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Biological processes are dynamic. As a result, temporal analyses are necessary to fully
understand the complex interactions that occurs within these systems. One example of
a multifaceted biological process is restitution: the initial step in complex wound repair.
Restitution is a dynamic process that depends on an elegant orchestration between
damaged cells and their intact neighbors. Such orchestration enables the quick repair
of the damaged area, which is essential to preserve epithelial integrity and prevent
further injury. High quality dynamic data of the cellular and molecular events that make
up the gastric restitution process has been documented. However, comprehensive
dynamic models that connect all relevant molecular interactions to cellular behaviors
are challenging to construct and experimentally validate. In order to efficiently provide
feedback to ongoing experimental work, we have integrated dynamical modeling and
machine learning to efficiently extract data-driven insights without incorporating detailed
mechanisms. Dynamical models convert time course data into a set of static features,
which are then subjected to machine learning analysis. The integrated analysis provides
data-driven insights into how repair might be regulated in individual gastric organoids.
We have provided a “proof of concept” of how such an analysis pipeline can be used to
analyze any temporal dataset and provide timely data-driven insights.
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INTRODUCTION

Temporal change is an essential feature of biological systems. An example of this is phenomena is
found within the gastric epithelium. The epithelium closely regulates tissue integrity and rapidly
responds to insult. When small injury or apoptosis occurs within the epithelial layer, dead or dying
cells depart from the epithelial layer and neighboring cells immediately repair the damaged site by
stimulating cell migration to close the gap (Xue et al., 2010; Xue et al., 2011; Aihara et al., 2013).
This rapid repair response, known as restitution, does not involve proliferation and is sufficient to
restore the epithelial barrier function (Ito et al., 1984; Lacy, 1995; Aihara et al., 2013; Aihara and
Montrose, 2014). Restitution is a biologically important process to maintain epithelial integrity
and prevent further expanding injuries. Numerous studies have identified effectors necessary
for proper epithelial repair, including actin dynamics (Aihara et al., 2018). While fundamental
repair mechanisms have been identified, the details behind these epithelial signaling cascades and
sequences remain largely unclear.
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Evaluating the mechanism behind restitution in vivo has
proved difficult due to systemic limitations and limited tools to
manipulate and monitor repair. While prior in vitro studies have
identified potential pathways mediating repair, these findings
largely rely on cancer derived cell line models which differ from
the native tissue (Saeidnia et al., 2015). The introduction of the
novel in vitro organoid model has allowed for growth of non-
cancerous epithelial cells that contain cell types of the native
tissues (Mahe et al., 2013; Schumacher et al., 2015a; Engevik et al.,
2018). The organoid model has provided a three dimensional
primary cell culture system which resembles the normal gastric
epithelium, exhibiting similar gene expression patterns and
functions as the native tissue (Schumacher et al., 2015a; Engevik
et al., 2016; Aihara et al., 2018; Engevik et al., 2019). As a
reductionist gastric restitution model, organoids can provide
better insight to the innate epithelial cell response during damage
in real time (Aihara et al., 2018; Engevik et al., 2019; Hanyu
et al., 2019). In vitro organoid experimental methods produce
high quality data sets that require extensive analysis to reveal
underlying cellular events. As it is difficult to statistically compare
two sets of dynamical data, current analysis is typically performed
by comparing treatment groups at specific time points within the
data, or specific features of the data such as a peak value that can
be easily determined in each sample (Xue et al., 2010; Xue et al.,
2011; Paek et al., 2016; Aihara et al., 2018; Engevik et al., 2019).
The heterogeneity of organoids, which harbor multiple cell types,
also adds to the complexity of analysis. Furthermore, detailed
knowledge of the molecular control network is often unavailable
for many biological systems, which generates a challenge if novel
systems or pathways are studied. To address the above challenges,
we have developed a novel analytical pipeline that converts single
cell temporal microscopy data sets into data-driven, dynamic
models that are then followed up with machine learning analysis.
Here, we demonstrate the capability of this pipeline by using
gastric epithelial repair as one example.

We have previously established gastric organoids, grown
from epithelial stem cells of native mouse tissue, to investigate
the innate epithelial restitution response (Schumacher et al.,
2015a; Aihara et al., 2018; Engevik et al., 2018; Engevik et al.,
2019). Using time course two-photon confocal microscopy of
gastric organoids generated from human GFP-actin (HuGE)
transgenic mice, we demonstrated that actin assembly occurs
within the migrating cells neighboring the injured site, followed
by recruitment of myosin II to provide cell contractility, which
is regulated by RhoA/Rho associate kinase (ROCK) (Aihara
et al., 2018). Actomyosin dynamics are particularly important in
providing the force necessary to exfoliate the damaged cell away
from the epithelial layer and to allow the neighboring cells to
cover the denuded area (Stricker et al., 2010; Levayer and Lecuit,
2012; Aihara et al., 2018). While several actomyosin dynamic
components and effectors have been identified as necessary for
the role of actin in repair, the overall molecular mechanism
remains unknown. Several studies have examined the molecular
mechanisms of epithelial repair using computational models
(Sherratt and Murray, 1990; Dale et al., 1994; Wearing and
Sherratt, 2000; Tremel et al., 2009). Previously, we applied
experimental data to a computational model and elucidated

the role of force generated by actin dynamics during repair
(Aihara et al., 2018).

