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The aim of the study was to analyze the relationship between resting state
electroencephalographic (EEG) alpha functional connectivity (FC) and small-world
organization. For that purpose, Pearson correlation was calculated between FC and
small-worldness (SW). Three undirected FC measures were used: magnitude-squared
coherence (MSC), imaginary part of coherency (ICOH), and synchronization likelihood
(SL). As a result, statistically significant negative correlation occurred between FC and
SW for all three FC measures. Small-worldness of MSC and SL were mostly above 1,
but lower than 1 for ICOH, suggesting that functional EEG networks did not have small-
world properties. Based on the results of the current study, we suggest that decreased
alpha small-world organization is compensated with increased connectivity of alpha
oscillations in a healthy brain.

Keywords: electroencephalography, functional connectivity, small-world organization, network analysis, alpha
frequency, coherence, imaginary part of coherency, synchronization likelihood

INTRODUCTION

Functional connectivity (FC) is highly important in physiology at various levels: from molecules to
organs and physiological networks are not only of wide scientific interest, but also have high impact
in medicine (Ivanov et al., 2016; Lin et al., 2016; Moorman et al., 2016). Functional connectivity
is crucial also in brain physiology (Lynn and Bassett, 2019). Significant work has been done to
show that neural network architecture can be adaptively reconfigured between different states of
the subjects (Bassett et al., 2006; Liu et al., 2015a; Lin et al., 2020) and associate network topology to
physiologic states (Bashan et al., 2012; Bartsch and Ivanov, 2014; Ivanov and Bartsch, 2014; Bartsch
et al., 2015; Liu et al., 2015b).

Functional connectivity and complex network analysis have been the most widely used
types of brain network analysis by providing the tools to analyze the brain as a network
of interacting regions, while maintaining computational simplicity. Complex network analysis
is based on classical graph theoretical analysis, but focuses on analyzing complex real-life
networks (Rubinov and Sporns, 2010). Real-life neural networks are represented graphically, using
electroencephalographic (EEG) channels as nodes and FC as edges between nodes. Graphs are
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constructed by removing edges with lowest values. Small-world
organization is one of the most frequently analyzed topological
properties of functional neural networks. A network is compared
to random networks and in order to have small-world properties,
the network should be more clustered than a random network,
but have similar characteristic path length (Watts and Strogatz,
1998; Albert and Barabási, 2002; Rubinov and Sporns, 2010;
Bassett and Bullmore, 2017). In that case, functional integration
and functional segregation are simultaneously high. A measure
of small-worldness (SW) has been proposed to assess small-
world properties of a network (Humphries and Gurney, 2008).
Since then, studying small-world properties of functional brain
networks has been widely used.

Changes in EEG resting state FC and small-world structure
are often used for statistical analysis between two populations,
generally with the aim to compare patient and control groups.
Previous studies have found results in all frequency bands,
but often inconsistencies between studies occur. Therefore,
we will focus on frequency bands, where the most frequent
and consistent results were reported. Major depressive disorder
(MDD) is mostly characterized by increased FC (Fingelkurts
et al., 2007; Leuchter et al., 2012; Olbrich et al., 2014; Li
et al., 2017) and more random network structure (Li et al.,
2017; Zhang et al., 2018; Sun et al., 2019) in theta and alpha
frequency bands. However, few studies have also found a
decrease in alpha FC (Shim et al., 2018; Zhang et al., 2018).
Alzheimer’s disease (AD) has been consistently characterized
by decreased FC in alpha frequency band (Koenig et al.,
2005; Wang et al., 2014; Babiloni et al., 2016). Furthermore,
SW of AD subjects has been found to decrease in theta
frequency band (Wang et al., 2014; Vecchio et al., 2017),
and AD is characterized by more random network structure
in alpha frequency band (Wang et al., 2014; Babiloni et al.,
2016). In schizophrenia, most consistent FC alteration has
also been the decrease of FC in alpha frequency band (Jalili
and Knyazeva, 2011; Di Lorenzo et al., 2015; Maran et al.,
2016). Furthermore, schizophrenia has also been associated
with decreased SW in alpha, beta, and gamma frequency
bands (Micheloyannis et al., 2006) and more random network
architecture (Rubinov et al., 2009).

