the network and eliminate it
(Cohen et al., 2000). The robustness of the SARS-CoV-2 network
raises a question: how many hubs is it necessary to attack to
effectively defeat COVID19? (Mengistu et al., 2016). At this
moment, there is not an answer to this question. However, as
a first approximation, this work proposes the hypothesis that
a pharmacological attack on the more connected nodes (orf8,
M protein, and Nsp7) will fracture the viral network, stopping
the infection.

With respect to the second objective of this work, there are
no therapeutic drugs that can directly attack these proteins,
but there are FDA-approved drugs than can block the effect of
these three hubs on downstream nodes. In particular, orf8 is a
target of Rapamycin, which also targets Nsp2 and N protein.
Rapamycin targets Tor1a, blocking its activity in the quality
control of protein folding in the ER and disrupting the effects
of orf8. Rapamycin could be a good candidate to block the
activity of this hub, but this macrolide compound has strong
immunosuppressant effects (Mannick et al., 2018). An alternative
is FK-506, which is a macrolide lactone calcineurin inhibitor that
also has immunosuppressant activity (Gordon et al., 2020). Other
non-approved therapeutic drugs that could be alternatives for
attacking orf8 are listed in the works of Gordon et al. (2020) and
Steward (2020).

There are no reports of therapeutic drugs against the M
protein hub, although Gordon et al. (2020) suggests that
it is sensitive to Bafilomycin A1. This drug is a macrolide
antibiotic that specifically targets the vacuolar-type H+ -
ATPase (V-ATPase) enzyme, a membrane-spanning proton
pump that acidifies either the extracellular environment or
intracellular organelles.

The Nsp7 hub can be targeted by three drugs: a) Entacapone,
which is a selective and reversible inhibitor of the enzyme
COMT; b) Indomethacin, which is a cyclooxygenase inhibitor;
c) Metformin, which is a biguanide antihyperglycemic agent
that targets NDUFA12L protein, inducing a mild and transient
inhibition of the mitochondrial respiratory chain complex I
(Gordon et al., 2020; Steward, 2020).

Table 1 shows other FDA therapeutic agents that indirectly
disrupt the functioning of SARS-CoV-2 network. Although
orf1b is a poor connected node, with a low modularity class
value, it is the target of the antiviral drug Remdesivir, which
is a FDA-approved antiviral drug (Scavone et al., 2020). From
a theoretical point of view, the combinations of drugs like
Rapamycin-Bafilomycin A1-Entacapone can defeat the infection;
however, the side effects of these drugs could be harmful
for the patient. The combination Rapamycin- Remdesivir-
Chloroquine could also be an alternative (Table 1). All of
these suggestions need experimental verification and clinical
evaluation. It is clear that more research is necessary to design
drugs that can target the orf8, M, and Nsp7 proteins with fewer
collateral effects.

This brief research report is an advance of the project
“Dynamics of the SARS-CoV-2 network” and is based on
the experimental data available at the moment. This report
establishes the form in which the viral proteins restructure the
host protein network giving rise to a modular hierarchical scale-
free one, in which three viral nodes (orf8, M, and Nsp7) take
control of a great number of cellular processes. A therapeutic
attack on these hubs can increase the probability of defeating
viral infection. More research is necessary to design drugs that
directly target the orf8, M, and Nsp7 proteins as a compliment or
an alternative to a vaccine.
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