To further connect molecular level events with outward
cellular behaviors of this system, individual models were
constructed to describe each step of the repair process (actin
polymerization, dead cell movement and restitution) from
experimental values detailed in Aihara et al. (2018). Aihara et al.
(2018) applied a high power laser to gastric organoids, resulting
in the damage and death of a single cell within an organoid
(known as photodamage) (Section “Methods and Materials”).
During subsequent high resolution imaging of the organoid,
the role of actin was assessed over time by measuring actin
polymerization and depolymerization (based upon actin GFP
intensity) in neighboring cells. Additionally, measurements were
made of the damaged area (the size of the damaged area based
upon absence of GFP fluorescence in the damaged/dead cell),
and dead cell distance (based upon the movement of the dead
cell away from the damage site) (Figure 1B; Aihara et al., 2018).
Using these experiment-derived parameters (Aihara et al., 2018),
which summarize the dynamical characteristics of individual
gastric organoids, we assessed how different treatments affect
system dynamics. Random forest analysis of these data-derived
parameters made clear the dominant features that link the
molecular level events to the cellular level behaviors. Our analysis
provides deep insights on how the molecular and cellular events
control damage repair, which will move forward the development
of targeted therapeutics for the native tissue repair.

Since our pipeline can be applied to analyze individual time
course data sets to extract insights across various systems to
enhance our biological understanding, we expect that our analysis
pipeline can be a useful tool to provide efficient analysis and
promote effective interdisciplinary collaboration.

RESULTS

Extracting Cell-Specific Features From
Dynamical Data
Restitution is an intrinsic function in gastric epithelial cells and
generally involves the following events: (1) orderly reorganization
of cell-cell and cell-substratum contact to allow viable cells to
migrate from their site of origin, (2) cytoskeletal reorganization,
including the formation of lamellipodia to promote cell
movement, and (3) signal production to promote dead cell
exfoliation, viable cell migration and prevent cell death within
the viable cells (Aihara et al., 2017; Aihara et al., 2018).
All steps are essential to restore epithelial barrier function
(Figures 1A,B). Time course microscopy of high power laser
induced single cell damage and subsequent repair suggests that
the timing of these events is integral to the overall temporal
trajectory for each measurement: actin GFP-intensity, dead cell
distance, and damaged area (Figures 1C–E). In GFP-actin gastric
organoid experiments, the time at which actin reaches minimal
fluorescence (Tmin), indicates the elimination of actin within
the damaged cell and the initial time where F-actin begins to
accumulate within the neighboring cells (Figure 1C). This initial
decay is controlled by the parameter (Actdepoly2). The time at
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FIGURE 1 | Simplified framework to recapture gastric repair dynamics. (A) Illustration of gastric epithelial repair response to single cell damage in vivo. Following cell
death or damage, intact cells neighboring the damaged cell undergo actin polymerization which promotes migration toward the area of damage in order to fill the
denuded area and assist in exfoliating the damaged cell away from the epithelium. Through this actin polymerization and subsequent migration, the neighboring cells
ensure there are no denuded areas and restore continuity to the epithelial barrier. In vivo, these steps are important to promote epithelial homeostasis and prevent
further damage to the epithelium and underlying mucosal layers. (B) Representative image (above) and illustration (below) of epithelial repair response to single cell
damage in vitro in gastric organoids. Following single cell damage by high power laser (known as photodamage), the damaged cell (above; indicated by yellow
dashed circle and arrow) loses GFP-fluorescence while intact neighboring cells show increased GFP-actin in green (indicating actin polymerization) in the lateral
region closest to the damage site. The neighboring cells migrate and fill in the damage area, followed by the exfoliation of the damaged cell toward the lumen (dead
cell detachment). This results in actin depolymerization and ultimately a restored epithelial barrier function. (C) Temporal trajectory of actin following damage
(t = 0 min), actin first begins to degrade to a minimum where it then accumulates to a maximum level (actin polymerization) before degrading to a steady state (actin
depolymerization). Tmin and Tmax indicate the time at which actin reaches the minimum and maximum values, respectively. (D) Temporal trajectory of the dead cell
following damage (t = 0). The cell begins to move away at a constant rate before detaching from its neighboring cells; following detachment, the dead cell rapidly
moves to a maximum distance from the damage site. Tdetach indicates the time of detachment. (E) Temporal trajectory of the damaged area following damage
(t = 0). Following single cell damage, the maximum damage size is reached at t = 0 and decreases in size overtime indicating repair.

which actin reaches peak fluorescence (Tmax) determines when
actin begins to contract, assuming that F-actin dissociates into
G-actin at this point while the sustained increase of fluorescence
likely occurs due to cellular contraction (Figure 1C). The increase
of actin to its maximum is controlled by the parameter Actpoly.
The decrease of actin to its steady state (ActSS) is controlled by

the parameter Actdepoly2. During the repair process, dead cell
exfoliation occurs following detachment from the neighboring
cells (Tdetach, Figure 1D), where upon the damaged cell moves
rapidly to a maximal distance (dead cell distance, DCDmax)
from the monolayer that contains all the viable cells. The rate
controlling this movement is defined as krun. Additionally, the
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damaged area is repaired in a pattern that follows an exponential
decay curve controlled by the parameter Trepair (Figure 1E).

Due to the heterogeneous nature of the cells within gastric
organoids, which reflect the gastric epithelium, each experiment
results in a different time dependent trajectory for the three
characteristics described above. To properly align these cellular
and molecular events into a time dependent chain of events, we
chose to use a hybrid model (section “Methods and Materials”).
The hybrid model best describes the dynamics of each event as
the repair process involves continuous time dependent changes
and discrete timing events (Bartocci and Lio, 2016). Hence, these
dynamical models decompose the time dependent microscopy
data for each individual experiment into a collection of cell-
specific features which describe the dynamics observed as a single
train of events for the cell under study.