Although alterations in FC and small-world organization have
been studied for diseased brain (see above), the relationship
between FC and SW is unclear for healthy subjects. We have
previously shown that adding graph theoretical measures to
features of FC did not improve classification accuracy when
classifying MDD and healthy subjects (Orgo et al., 2017).
Therefore, a fundamental relationship between FC and graph
theory measures can be expected and a disruption in that
relationship is likely related to different mental disorders.
However, only a few studies have analyzed the relationship
between different graph theory measures. Lynall et al. (2010)
reported a positive correlation between functional magnetic
resonance imaging (fMRI) FC and SW, together with several
correlations between different graph theoretical measures.
However, healthy and schizophrenic subjects were analyzed
together and the group contained of a small number of subjects
(15 healthy and 12 schizophrenic subjects). To the best of our

knowledge, the relationship between graph theory measures for
EEG data has not been analyzed before.

FC has recently been shown to be a complex spatiotemporal
phenomenon (Racz et al., 2018), but in the current study
we apply widely used static approach of FC to construct
functional networks. To ensure more reliable results, we
calculate three frequently used FC measures: magnitude-squared
coherence (MSC), imaginary part of coherency (ICOH), and
synchronization likelihood (SL). These measures were chosen
to take different EEG properties into account. Firstly, SL is
calculated in time domain, while MSC and ICOH are calculated
in frequency domain. Secondly, measures of FC can be divided
into linear and nonlinear measures. On the one hand, EEG
nonlinear time series analysis is based on the nonlinear nature
of neural processes. Previous studies have reported strong
nonlinear interdependences in EEG signals (Rubinov et al., 2009)
and nonlinear metrics can detect nonlinear interdependencies
between EEG signals that linear measures cannot. On the other
hand, nonlinear measures are computationally expensive and
susceptible to noise (Netoff et al., 2006). Linear measures are
more robust and can perform as well as nonlinear measures
in some cases (Bastos and Schoffelen, 2016; Bachmann et al.,
2018). Therefore, a combination of linear and nonlinear measures
should provide the most information. In the current study,
SL can capture both linear and nonlinear interdependencies
between signals. We have previously shown with surrogate
data method that SL can detect nonlinearity in 9% of EEG
segments, which cannot be detected with linear methods (Päeske
et al., 2018). Therefore, SL may provide additional information
to other connectivity measures. Thirdly, several FC measures
such as MSC are strongly influenced by volume conduction
(Bastos and Schoffelen, 2016). One solution to avoid spurious
results from volume conduction would be to apply inverse
method to the scalp EEG signals and then calculate FC between
obtained source signals. The problem with this approach is
that perfect inverse method cannot exist (Sarvas, 1987) and
therefore accurate FC estimation is not guaranteed. Other
option is to use FC measures that are less sensitive to volume
conduction, for example ICOH (Christodoulakis et al., 2015;
Bastos and Schoffelen, 2016). Imaginary part of coherency
measures only phase-shifted relationship between time series,
therefore minimizing connectivity between information from
the same sources. At the same time, true interactions at zero-
phase are also lost and for a more complete understanding, these
measures can be calculated complementary to other measures.

In the current study, we analyze the relationship between
alpha FC and SW in the resting state for healthy subjects. We
use only alpha frequency band, because most of the alterations
in FC or SW have been previously found in the alpha frequency
band for MDD, AD, and schizophrenia. Furthermore, EEG alpha
frequency has an important role in cognitive, sensorimotor,
psycho-emotional and physiological processes (Bazanova and
Vernon, 2014). It is important to note that although graphs are
constructed by thresholding FC values, small-world graph theory
measures are normalized. Therefore, mathematically, there is no
correlation between FC and normalized graph theory measures
for random graphs. If a correlation between FC and SW occurs
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for a physiological network, but not for a random network, the
origin of the correlation is also expected to be physiological.
We will also construct random graphs for reference, using
Erdös-Rényi model, to ensure that our results could not be
derived mathematically.

