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Obstructive sleep apnea syndrome (OSA) is described as an independent risk factor for
the onset and progression of type 2 diabetes (T2DM), as well as for insulin resistance
(IR). The mechanisms underlying these processes remain unclear. One of the proposed
molecular mechanism is based on the oxygen-sensitive α-subunit of hypoxia-inducible
factor 1 (HIF-1α)—a key regulator of oxygen metabolism. The concept that stabilization
of HIF-1α may influence T2DM and IR is supported by cell and animal models. Cell
culture studies revealed that both glucose uptake and glycolysis are regulated by
HIF-1α. Furthermore, animal models indicated that increased fasting glucose may be
caused by a single night with intermittent hypoxia. Moreover, in these models, hypoxia
time was correlated with IR. Mice models revealed that inhibition of HIF-1α protein
may downregulate fasting blood glucose and plasma insulin level. Administration of
superoxide dismutase mimetic resulted in inhibition of HIF-1α protein, catecholamines,
and chronic intermittent hypoxia-induced hypertension in a mice model. The hypothesis
that hypoxia is an independent risk factor for IR is strengthened by experimentally
confirmed improvement of insulin sensitivity among OSA patients treated with the
continuous positive airway pressure. Furthermore, recent studies suggest that HIF-
1α protein concentration is increased in individuals with OSA. In this literature review,
we summarize the current knowledge about HIF-1α in OSA in relation to the possible
pathways in which they contribute to metabolic disorders.

Keywords: insulin resistance, T2DM2, OSA, hypoxia, HIF-1α

Abbreviations: AHI, apnea–hypopnea index; CPAP, continuous positive air pressure; DFO, deferoxamine; DFU, diabetic
foot ulcers; DPP-4, dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1; GLUT-1, glucose transporter type 1; GLUT-2,
glucose transporter type 2; GLUT-4, glucose transporter type 4; HDF, human dermal fibroblasts; HIF, hypoxia-inducible
factors; HIF-1α, α-subunit of hypoxia-inducible factor 1; HIF-2α, α-subunit of hypoxia-inducible factor 2; IL-1, interleukin-
1; IR, insulin resistance; M-DDO, modified diallyl disulfide oxide; OSA, obstructive sleep apnea syndrome; PDH, pyruvate
dehydrogenase complex; PFD, pirfenidone; PI3K, phosphatidylinositol 3-kinase; PSG, polysomnography; SGLT2, sodium-
glucose cotransporter 2; T2DM, type 2 diabetes; TAC, tricarboxylic acid cycle; VEGF, vascular endothelial growth factor.
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INTRODUCTION

Obstructive sleep apnea (OSA) constitutes a rapidly growing
health problem in the modern world (Gabryelska and
Białasiewicz, 2020). Recent data suggest that the moderate
and severe form of this disorder affect between 6 and 17%
adults in the general population (Senaratna et al., 2017), while
some research suggest that its prevalence is up to 23% among
women and 49% among men (Heinzer et al., 2016). This trend
may be an effect of increasing frequency of overweight/obesity,
which is one of the strongest modifiable OSA risk factors.
Interestingly, this dependency is bidirectional: BMI increment
leads not only to higher OSA frequency but also to more severe
course of this disease, whereas frequent sleep disruptions result
in weight gain accompanied by poorer metabolic outcome
(Farr and Mantzoros, 2017).

Numerous studies revealed connection between OSA and
abnormal glucose metabolism [insulin resistance (IR), onset and
progression of type 2 diabetes (T2DM)] (Morgenstern et al.,
2014; Anothaisintawee et al., 2016). Additionally, Bulcun et al.
(2012) observed that progression from snoring and/or mild
OSA to severe OSA led to increased frequency of abnormal
glucose metabolism. Thus, they suggested regular examination
of possible glucose metabolism derangements among OSA
patients, especially those with severe OSA (Bulcun et al.,
2012). Moreover, they noted that subjective daytime sleepiness
indices were independent risk factors of IR and T2DM (Bulcun
et al., 2012). It is assumed that IR and T2DM in this group
are related to recurrent tissue hypoxia (Drager et al., 2013).
This hypothesis is supported by the observation that relatively
mild, but intermittent desaturations were independent risk
factors for metabolic dysfunction (Stamatakis et al., 2008;
Drager et al., 2013). OSA is linked not only with IR/T2DM
frequency but also with their severity, namely, OSA severity
positively correlated with deterioration of T2DM outcomes (Farr
and Mantzoros, 2017). Moreover, one of the most common
OSA complications/comorbidities is a metabolic syndrome.
Interestingly, a meta-analysis revealed that OSA predicted risk
of metabolic syndrome, independently of obesity (Mesarwi et al.,
2015; Qian et al., 2016); Coughlin et al. (2004) observed that
metabolic syndrome was over nine times more likely to be present
among OSA patients.