Assembling Physiological Repair Data
Within a Single Dynamical Framework
Following the development of the data-driven models, we tested
whether this modeling framework could recapture the temporal
dynamics of gastric repair within control experiments. Both
the model and data indicated that actin dynamics undergo a

three-stage response to cellular damage: actin polymerization
and depolymerization (actin-GFP intensity), decrease of damage
area (damaged area), and exfoliation of the dead cell from the
epithelial monolayer (dead cell distance). In the initial stage,
actin within the damaged cell diminishes (indicated by loss of
GFP fluorescence, Figure 1B) at an unknown rate before it
reaches a minimal level. This rate is unknown as this rapid event
cannot be captured following damage due to the imaging time
course. Once the minimal level is reached, actin polymerization
increases in the neighboring cells followed by these neighboring
cells migrating to cover the damage area. During this set of
events, actin polymerization arrives at a maximal (peak) level.
Following its peak, actin decreases (actin depolymerization)
until it reaches steady state. Using our model, we simulated
the actin trajectory at a single cell level for more than 20
experiments (blue dashed lines Figure 2A and Table 1). The
simulated dynamics agreed reasonably well with the measured
actin levels (blue dots Figure 2A) and recaptured all three stages
of actin’s response to damage (actin polymerization, peak, and
actin depolymerization). Simulating the average actin dynamics
(black line Figure 2A) showed that the average model simulation
fell within the region bounded by the experimentally observed
actin levels, indicating that the overall model fit was reasonable.

FIGURE 2 | Simple dynamical models recapture the gastric repair process in control and perturbed scenarios. (A–C) Temporal profiles of actin, damaged area, and
dead cell movement, respectively. Blue dots represent experimental data from control (untreated) organoids that have been previously reported in Aihara et al. (2018).
Blue dashed lines represent model simulations for individual organoid outcomes, and black lines represent the simulation of an average control cell. (D–F) Temporal
profiles of actin, damaged area, and dead cell movement in control (green), or treatment with Blebbistatin at high dosage (red) or low dosage (blue). Dots represent
data collected from the individual experiments in Aihara et al. (2018). Dashed lines represent model simulations and solid lines show the simulation of an average cell.
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TABLE 1 | Average parameter values and respective units from control organoid
experiments shown in Figures 2A–C.

Parameter Value (Mean ± SD) Units

ACtdepolyl 6.024 ± 3.557 min−1

Actdepoly2 0.616 ± 0.39 min−1

ACtpoly 0.191 ± 0.171 min−1

ACtmax 2.484 ± 0.944 RLU

ACtmin 0.696 ± 0.115 RLU

Actss 1.083 ± 0.168 RLU

DCDmax 10.507 ± 2.03 µm

Krepair 0.255 ± 0.08 µm2 min−1

Krun 0.462 ± 0.287 µm min−1

Kstay 0.035 ± 0.023 µm min−1

Tdetach 2.749 ± 1.134 Min

Tmax 5.534 ± 1.185 Min

Tmin 0.886 ± 0.726 Min

Experimental data indicated that repair of the damaged area,
as indicated by the decrease in damage size over time, is a
single-stage process that appears to follow an exponential decay
curve (blue dots, Figure 2B and Table 1). With our model, we
simulated the repair of the damaged area at a single cell level
for more than 20 experiments (blue dashed lines Figure 2B).
The simulated repair of the damaged area agreed reasonably well
with the experimentally observed repair (blue dots Figure 2B).
Furthermore, simulation of the average repair of the damaged
area (black curve Figure 2B) we observed that the overall model
fit was able to recapture the experimental observations.

In addition to actin dynamics and repair of the damaged area,
the experimental data also indicated that dead cell exfoliation
(dead cell distance) is a two-stage process whereupon the dead
cell is slowly moved away from the monolayer at a constant rate
and then at a specific time (Tdetach) the cell is fully detached and
the dead cell accelerates until it reaches steady state distance from
the damaged area (blue dots, Figure 2C and Table 1). Using our
model, we simulated the distance traveled in each experiment
(blue dashed lines, Figure 2C). The model was able to recapture
the initial constant velocity, acceleration and steady state of
the experimental observation. The average simulated dead cell
was well within the region bounded by the experimental results
indicating that the derived parameters were reasonable (black
line, Figure 2C).

The ability of our modeling framework to recapture these
key features of normal gastric repair suggests that the model
assumptions and the derived parameter values are reasonable.
With the affirmation that our model assumptions align
with the cellular events under normal conditions, we then
examined whether the same approach could be used to study
perturbation experiments.

Organization of the Perturbed Dynamics
Within the Dynamical Framework
For perturbation studies of the model, we chose a common
myosin inhibitor (Blebbistatin) which shows a clear dose
dependent response on the temporal dynamics of gastric repair

(Figures 2D–F; Aihara et al., 2018). Using the same data-
driven approach (Section “Methods and Materials”), we fit
single cell models for the control experimental group (green
dots Figures 2D–F), along with high dosage and low dosage
Blebbistatin experimental groups (red and blue dots, respectively,
Figures 2D–F). Our models faithfully recaptured the actin
dynamics, repair of damage, and dead cell distance of all three
treatment groups of control, high dosage Blebbistatin and low
dosage Blebbistatin (dashed lines, Figures 2D–F). As in the
control case, average cells (thick lines, Figures 2D–F) were well
within the regions bound by their respective data sets, indicating
that the derived parameters were within reason. The model
was also able to recapture the dose dependent response of the
Blebbistatin treatments. For instance, a low dose of Blebbistatin
causes a decrease in repair compared to control experiments,
which is further decreased by a higher dose of Blebbistatin.
This phenomenon was also observed in the maximal distance
reached by the dead cell. In concordance with Blebbistatin, the
computational framework was able to recapture the remaining
experimental data published by Aihara et al. (2018). As the model
was able to recapture such a wide array of experimental scenarios,
this method could be considered a solid framework to study
the gastric repair process in silico and additional analysis of the
derived parameters can offer mechanistic insights into the key
events that characterize the restitution process.