MATERIALS AND METHODS

Subjects
The subjects were chosen for the experiment according to
the following criteria: no epilepsy, no usage of psychotropic
medication one month prior to the experiment, no usage of
narcotics three months prior to the experiment, no history of
head injury or concussion, and no psychiatric disorders at the
time of the experiment. Following these criteria, the study was
carried out on a group of 80 healthy volunteers from ages 19
to 75, with the mean age of 37 ± 15 years. Out of all subjects,
38 were female and 42 were male. The subjects were asked to
abstain from alcohol 24 h and from coffee two hours prior to
the EEG recording.

The study was conducted in accordance with the Declaration
of Helsinki and was approved by the Tallinn Medical Research
Ethics Committee. Informed consent was obtained from each
subject before participating in the study.

Data Recordings
Electroencephalographic signals were recorded using Neuroscan
Synamps2 acquisition system (Compumedics, NC, United States)
from 30 electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3,
FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TP8,
P7, P3, Pz, P4, P8, O1, Oz, O2). Electrodes were positioned
according to the extended international 10–20 system with
linked mastoids as reference. In addition, horizontal and vertical
electrooculograms were recorded to monitor eye movements.
To ensure good conductivity between the skin and electrodes,
electrode impedances were kept below 10 k�.

The data were sampled at 1000 Hz. The resting state EEG was
recorded for six minutes, during which the subjects were lying
in a relaxed position with their eyes closed. The room of the
recordings was electrically shielded and dimly lit. In addition,
earplugs were used to minimize any disturbances.

Preprocessing
The data were analyzed using MATLAB (The Mathworks, Inc.).
Butterworth filter was used to filter signals into alpha (8-12 Hz)
frequency band. Sampling frequency was reduced to 200 Hz
to reduce the computation time of FC measures and the data
were divided into 20.48-s (4096 sample) segments. All segments
were inspected by a studied technician and segments with ocular,
muscular or other artifacts were removed. For each subject, first
10 artifact-free segments were used for further analysis.

Signals were re-referenced according to the reference
electrode standardization technique (REST) (Yao, 2001), which
approximately re-references scalp EEG signals to a reference
point at infinity using an equivalent source model. REST has been

shown to be the best reference montage to recover the real EEG
FC network configuration (Qin et al., 2010; Huang et al., 2017).

FC Analysis
Three non-directed measures of FC were calculated in the current
study: MSC, ICOH, and SL. An example of EEG signals in
alpha frequency band for different levels of FC is shown in the
Supplementary Material. FC measures were calculated between
all channels, obtaining connectivity matrices for each subject.
Median values of MSC, ICOH, and SL were obtained over
segments in time.

Magnitude-Squared Coherence
Coherency estimates linear relationship between two signals at
each frequency f. When time series from channels i and j are xi(t)
and xj(t) and their Fourier transforms are Xi(f ) and Xj(f ), then
the cross-spectrum between Xi(f ) and Xj(f ) is Sij ≡ 〈Xi(f )X∗j (f )〉,
where ∗ indicates complex conjugation and 〈〉 expectation value.
Coherency is calculated as:

Cij(f ) ≡
Sij(f )(

Sii(f )Sjj(f )
)1/2 , (1)

where Sii(f ) is the power spectrum of Xi(f ) and Sjj(f ) is the power
spectrum of Xj(f ). Coherence is the absolute value of coherency:

COHij(f ) ≡
∣∣Cij(f )

∣∣ = ∣∣Sij(f )∣∣(
Sii(f )Sjj(f )

)1/2 (2)

In the current study, the MSC (Kay, 1988) was used as a
frequently used measure of FC:

MSCij(f ) = COH2
ij(f ) ≡

∣∣Sij(f )∣∣2(
Sii(f )Sjj(f )

) (3)

Symmetric Hann window with a window length of 512 samples
and 50% overlap was used to calculate Fourier transform.
MSC was found by averaging MSCij(f ) values within the
alpha frequency band.