Although the relationship between OSA and metabolic
disorders is intensively analyzed nowadays and OSA is described
as an independent risk factor for onset and progression of T2DM
and IR, the mechanisms underlying these processes remain not
fully elucidated. Better understanding of this link may lead to a
more efficient diagnostic process, as well as facilitate personalized
treatment strategy (Mihaicuta et al., 2017; Carberry et al.,
2018). Possibly underlying mechanisms include hypoxia, sleep
fragmentation, inflammation, and oxidative stress, hormonal
changes or increased sympathetic tone (Mesarwi et al., 2015; Farr
and Mantzoros, 2017). In this minireview, we aim to analyze the
link between metabolic complications of OSA and hypoxia in
the context of hypoxia-inducible factors (HIFs). The importance
of this choice is highlighted by publications supporting the
central role of hypoxia in OSA-related comorbidities and possible

severity biomarkers among OSA patients (Vavougios et al., 2014,
2016; Natsios et al., 2016).

THE MOLECULAR BIOLOGY OF
HYPOXIA-INDUCIBLE FACTOR

Hypoxia-inducible factor is a heterodimer composed of two
units: α-subunit, which is oxygen-regulated, and constitutively
expressed β-subunit (Semenza et al., 1997), belonging to helix-
loop-helix Per/Arnt/Sim transcription factor family. To date,
three analogs of HIF α-subunits are known (HIF-1α, HIF-
2α—established regulatory factors; HIF-3α—uncertain role).
The first one, HIF-1α, is the best-examined HIF α-subunit.
Although its transcriptional level remains stable, HIF-1α protein
is highly unstable under normoxia conditions (Wang et al., 1995),
which entails the presence of oxygen-dependent degradation
domain. Its low half-life time under normoxia condition,
hydroxylation, and acetylation of oxygen-dependent degradation
domains lead to its association with pVHL E3 ligase complex
resulting in its degradation in the ubiquitin-proteasome pathway
(Ke and Costa, 2006; Badawi and Shi, 2017). Upon post-
translational stabilization under hypoxia conditions, active
dimeric protein complex is transported to nucleus, wherein it
binds hypoxia-response elements located in gene promoters,
affecting expression of over 100 genes (Semenza, 2001; Masoud
and Li, 2015; Wen et al., 2019; Gabryelska et al., 2020a). As
hypoxia occurs in tissues with high proliferation rate (Czarnecka
et al., 2019), HIF-1α is widely described in carcinogenesis
pertaining to upregulation of genes involved in angiogenesis as
well as proliferation.

On the other hand, under hypoxia, HIF is responsible for
reprogramming of metabolic pathways (Rankin et al., 2009).
HIF-1α is crucial for many physiological and pathological
processes by controlling expression of genes involved in glucose
metabolism, erythropoiesis/iron metabolism, vascular resistance,
and circadian rhythm. The impact of HIF-1α on glucose
metabolisms is described in relation to glucose uptake, glycolysis,
as well as regulation of the tricarboxylic acid cycle (TAC).
Genes mediating these processes, which are affected by HIF,
were collected in Table 1. Considering effects of intermittent
hypoxia present in OSA patients, one of the proposed molecular
mechanisms of IR and T2DM is based on HIF-1 molecule.

IMPACT OF HIF-1α ON IR AND T2DM IN
CELL CULTURE MODELS

Cell culture studies indicate that HIF-1α regulates both glucose
uptake and glycolytic enzyme activity, significantly enhancing
the process of glycolysis (Nagao et al., 2019). HIF-1α also
plays a role in the downregulation of TAC (Kim et al., 2006).
Overexpression of HIF-1α in cells under hypoxic conditions
makes them secrete more lactate (Sato et al., 2014). In three cell
types, HT1080 (fibrosarcoma), HepG2 (hepatoma), and HeLa
(cervical carcinoma), the induction of glucose transporter 1
(GLUT-1) mRNA was measured after exposure to an atmosphere
of 1% (hypoxia) and 21% (normoxia) oxygen for 16 h. Cells under

Frontiers in Physiology | www.frontiersin.org 2 September 2020 | Volume 11 | Article 1035

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-01035 September 8, 2020 Time: 15:2 # 3

Gabryelska et al. HIF-1α as Mediator of Glucose Metabolism Disruption

TABLE 1 | HIF-1 regulated genes involved in glucose metabolism.