Chord Plotting Reveals the Dominant
Effect of the Perturbations
Following simulation for each treatment group, we aggregated
both the model derived and data-driven parameters to look
for any additional insight into the potential effect of various
inhibitors previously tested (Aihara et al., 2018) on the events
that control the gastric repair process. For each treatment
group, the percent change between the model parameters of
the treatment and control experiments was calculated. The
parameters exhibiting the highest positive change and the
parameters values with the highest negative change were then
plotted on a chord plot (Figure 3), which connects each treatment
with the mechanistic properties they most strongly regulate
(increases indicated by green arrows; decreases indicated by
red arrows). By plotting interactions in this form, we provide
a concise picture into the effect of each inhibitor during
restitution. For instance, NSC23766 (a selective Rac1 inhibitor)
causes a large increase in krepair (green arrow, Figure 3A),
indicating that the treatment causes an increase in the rate
of damage repair when compared to controls. In contrast,
ML-141 (a potent, selective inhibitor of Rho family GTPase
cdc42) decreases the rate of gastric repair, while also increasing
Tmax, (green arrow, Figure 3A), indicating that the rate of
gastric repair may be associated with an increase in Tmax
compared to controls. ML-141 has been shown to decrease actin
polymerization in airway epithelial cells (Ferru-Clement et al.,
2015). Furthermore, we observe that both dosages of Blebbistatin
affect the same mechanistic control parameters (kstay and Tdetach),
consistent with the dose dependent response of this treatment
shown in Figures 2D–F.
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FIGURE 3 | Data-driven analysis provides insights into the control of gastric repair. Arrows originate from the drugs (pink boxes) and point to a feature of the model
(blue boxes). (A) Chord plot of the maximal interactions of each drug treatment to model parameters. Each drug can inhibit or activate a model feature. A green
arrow represents the parameter that is most activated by a drug. A red arrow indicates the feature that is most inhibited by a drug. (B) Chord plot of the maximal
enhancement or inhibition of each model feature by any drug treatment. Each model feature (pink boxes) can be inhibited or activated by a drug treatment (blue
boxes). A red arrow indicates that the treatment has the highest inhibition of the model feature when compared to all other treatments. A green arrow indicates that
the treatment has the highest activation of a model feature when compared to all other treatments. It is important to note that there are differences in the parameters
and treatments displayed when comparing figures, (A,B). In (A), not all parameters are shown as some might not be greatly affected by the treatments being
examined; whereas in (B), not all treatments are shown as they might not have large effects on the model parameters when compared to the rest of the treatments.

We also plotted the overall maximum enhancement or
inhibition of each model parameter (Figure 3B) compared to
treatment. Each parameter contains two inputs: the maximum
enhancement effect and the maximum inhibitory effect. Note
that Tmax and kstay only have a single input as all treatment
groups were shown to increase Tmax or decrease (kstay) control
parameters. From this plot, we can deduce which drugs have the
greatest overall effect (compared to all other drugs) on any of the
model’s features. For instance, AMD3100 (a CXCR4 inhibitor)
showed the largest overall enhancement effect on Tdetach (the
parameter controlling the time at which the dead cell loses
connection with its neighbors). Additionally, AMD3100 had the
largest inhibitory effect compared to all other drugs on Actdepoly1
(parameter for actin depolymerization). Based on this data and
our observations of the effects of drugs on individual parameters,
we are able to observe which treatments have the most profound
effects on the overall repair mechanism. Interestingly, NSC23766
caused the most changes to the model features, with a total of
7 connections, indicating that NSC23766 might have the most
profound effect on the overall system compared to all other
treatments in the plot. On the basis of such results, we can then
identify the role of Rac1 (inhibited by NSC23766) as a promising
target during repair for future studies.

Random Forest Reveals the Control of
Damage Repair and Dead Cell
Exfoliation by Actin
The previous analysis demonstrated the effect of individual
treatment on actin accumulation, repair of the damaged area,

and dead cell exfoliation, but does not address the potential
connections between these processes. To investigate how the
events can be connected, we then analyzed whether the molecular
level events (actin polymerization and depolymerization) might
be associated with the cellular level behaviors (damage repair,
cell exfoliation). While prior analysis separated experiments
into groups based upon treatment scenarios, we carried
out a pooled study whereupon all experiments (treated and
controls) are combined into a single population which exhibited
heterogeneous actin dynamics. To assess the correlation amongst
the model parameters we performed a principal component
analysis (PCA). A biplot of the analysis (Figure 4A) points to
a multitude of correlations between the parameters controlling
actin dynamics and parameters controlling cellular behaviors. In
particular, there is a strong positive correlation between Tmax
and Tdetach. Additionally, there were strong negative correlations
between Tmax and parameters controlling dead cell exfoliation
(krun, DCDmax) and the parameter controlling the repair of the
damaged site (krepair).