Imaginary Part of Coherency
It is often argued not to use MSC as it is strongly influenced my
volume conduction. Therefore, ICOH (Nolte et al., 2004) was also
used in current study as a secondary measure of FC, which is
calculated as an imaginary part of coherency:

iCOHij(f ) ≡ Imag
(
Cij(f )

)
=

Imag(Sij(f ))(
Sii(f )Sjj(f )

)1/2 (4)

Imaginary part of coherency was found by averaging iCOHij(f )
values within the alpha frequency band. Imaginary part
of coherency removes zero-phase interactions between time
series xi(t) and xj(t), therefore minimizing the effects of
volume conduction.

Synchronization Likelihood
Synchronization likelihood (Stam and Van Dijk, 2002)
describes dynamical interdependencies between simultaneously
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recorded signals. The definition and calculation of SL is
provided by Stam and Van Dijk (2002). Briefly, time series
are reconstructed in state space and the recurrences of
states are detected from time-delay embedding vectors.
Synchronization likelihood is the likelihood of these recurrences
being simultaneous. The parameters for SL were calculated from
sampling frequency, highest frequency and lowest frequency
using suggestions by Montez et al. (2006). Therefore, the
following parameters were used: the embedding lag L = 6,
the embedding dimension m = 6, the number of recurrences
nrec = 10, the fraction of recurrences pref = 0.01, window
W1 = 50 and window W2 = 1049. Such selection of the
parameters ensures that the state vector is long enough
to sample the slowest oscillations and at the same time
signal is sampled at sufficiently short intervals to take fastest
oscillations into account.

Graph Theory Analysis
A connectivity matrix can be analyzed as a graph consisting
of nodes (EEG channels) and edges between the nodes (FC
between EEG channels). To obtain a graph, a threshold is
applied on FC values: an edge exists only if the value of
FC is higher than the threshold. In the current study, the
sparsity of each graph was maintained by applying a different
threshold to each graph. For example, network density of
40% means that 60% of all connections were removed from
each graph. This ensures that differences between graph theory
metrics are due to differences in graph topologies, rather
than connectivity strengths. As currently there is no optimal
network density used in the literature, a range of network
densities are used. In the current study, the network densities
from 10 to 50% with a step of 5% were used. These are
one of the commonly analyzed densities, ensuring that the
network is sparse enough to show small-world properties
and at the same time is still fully connected (Bullmore
and Bassett, 2011; Sun et al., 2019). Obtained graphs were
binarized: edge values were 0 or 1, depending on whether
there was a connection between two nodes or not. In other
words, unweighted graphs were used in the current study.
As non-directed FC measures were used, edges did not
have a direction.

Brain Connectivity Toolbox (Rubinov and Sporns, 2010) was
used to calculate graph theoretical measures in MATLAB. Graph
theory measures calculated in the current study describe small-
world properties of a network and are therefore also called small-
world measures. Clustering coefficient (C) describes functional
segregation, characterizing brain’s ability to process information
within interconnected clusters. Clustering coefficient for a given
node equals with the fraction of node’s nearest neighbors
that are also directly connected to each other (Watts and
Strogatz, 1998). Characteristic path length (L) is a measure of
functional integration, characterizing brain’s ability to combine
information from distributed areas. Shortest path length is the
smallest number of edges between two nodes. Characteristic
path length is the average shortest path length of the graph
(Watts and Strogatz, 1998). High functional integration is
described with small L. A network has small-world properties

if it is more clustered than a random network, but has similar
L (Rubinov and Sporns, 2010). Small-worldness quantifies these
properties and is calculated from C and L (Humphries and
Gurney, 2008):