Gene Abbreviation Source

Aldolase-A ALDA Semenza et al., 1996

Aldolase-C ALDC Semenza et al., 1996

Carbonic anhydrase-9 – Wykoff et al., 2000

Eldolase-1 ENO1 Semenza et al., 1996

Glucose transporter 1 GLUT1 Chen et al., 2001

Glucose transporter 3 GLUT3 Chen et al., 2001

Glucose transporter 4 GLUT4 Sakagami et al., 2014.

Glyceraldehyde phosphate
dehydrogenase

GAPDH Graven et al., 1999

Hexokinase 1 HK1 Soni and Padwad, 2017

Hexokinase 2 HK2 Soni and Padwad, 2017

Lactate dehydrogenase A LDHA Semenza et al., 1996

Pyruvate dehydrogenase kinase 1 PDK1 Kim et al., 2006

Pyruvate kinase M PKM Semenza et al., 1994

Phosphofructokinase L PFKL Semenza et al., 1994

Phosphoglycerate kinase 1 PGK1 Semenza et al., 1994

6-phosphofructo-2-
kinase/fructose-2,6-
bisphosphate-3

PFKFB3 Minchenko et al., 2002

Ras-Related Protein Rab-20 RAB20 Hackenbeck et al., 2011

Thioredoxin interacting protein TXNIP Li et al., 2015

hypoxia transcribed three- to fivefold more GLUT-1 mRNA
(Ebert et al., 1995). Influence of HIF-1α on activity of glycolytic
enzymes was confirmed in the following cell lines: HepG2,
HeLa, and L cells (mouse fibroblast). It was found that the
action of HIF-1α is mediated by two enzymes: phosphoglycerate
kinase-1 and lactate dehydrogenase A; HIF-1α binds to genes
encoding these glycolytic enzymes modulating their expression
(Firth et al., 1994; Weidemann and Johnson, 2008). Further
studies allowed for new glycolytic enzymes influenced by HIF-1α

to be determined, namely, hexokinase 1, hexokinase 2 (Soni and
Padwad, 2017), enolase 1, aldolase A, and phosphofructokinase L
(Iyer et al., 1998).

The effect of HIF-1α on GLUT-4 is similar to that on GLUT-
1 the glucose uptake is increased. Knockdown of HIF-1α causes
severe reduction in insulin-stimulated glucose uptake in cultured
skeletal muscle cells due to impaired mobilization of GLUT4 to
the plasma membrane (Sakagami et al., 2014).

The substrate for TAC is acetyl-CoA, which is produced
from the end product of glycolysis, pyruvate. This process is
called pyruvate decarboxylation and is mediated by the pyruvate
dehydrogenase (PDH) complex, whose first component enzyme
is PDH E1α. Pyruvate dehydrogenase kinase 1 can suppress
PDH E1α activity through its phosphorylation and in this
manner inhibit pyruvate decarboxylation (Nagao et al., 2019).
Kim et al. found that HIF-1 suppressed TAC, activating the gene
encoding pyruvate dehydrogenase kinase 1 (Kim et al., 2006;
Semenza, 2007).

Surprisingly, HIF-1α is stabilized not only in a hypoxemic
environment but also in normoxemia by interleukin-1 (IL-1) and
insulin (Stiehl et al., 2002; Sakagami et al., 2014). Expression
of HIF-1α protein in cultured skeletal muscle cells, even under
normoxemia, was increased by stimulation with insulin for
half an hour and remained elevated for at least the next 2 h