The relationship between the parameters which describe actin
dynamics and the rate at which the damaged site is repaired were
further assessed using a tree-based regression method (Random
Forest regression). An ensemble of regression trees was built with
the data-driven parameters and model derived rates for actin,
which we then used to predict the corresponding restitution rates
from both a training and validation cohort (section “Methods
and Materials”). The random forest performed well in predicting
restitution rates for both training and validation cohorts (R2

Training = 0.93 and R2 Validation = 0.34) indicating a robust
statistical model which could be used for future study. Due to
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FIGURE 4 | Machine learning links timing events between molecular and cellular level events. (A) PCA analysis biplot of the model parameters. Dots represent
samples plotted based on the first two principal components. Red arrows represent the loadings from the PCA. (B–E) Bar plots depicting Random Tree variable
importance analysis for the indicated parameters: (B) repair rate (krepair ), (C) detachment time (Tdetach), (D) rate at which the dead cell is pushed out by its neighbors
(krun), and (E) maximum dead cell distance (DCDmax ). Axis is scaled 0 – 100, where 100 represents parameters that are highly significant in the random forest model
and 0 represents insignificant parameters.

the strength of the Random Forest Regression, we performed a
variable importance analysis to identify which actin parameters
made significant contributions to the statistical model. This
analysis revealed that Tmax (the time at which actin reaches its
peak) plays a significant role in determining the rate of repair
(Figure 4B), suggesting a potential mechanistic link between the
two processes. The random forest analysis was then repeated
for each of the parameters describing dead cell extrusion (kstay,
Tdetach, krun, and DCDmax). Interestingly, Tmax was revealed
to be important for Tdetach, krun and DCDmax (Figures 4C–
E); indicating that the time of peak actin accumulation is a
strong predictor for the dynamics of the cell exfoliation process.
Hence without explicitly incorporating any knowledge, our data-
driven analysis reveals a critical role for actin polymerization
timing in determining the cellular level behaviors involved in the
gastric repair process.

DISCUSSION

In this work, we have developed a computational pipeline
that can efficiently examine key factors involved in in vitro
restitution using temporal data collected from time lapse
confocal microscopy of gastric organoids (Aihara et al., 2018).
Our approach reveals that the timing of actin cytoskeleton

rearrangement greatly influences the repair of the damaged area,
as well as the exfoliation of the damaged cell. We predict that
these functions are critical for the healing process and have
implications in situations, such as Helicobacter pylori infection,
where wound healing is delayed (Aihara et al., 2014; Hanyu
et al., 2019). In vitro organoid studies in epithelial repair (Aihara
et al., 2018; Engevik et al., 2019; Engevik et al., 2020) have been
demonstrated to be similar to native tissue as they demonstrate
(1) importance of actin dynamics in cells neighboring damage
sites (Aihara et al., 2018), (2) increased calcium mobilization,
which is dependent upon trefoil factor 2 signaling during repair
(Xue et al., 2010), and (3) role of sodium hydrogen exchanger 2
downstream of the trefoil factor 2 pathway in repair (Xue et al.,
2011). These in vitro studies identified features intrinsic to the
epithelium and is reflective in native tissue. Utilization of data sets
from organoid experiments, which exhibit similar responses to
infection and damage as native tissue (Schumacher et al., 2015a,b;
Aihara et al., 2018), provides a reductionist platform to study
repair at the cellular level with the potential to better translate
to in vivo events.

Current methods of analysis for epithelial repair, such
as exponential analysis of the damaged site or comparison
between specific time points, offer statistical differences between
experimental groups (Aihara et al., 2018) and indicate important
aspects of repair. However, these techniques have not taken full
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advantage of all the temporal data or revealed the underlying
heterogeneity between individual cells. On the other hand,
though mechanistic modeling is suitable for dynamical data sets
and numerous mathematical models of varying complexity have
indeed provided valuable insights on epithelial repair and/or
wound repair (Dale et al., 1994; Wearing and Sherratt, 2000), the
development of these models often requires significant amount of
time and resource.

To facilitate theory-experiment collaboration with timely
feedbacks, we have proposed to integrate simple dynamical
models with following up machine learning analysis. This
approach allowed us to utilize the entire data set while
incorporating minimal assumptions (time dependent behaviors
for each process and that all processes are independent) about
each process. By using this data-driven approach, the model
parameters are derived directly for each individual cell. In doing
so, each cell can be encoded as a group of dynamic features that
have been extracted directly from data and are associated with
each other during analysis. This method decomposes the time
course data into static features which are suitable for downstream
analysis. Machine learning algorithms such as random forest
regression can then be used to compare differences between
individual cells and reveal what features are vital for the gastric
restitution process. This combination provides the foundation
to look further into the cellular and molecular events essential
for proper repair.

Biological systems are very complex and proper
understanding of them is beyond the capability of any single
method, and we believe the new area of systems biology calls
for the synergistic integration of all available tools. In our
example we have shown that a proper combination of real time
microscope, cutting edge organoid culture, dynamical modeling,
and machine learning can produce efficient insights on a new
biological system. We believe that such combination can be
applicable to any biological systems and will facilitate deep
understanding of them.