SW =
Cnorm

Lnorm
=

C/Crand

L/Lrand
, (5)

where Crand is the clustering coefficient and Lrand is
the characteristic path length of an equivalent random
network. A network has small-world properties if
SW > 1 (Wang et al., 2014). Random networks
for normalization were generated according to the
method of Maslov and Sneppen (Maslov and Sneppen,
2002; Rubinov and Sporns, 2010) by reshuffling the
topology and maintaining the degree distribution of
original networks.

Small-worldness was calculated for all three FC measures.
For reference, random graphs were generated using Erdös–
Rényi model – for the fixed number of nodes, the existence
of each potential edge is determined by a probability p.
To differentiate between graph theoretical measures calculated
from different FC measures, FC measures are marked with
a superscript. For example SWMSC denotes small-worldness,
calculated from a MSC graph.

Statistical Comparisons
For each subject, the mean values of FC and SW were
calculated over all channels. The values of SW were statistically
compared using Wilcoxon’s ranksum test and the correlations
between mean FC and SW were calculated using Pearson
correlation coefficient (r). The confidence level of p < 0.05
was used. p-Value was adjusted according to the number
of statistical tests using Bonferroni correction to address
the problem of multiple comparisons. As three different
measures and nine different graph densities were used,
the number of statistical tests was 27 and p-value was
adjusted to p < 0.05/27 = 0.0019. The correlations were
considered statistically significant if |r| > 0.34, corresponding
to the adjusted p-value p < 0.0019 and sample size of
80 subjects. If the absolute value of obtained correlation
was higher than 0.34, the correlation could not have
emerged randomly.

RESULTS

First, we statistically compared the values of SW calculated from
different FC measures (Figure 1). Bonferroni correction for 27
statistical tests was applied. Small-worldness calculated from
ICOH was significantly lower than SW calculated from MSC and
SL for all graph densities analyzed in the current study. For MSC
and SL, SW was mostly above 1 or close to 1, indicating these
networks have better or similar small-world properties compared
to a random network. For ICOH, most values of SW were below
1, indicating these networks have less small-world properties
compared to a random network.
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FIGURE 1 | Small-worldness (SW) depending on graph density. The mean and standard deviation values are shown for SW, calculated from MSC, SL and ICOH.
SWICOH is significantly lower than SWMSC and SWSL.

FIGURE 2 | The values of Pearson correlation coefficients (r) between measures of functional connectivity (MSC, SL, and ICOH) and small-worldness calculated from
these measures (SWMSC, SWSL, and SWICOH) for different graph densities. Black horizontal line corresponds to correlation -0.34. Correlations below this line are
statistically significant with confidence level of 0.05 (p-value is adjusted according to Bonferroni correction to p < 0.0019).

Secondly, Pearson correlation coefficient was calculated
between SW and FC for all measures of FC (Figure 2). There
was a statistically significant negative correlation between FC and
SW for all measures of FC. For MSC and ICOH, correlations

were statistically significant for graph densities 15 ... 50% and
for SL 20 ... 50%. The highest correlations are plotted on
Figure 3. The highest correlation for MSC was for graph density
40% (Figure 3A), for SL 45% (Figure 3B) and for ICOH 50%
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FIGURE 3 | Correlation between FC and SW for (A) MSC, (B) SL, and
(C) ICOH. Pearson correlation coefficient (r) is shown in the upper right corner.

(Figure 3C). Pearson correlation coefficient was also found
between SW and averaged edge values of random graphs. As
expected, correlation for random graphs was not statistically
significant for any of the analyzed graph densities.