(Sakagami et al., 2014). In some cell lines, hypoxia activates
the phosphatidylinositol 3-kinase (PI3K)/Akt pathway (Chen
et al., 2001), which also involved insulin signaling. The PI3K/Akt
signaling pathway in HepG2 cells seems to be essential in HIF-1α

response to hypoxia, insulin, and IL-1 due to its role in HIF-1α

accumulation and stabilization (Stiehl et al., 2002).
Results from the Sato et al. (2014) research on mouse

insulinoma cells (MIN6) provides information that hypoxia
is responsible for transition of glucose metabolism from an
oxidative to a glycolytic pathway, which consequently leads to
decreased production of ATP in those cells. Investigating insulin
secretion by MIN6 cells, insulin level in these cells was similar
under either normoxic or hypoxic conditions. However, high
glucose stimulation of MIN6 cells caused threefold higher insulin
production under normoxia than under hypoxia. Furthermore,
insulin secretion of MIN6 cells slightly decreased in normoxia
compared to hypoxia in response to low glucose stimulation. The
same study provides the data suggesting that hypoxia can lead
to the downregulation of selected genes, which play important
roles in β-cell function: Foxa2, Mafa, Ins1, Neurod1, Pdx1, Wfs1,
Slc2a2, Kcnj11, and Ndufa5 in both mouse islets and MIN6 cells;
however, majority of the hypoxia-induced gene downregulations
in cells were not related to HIF-1α suppression, suggesting a
HIF-1α-autonomous mechanism (Sato et al., 2014).

Some studies showed that cells cultured in high glucose
concentration medium present with decreased levels of HIF-1α.
This led to a consensus that hyperglycemia was responsible for
decreased HIF-1α protein levels (Xiao et al., 2013; Cerychova
and Pavlinkova, 2018). Investigation of the effect of certain
glucose concentrations on HIF-1α expression in human dermal
fibroblasts (HDF) at normoxia and hypoxia showed that HIF-1α

expression depends on glucose concentration only in hypoxia.
At normoxia, no HIF-1α protein could be detected by Western
blot analysis of HDF cell extracts and exposure to high glucose
concentrations had no influence on HIF-1α expression. In
the cells under hypoxic conditions, expression was decreasing
gradually with the growing glucose concentrations of 5.5, 11,
25, and 30 mmol/l. Thus, the process of hypoxia-regulated
stabilization of HIF-1α interferes with exposure of HDFs to high
glucose concentrations (Catrina et al., 2004).

Although many studies support the thesis that hypoxia
accompanied by HIF-1α overexpression is harmful to
metabolism, there are also reports that suggest the beneficial
influence of HIF-1α stabilization on glucose and lipid metabolism
(Mackenzie et al., 2012; Jun et al., 2013; Mesarwi et al., 2015;
Thomas et al., 2017). The study of Görgens et al. (2017)
on human skeletal muscle cells reports that hypoxia in
combination with muscle activity improved glucose metabolism
and insulin activity via the HIF-1α and its influence on
RAB20 and TXNIP transcription. Rab20 is a member of the
Rab family of proteins, regulating intracellular trafficking
and vesicle formation (Hackenbeck et al., 2011). Deletion
of RAB20 impairs insulin-stimulated glucose uptake by
blocking the translocation of GLUT4 to the cell surface.
TXNIP encodes a thioredoxin-binding protein that is a
member of the alpha arrestin protein family, which, among
other functions, also regulates cellular metabolism (Shalev,
2014). TXNIP has been found to enhance insulin secretion
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and glucagon-like peptide 1 (GLP-1) signaling via regulation
of a microRNA (Alhawiti et al., 2017; Thielen and Shalev,
2018). Under conditions applied in the study of Görgens
et al. (2017) simulating physical exertion and hypoxia, RAB20
upregulation and TXNIP downregulation mediated by HIF-1α

were detected in the investigated tissues, which may explain
the beneficial influence in this case. These results suggest
that HIF-1α stabilization in the combined setting of muscle
contraction and hypoxia can counteract the development of IR
(Görgens et al., 2017).

IMPACT OF HIF-1α ON IR AND T2DM IN
ANIMAL MODELS

Glucagon-like peptide 1 is a hormone belonging to the incretin
group, which enhances glucose-stimulated insulin secretion in
β-cells (Carlessi et al., 2017) and suppresses glucagon secretion
(Seino et al., 2010). Dipeptidyl peptidase-4 (DPP-4) is a multi-
purpose protein, and one of its functions is the degradation of
GLP-1, which leads to a decrease in endogenous GLP-1 levels
(Deacon, 2019). Levels of active GLP-1 in T2DM are decreased
(Vilsbøll et al., 2001; Holst et al., 2011). It was shown on
a mice model that obesity reduces the level of active GLP-1
in peripheral circulation with increased level of DPP4, which
leads to impaired glucose tolerance. Hepatocyte-specific HIF-
1α knockout in mice blocked these changes induced by obesity
(Lee et al., 2019).