MATERIALS AND METHODS

Experimental Data Acquisition
The experimental data used for this study has previously been
published (Aihara et al., 2018). Gastric organoids were generated
from HuGE (Human GFP-Actin Expressing) transgenic mice as
previously described (Schumacher et al., 2015a; Aihara et al.,
2018). Using a two-photon confocal microscope (Zeiss LSM 510
NLO), images of gastric organoid nuclei (Hoechst 33342; Ti-
Sa excitation 730 nm, emission 435–485 nm) and actin (GFP;
excitation 488 nm, emission 500–550 nm) were collected (Aihara
et al., 2018). After collecting a set of control images, a small
region (∼5 µm2) of a cell within the gastric organoid was
repetitively scanned for 2–3 s at high laser power resulting in
single cell damage (photodamage) (Aihara et al., 2018). For
inhibitory experiments, gastric organoids were incubated with
drugs at least 1 h prior to experiments: AMD3100 (1 µM,
Sigma), U73122 (10 µM, Enzo life sciences), ML7 (10 µM,
Calbiochem), Blebbistatin (20 µM or 10 µM, Sigma), NSC23766

(50 µM, Cayman), PF-562271 (1 µM, gift from Dr. James E.
Casanova, Univ Virginia), ML141 (20 µM, Calbiochem), and
Y27632 (20 µM, Enzo Life Sciences). The parameters measured
over time from the collected gastric organoid images include:
actin polymerization based upon GFP intensity (Aihara et al.,
2018; Hanyu et al., 2019), size of damage area (Aihara et al., 2018;
Engevik et al., 2019; Hanyu et al., 2019; Engevik et al., 2020), and
dead cell distance based upon movement of damage cell nuclei
away from the site of damage (Aihara et al., 2018; Engevik et al.,
2019; Hanyu et al., 2019). The damage-repair cycle was measured
once per gastric organoid, and outcomes of at least four different
gastric organoids were compiled for each experiment.

Model Development
To recapture each of the experimentally observed features we
use a collection of piecewise linear ordinary differential equations
(ODE). Each feature is modeled as an independent process and is
controlled by a single ODE.

Actin Model
dAct
dt
= Actpoly ∗ (Actmax − Act) − Actdepoly2 ∗

(Act − ActSS) − Actdepoly1 ∗ (Act − Actmin)

Where Actpoly represents the rate of actin polymerization,
which is only on between Actmax the maximum value of actin,
Actdepoly2 the rate at which actin degrades following the actin
peak, ActSS the steady state that actin degrades to. Actmin is the
minimal actin level for each cell andActdepoly1 is the rate that actin
degrades to Actmin. Rate constants are turned on or off dependent
on certain timing events with: Actdepoly1 on between t = 0 and
t = Tmin; Actpoly on between t = Tmin and t = Tmax and Actdepoly1
on between t = Tmax and the end of the simulation.

Damaged Area Model

dDA
dt
= − krepair ∗ DA

Where krepair represents the rate of repair of the damaged area.

Dead Cell Distance
dDCD
dt

= kstay + krun ∗ (DCDmax − DCD)

Where kstay represents the background force acting on the
dead cell, krun is the rate at which the dead cell is pushed out by
neighboring cells and DCDmax is the maximum distance traveled
by the dead cell. krun is turned on when the dead cell loses
connection with its neighboring cells (Tdetach).

Model Parameterization
Parameters controlling the timing events (Tmax, Tmin,
and Tdetach) along with Actmin and ActSS were extracted
directly from the data for individual organoids in
all treatment groups. To extract rate constants and
Actmax (assumed to be theoretical), the ODEs were first
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separated into different events and integrated with respect to
time. An evolutionary algorithm was then used to minimize the
sum of squares between model simulation for each experiment
from Aihara et al. (2018). This process was repeated for
each experiment, generating a cohort of parameter sets, each
representing an individual organoid.

Principal Component Analysis
To understand the potential relation among individual
experiments and correlation among derived model parameters in
an unsupervised approach, we performed a Principal Component
Analysis (PCA). All of the derived parameters were considered
and scaled prior to analysis. The PCA was performed using the
PCA function within the scikit-learn package.

Random Forest Analysis
To understand how the parameters that control actin influence
the cellular behaviors (Dead Cell Movement, Repair) we used
Random Forest regression, an ensemble tree based regression
method. This method was chosen as it does not require
knowledge of how the predictors should be combined. The actin
parameters for all groups (treatment and controls) were used as
predictors while the parameters controlling cell behaviors (krepair ,
Tdetach, kstay, krun, and DCDmax) were used as response variables.
The data was then randomly split into Training and Validation
sets and the Random Forest model was built using the default
settings contained within the scikit-learn package. A variable
importance analysis was performed to assess the importance
of each predictor (parameters controlling actin dynamics) on
the response variables (parameters controlling damage repair
or cell exfoliation). This was done using the default calculation
given within the scikit-learn package, which assesses the Gini
importance of each predictor. The importance values were then
scaled to the maximal importance and compared.

Packages Used
All ordinary differential equations were implemented in Python
and solved using ODEint from the scipy package1. Chord plots
were generated using Circlize (Gu et al., 2014) implemented in R2.
Random forest regression was done using the standard package
implemented in scikit-learn3.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this
article will be made available from the authors upon
request.

AUTHOR CONTRIBUTIONS

RB, KE, MM, EA, and TZ conceived and designed the research.
RB, KE, EA, and TZ performed the experiments and analyzed
the data. All authors edited and revised the manuscript. MM,
EA, and TZ obtained research funding for experiments and
computational modeling.

FUNDING

This work was supported by the National Institutes of Health
(NIH) grant R01DK102551 (MM, EA), F31DK115126 (KE),
R21CA227379 (TZ), and Ryuji Ueno Award co-sponsored by the
S&R Foundation and American Physiological Society (EA).