DISCUSSION

As a result of the study, we found a negative correlation
between EEG alpha FC and SW. The correlation occurred

for all three measures of FC calculated in the current study.
For MSC and ICOH, correlations were statistically significant
for graph densities 15 ... 50% and for SL 20 ... 50%.
Based on the results of the current study, we suggest a
hypothesis that decreased alpha small-world organization is
compensated with increased connectivity of alpha oscillations
in a healthy brain. Furthermore, a correlation may indicate
that a certain efficiency is maintained in the brain by
balancing between alpha FC and SW: as one increases, the
other decreases.

Results found in the current study may be associated
with default mode network (DMN; Jann et al., 2010;
Liu et al., 2017). The DMN has been the most studied of
resting state networks, largely because it deactivates during
demanding tasks. Furthermore, areas involved in DMN
have high activity during resting state, observed with fMRI
BOLD signal, and high connectivity (Hagmann et al., 2008).
A recent study used high-density EEG to detect large-scale
networks (Liu et al., 2017). The authors spatially overlapped
obtained EEG networks with fMRI networks and found that
although each resting state brain network is associated with
oscillations of different frequency bands, DMN can be fully
reconstructed using alpha frequency band. In the current
study, alpha frequency band was also used and therefore
association between the results in the current study and
DMN are plausible.

Previous studies have mostly found that alpha FC is
increased in MDD (Fingelkurts et al., 2007; Leuchter et al.,
2012; Olbrich et al., 2014). Although changes in alpha SW
in MDD are unclear, some studies have found that small-
world measures of alpha EEG were decreased for subjects
with MDD (Zhang et al., 2018; Sun et al., 2019). Therefore,
in MDD, the relationship between FC and SW found in the
current study is probably not disrupted. Fingelkurts et al.
(2007) suggested that FC between short-range connections
in the left hemisphere and long-range connections in the
right hemisphere of subjects with MDD was increased to
compensate insufficient semantic integration. However,
according to the hypothesis suggested in the current study,
the compensational mechanism proposed by Fingelkurts
et al. (2007) may be inherent to healthy subjects as well.
A compensational mechanism could be a fundamental
characteristic to brain functioning. According to that
theory, another possible explanation to the increase in FC
for MDD is the decrease in SW, which in turn leads to
an increase in FC.

Alzheimer’s disease in alpha frequency band is characterized
by decreased FC (Koenig et al., 2005; Wang et al., 2014; Babiloni
et al., 2016), but also decreased small-world measures (Wang
et al., 2014; Babiloni et al., 2016). Therefore, compensating
low small-world architecture with increased FC may be
disrupted in AD.

Similarly to AD, schizophrenia in alpha frequency band
has also been previously described with decreased FC (Jalili
and Knyazeva, 2011; Di Lorenzo et al., 2015; Maran et al.,
2016) and small-world measures (Micheloyannis et al., 2006;
Rubinov et al., 2009). Schizophrenia is often described with

Frontiers in Physiology | www.frontiersin.org 6 August 2020 | Volume 11 | Article 910

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00910 August 10, 2020 Time: 14:48 # 7

Päeske et al. Relationship Between FC and SW

“dysconnectivity syndrome” – impaired functional integration
between and within brain areas. Considering the results of
the current study, it could be presumed that “dysconnectivity
syndrome” is expressed by disrupted compensational mechanism
in schizophrenia.

We statistically compared the values of SW calculated
from different FC measures. Small-worldness calculated from
ICOH (SWICOH) was significantly lower compared to SWMSC

and SWSL. As ICOH measures only phase-shifted relationship
between time series, this result shows that MSC and SL
capture a lot of information from zero-phase interactions.
A lot of these interactions are due to volume conduction.
Previous studies have shown that volume conduction falsely
increases values of SW (Kuś et al., 2004). The same effect
could also be observed in the current study, where SWMSC

and SWSL were significantly higher compared to SWICOH.
Nevertheless, the correlation between FC and SW found in
the current study cannot be caused by volume conduction,
because in addition to MSC and SL, the correlation was
also found with ICOH, which minimizes the effects of
volume conduction.

Magnitude-squared coherence is a linear measure that is
calculated in a frequency domain and SL is a nonlinear
measure that is calculated in a time domain. Although these
measures are fundamentally different, there were no statistically
significant differences between SWMSC and SWSL. This result
shows that for robust network analysis applications, MSC
can be selected instead of SL, because MSC is easier and
faster to compute.

In the current study, SWMSC and SWSL were mostly
slightly higher than 1 (Figure 1), indicating these networks
have better or similar small-world properties compared to
the random networks generated from original networks.
However, SWICOH was mostly below 1 (Figure 1), indicating
these networks have less small-world properties compared
to a random network. These results are in line with
previous studies: SW has been found to be above 1 for FC
measures that are more influenced by volume conduction
(Micheloyannis et al., 2006; Wang et al., 2014; Zhang
et al., 2018) and slightly below 1 for measures that are
less influenced by volume conduction (Hou et al., 2018;
Zheng et al., 2018). Previous studies have found that EEG
functional networks are small-world networks, but the
current study shows that these results may be influenced by
volume conduction, since functional ICOH networks in the
current study did not show small-world properties during
eyes-closed resting state.

Most studies that compare two groups of subjects, obtain
values above 1 for SW. Since those metrics are obtained
by comparing original networks to random networks,
decrease in those values is generally interpreted as a
more random network structure (Rubinov et al., 2009;
Zhang et al., 2018; Sun et al., 2019). In the current study
we showed that although decrease in SWMSC and SWSL

can be interpreted as a more random network structure
(Figures 3A,B), decrease in SWICOH resulted in a less
random network structure (Figure 3C). Therefore, the

decrease in SW does not necessarily interpret into a more
random network structure, although such result can be
concluded mathematically in case of certain measures.
These results strengthen the argument to calculate ICOH
in addition to MSC or SL.

The negative correlation obtained in the current study
increased between graph densities 10 ... 25% and was more
stable for graph densities 30 ... 50% (Figure 2). As mean
FC was constant for all graph densities, this result could be
more influenced by the dependence of SW on graph density.
Still, one has to take into account that the dependence of
SW on graph density differs for each individual network.
Generally, denser networks naturally have smaller values
of SW (Bassett and Bullmore, 2017). However, the same
conclusion did not apply to the results of ICOH in the
current study (Figure 1). To address the limitation of SW
depending on the graph density, the small-world propensity
(SWP) was introduced by Muldoon et al. (2016). However, in
the current study, we chose a more common approach to
calculate SW for a range of graph densities (Figure 2) to
investigate the correlation between FC and SW depending on
the graph density.

In the current study, functional networks of healthy
subjects in resting state was analyzed. Further studies
could also investigate the relationship between FC and
SW in subjects with MDD, AD, and schizophrenia.
Based on the network analysis in studies by other
authors, the relationship between FC and SW found
in the current study may be disrupted in AD and
schizophrenia, but not in MDD.

Previous studies have shown that different physiologic
states can be described with different network structure
(Bartsch et al., 2015) and FC (Lin et al., 2016) within
organ systems, indicating an association between network
topology, FC, and physiologic function. In the more focused
perspectives of the brain, the hypothesis of a compensatory
mechanism between FC and SW suggested in the current
study seems to be consistent with these findings in that in
healthy subjects FC and SW underlying different physiologic
states may well alter in an interrelated manner. This
concept should be made subject of further research within
a broader framework incorporating functional integration and
segregation, too.

CONCLUSION

To the best of our knowledge, current study is the first
to analyze the relationship between resting state EEG FC
and SW. We report a negative correlation between FC
and small-world organization in alpha frequency band
for healthy subjects. We interpret these results as the
manifestation of a compensational mechanism of the
healthy brain, where lower small-world organization is
compensated by higher connectivity strength. The finding
is expected to be useful in the differentiation of mental and
neurological disorders.
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