1 https://www.scipy.org/
2 https://www.r-project.org/
3 https://scikit-learn.org/stable/

REFERENCES
Aihara, E., Closson, C., Matthis, A. L., Schumacher, M. A., Engevik, A. C., Zavros,

Y., et al. (2014). Motility and chemotaxis mediate the preferential colonization
of gastric injury sites by Helicobacter pylori. PLoS Pathogens 10:e1004275. doi:
10.1371/journal.ppat.1004275

Aihara, E., Engevik, K. A., and Montrose, M. H. (2017). Trefoil factor peptides
and gastrointestinal function. Annu. Rev. Physiol. 79, 357–380. doi: 10.1146/
annurev-physiol-021115-105447

Aihara, E., Hentz, C. L., Korman, A. M., Perry, N. P., Prasad, V., Shull, G. E., et al.
(2013). In vivo epithelial wound repair requires mobilization of endogenous
intracellular and extracellular calcium. J. Biol. Chem. 288, 33585–33597. doi:
10.1074/jbc.m113.488098

Aihara, E., Medina-Candelaria, N. M., Hanyu, H., Matthis, A. L., Engevik, K. A.,
Gurniak, C. B., et al. (2018). Cell injury triggers actin polymerization to initiate
epithelial restitution. J. Cell Sci. 131:jcs216317. doi: 10.1242/jcs.216317

Aihara, E., and Montrose, M. H. (2014). Importance of Ca(2+) in gastric epithelial
restitution-new views revealed by real-time in vivo measurements. Curr. Opin.
Pharmacol. 19, 76–83. doi: 10.1016/j.coph.2014.07.012

Bartocci, E., and Lio, P. (2016). Computational modeling, formal analysis,
and tools for systems biology. PLoS Comput. Biol. 12:e1004591. doi:
10.1371/journal.pcbi.1004591 doi: 10.1371/journal.pcbi.1004591

Dale, P. D., Maini, P. K., and Sherratt, J. A. (1994). Mathematical modeling of
corneal epithelial wound healing. Math. Biosci. 124, 127–147. doi: 10.1016/
0025-5564(94)90040-x

Engevik, A. C., Feng, R., Choi, E., White, S., Bertaux-Skeirik, N., Li, J., et al. (2016).
The development of spasmolytic polypeptide/tff2-expressing metaplasia (spem)
during gastric repair is absent in the aged stomach. Cell Mol. Gastroenterol.
Hepatol. 2, 605–624. doi: 10.1016/j.jcmgh.2016.05.004

Engevik, K. A., Hanyu, H., Matthis, A. L., Zhang, T., Frey, M. R., Oshima, Y., et al.
(2019). Trefoil factor 2 activation of CXCR4 requires calcium mobilization to
drive epithelial repair in gastric organoids. J. Physiol. 597, 2673–2690. doi:
10.1113/jp277259

Engevik, K. A., Karns, R. A., Oshima, Y., and Montrose, M. H. (2020).
Multiple calcium sources are required for intracellular calcium
mobilization during gastric organoid epithelial repair. Physiol. Rep.
8:e14384.

Engevik, K. A., Matthis, A. L., Montrose, M. H., and Aihara, E. (2018). Organoids
as a model to study infectious disease. Methods Mol. Biol. 1734, 71–81. doi:
10.1007/978-1-4939-7604-1_8

Ferru-Clement, R., Fresquet, F., Norez, C., Metaye, T., Becq, F., Kitzis, A., et al.
(2015). Involvement of the Cdc42 pathway in CFTR post-translational turnover
and in its plasma membrane stability in airway epithelial cells. PLoS One
10:e0118943. doi: 10.1371/journal.pone.0118943

Gu, Z., Gu, L., Eils, R., Schlesner, M., and Brors, B. (2014). Circlize implements
and enhances circular visualization in R. Bioinformatics 30, 2811–2812. doi:
10.1093/bioinformatics/btu393

Hanyu, H., Engevik, K. A., Matthis, A. L., Ottemann, K. M., Montrose, M. H., and
Aihara, E. (2019). Helicobacter pylori uses the TlpB receptor to sense sites of
gastric injury. Infect. Immun. 87, e00202–e00219.

Frontiers in Physiology | www.frontiersin.org 9 August 2020 | Volume 11 | Article 1012

https://www.scipy.org/
https://www.r-project.org/
https://scikit-learn.org/stable/
https://doi.org/10.1371/journal.ppat.1004275
https://doi.org/10.1371/journal.ppat.1004275
https://doi.org/10.1146/annurev-physiol-021115-105447
https://doi.org/10.1146/annurev-physiol-021115-105447
https://doi.org/10.1074/jbc.m113.488098
https://doi.org/10.1074/jbc.m113.488098
https://doi.org/10.1242/jcs.216317
https://doi.org/10.1016/j.coph.2014.07.012
https://doi.org/10.1371/journal.pcbi.1004591
https://doi.org/10.1016/0025-5564(94)90040-x
https://doi.org/10.1016/0025-5564(94)90040-x
https://doi.org/10.1016/j.jcmgh.2016.05.004
https://doi.org/10.1113/jp277259
https://doi.org/10.1113/jp277259
https://doi.org/10.1007/978-1-4939-7604-1_8
https://doi.org/10.1007/978-1-4939-7604-1_8
https://doi.org/10.1371/journal.pone.0118943
https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.1093/bioinformatics/btu393
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-01012 August 10, 2020 Time: 14:54 # 10

Ballweg et al. Modeling Temporal-Data by Machine Learning

Ito, S., Lacy, E., Rutten, M., Critchlow, J., and Silen, W. (1984). Rapid repair of
injured gastric mucosa. Scand. J. Gastroenterol. Suppl. 101, 87–95.

Lacy, E. R. (1995). Rapid epithelial restitution in the stomach: an updated
perspective. Scand. J. Gastroenterol. 30, 6–8. doi: 10.3109/00365529509090260

Levayer, R., and Lecuit, T. (2012). Biomechanical regulation of contractility: spatial
control and dynamics. Trends Cell Biol. 22, 61–81. doi: 10.1016/j.tcb.2011.
10.001

Mahe, M. M., Aihara, E., Schumacher, M. A., Zavros, Y., Montrose,
M. H., Helmrath, M. A., et al. (2013). Establishment of gastrointestinal
epithelial organoids. Curr. Protocols Mouse Biol. 3, 217–240. doi:
10.1002/9780470942390.mo130179

Paek, A. L., Liu, J. C., Loewer, A., Forrester, W. C., and Lahav, G. (2016). Cell-
to-cell variation in p53 dynamics leads to fractional killing. Cell 165, 631–642.
doi: 10.1016/j.cell.2016.03.025

Saeidnia, S., Manayi, A., and Abdollahi, M. (2015). From in vitro experiments to
in vivo and clinical studies; pros and cons. Curr. Drug. Discov. Technol. 12,
218–224. doi: 10.2174/1570163813666160114093140

Schumacher, M. A., Aihara, E., Feng, R., Engevik, A., Shroyer, N. F., Ottemann,
K. M., et al. (2015a). The use of murine-derived fundic organoids in studies
of gastric physiology. J. Physiol. 593, 1809–1827. doi: 10.1113/jphysiol.2014.
283028

Schumacher, M. A., Feng, R., Aihara, E., Engevik, A. C., Montrose, M. H.,
Ottemann, K. M., et al. (2015b). Helicobacter pylori-induced sonic hedgehog
expression is regulated by NFkappaB pathway activation: the use of a novel
in vitro model to study epithelial response to infection. Helicobacter 20, 19–28.
doi: 10.1111/hel.12152

Sherratt, J. A., and Murray, J. D. (1990). Models of epidermal wound healing. Proc.
R. Soc. Lond. B. 241, 29–36.

Stricker, J., Falzone, T., and Gardel, M. L. (2010). Mechanics of the F-actin
cytoskeleton. J. Biomech. 43, 9–14.

Tremel, A., Cai, A., Tirtaatmadja, N., Hughes, B., Stevens, G., Landman, K.,
et al. (2009). Cell migration and proliferation during monolayer formation and
wound healing. Chem. Eng. Sci. 64, 247–253. doi: 10.1016/j.ces.2008.10.008

Wearing, H. J., and Sherratt, J. A. (2000). Keratinocyte growth factor
signalling: a mathematical model of dermal–epidermal interaction in epidermal
wound healing. Math. Biosci. 165, 41–62. doi: 10.1016/s0025-5564(00)
00008-0

Xue, L., Aihara, E., Podolsky, D. K., Wang, T. C., and Montrose, M. H.
(2010). In vivo action of trefoil factor 2 (TFF2) to speed gastric repair is
independent of cyclooxygenase. Gut 59, 1184–1191. doi: 10.1136/gut.2009.20
5625

Xue, L., Aihara, E., Wang, T. C., and Montrose, M. H. (2011). Trefoil factor 2
requires Na/H exchanger 2 activity to enhance mouse gastric epithelial repair.
J. Biol. Chem. 286, 38375–38382. doi: 10.1074/jbc.m111.268219

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Ballweg, Engevik, Montrose, Aihara and Zhang. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Physiology | www.frontiersin.org 10 August 2020 | Volume 11 | Article 1012

https://doi.org/10.3109/00365529509090260
https://doi.org/10.1016/j.tcb.2011.10.001
https://doi.org/10.1016/j.tcb.2011.10.001
https://doi.org/10.1002/9780470942390.mo130179
https://doi.org/10.1002/9780470942390.mo130179
https://doi.org/10.1016/j.cell.2016.03.025
https://doi.org/10.2174/1570163813666160114093140
https://doi.org/10.1113/jphysiol.2014.283028
https://doi.org/10.1113/jphysiol.2014.283028
https://doi.org/10.1111/hel.12152
https://doi.org/10.1016/j.ces.2008.10.008
https://doi.org/10.1016/s0025-5564(00)00008-0
https://doi.org/10.1016/s0025-5564(00)00008-0
https://doi.org/10.1136/gut.2009.205625
https://doi.org/10.1136/gut.2009.205625
https://doi.org/10.1074/jbc.m111.268219
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

	Extracting Insights From Temporal Data by Integrating Dynamic Modeling and Machine Learning
	Introduction
	Results
	Extracting Cell-Specific Features From Dynamical Data
	Assembling Physiological Repair Data Within a Single Dynamical Framework
	Organization of the Perturbed Dynamics Within the Dynamical Framework
	Chord Plotting Reveals the Dominant Effect of the Perturbations
	Random Forest Reveals the Control of Damage Repair and Dead Cell Exfoliation by Actin

	Discussion
	Materials and Methods
	Experimental Data Acquisition
	Model Development
	Actin Model
	Damaged Area Model
	Dead Cell Distance
	Model Parameterization
	Principal Component Analysis
	Random Forest Analysis
	Packages Used

	Data Availability Statement
	Author Contributions
	Funding
	References