Similar findings were disclosed in adipose tissue. To assess
the influence of HIF-1α on the progression of obesity-
induced diabetes in adipocytes, HIF-1α mRNA expression and
GLP-1 levels were measured in epididymal adipose tissues
of mice with and without HIF-1α knockout. The findings
suggested that the knockout of HIF-1α in adipocytes increases
glucose tolerance by enhancing insulin secretion through
the increased GLP-1 levels (Kihira et al., 2014). The other
known action of GLP-1 is induction of the expansion of
β-cell mass responsible for insulin secretion, which results
in the augmentation of glucose-stimulated insulin secretion
(MacDonald et al., 2002). It was reported that deletion of HIF-1α

in adipose tissue also ameliorates IR, which implies that HIF-
1α could provide a novel potential therapeutic target for T2DM
(Jiang et al., 2011).

The hypoxia and HIF-1α stabilization are also involved in
the promotion of tissue inflammation, which further contributes
to IR and T2DM development. With the onset of obesity,
the adipose tissue becomes hypoxic (Ota et al., 2019). Various
mechanisms thereof were suggested. The oxygen demand is
increased due to uncoupled respiration in adipocytes (Lee
et al., 2014). The capillary density is decreased and the
perfusion of adipose tissue is reduced in obese patients,
which makes oxygen delivery difficult and leads to hypoxia
(Pasarica et al., 2009; Fujisaka et al., 2013). Furthermore,
in obesity the oxygen diffusion in adipose tissue is less
effective due to increased diameter of the cell (Lee et al.,
2014). In response to tissue hypoxia, HIF-1α stabilization
occurs. HIF-1α and NF-κB are involved in enhancing the

inflammatory pathways in adipocytes, which leads to IR in
the adipose tissue and other metabolic disturbances (Ota
et al., 2019). Hypoxia-induced adipose tissue inflammation
is characterized by the infiltration of classically activated
macrophages M1. Macrophage phenotype is affected by HIF-
1α-dependent and HIF-1α-independent pathways (Fujisaka et al.,
2013). Interestingly, in the study performed on mice exposed
to high-fat diet and the chronic intermittent hypoxia during
sleep, it was reported that resveratrol administration may
be beneficial in normalizing inflammatory process mediated
by HIF-1α, leading to restoration of insulin responsiveness
(Carreras et al., 2015).

Sacramento et al. (2016) exposed rats during sleep to
hypoxic cycles for 28 or 35 days while the control group slept
in normoxic conditions. After exposure to hypoxia, IR and
fasting insulinemia increased along with chronic intermittent
hypoxia duration, being significantly higher after exposure of
35 days. Additionally, chronic intermittent hypoxia decreased
phosphorylation and expression of insulin receptor in adipose
tissue and skeletal muscles, but not in the liver. Conversely,
expression of GLUT-2 in the liver of animals exposed to
chronic intermittent hypoxia was increased. Thirty-five days of
chronic intermittent hypoxia also caused changes in the HIF-1α

levels. HIF-1α upregulation was found in the liver cells, while
it was downregulated in skeletal muscles (Sacramento et al.,
2016). In another study, mice with partial deletion of HIF-
1α were exposed to hypoxia for 8 h daily for the period of
2 weeks. Regardless of the partial HIF-1α deletion, the IR was
increased in mice exposed to hypoxia in majority of tissues,
suggesting the limited role of HIF-1α in hypoxia-induced IR
(Thomas et al., 2017). Unexpectedly, in the same study, hypoxia
induced improvement of glucose tolerance. This might be caused
by muscle-specific stimulation of the AMPK-AS160/TBC1D1
signaling, which plays an important role in the regulation of
glucose uptake (Thomas et al., 2017).

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new
group of medications used for treating T2DM; their action
is based on reduction of glucose reabsorption, targeting the
proximal tubules of nephrons. Bessho et al. (2019) treated male
diabetic mice with SGLT2 inhibitor for 8–16 weeks. The results
showed reduced cortical tubular HIF-1α expression followed by
decreased tubular injury in mice. This implies SGLT2 inhibitors’
effect on diabetic mice (Bessho et al., 2019).

HIF-1α IN OSA PATIENTS; IR, T2DM, AND
ITS COMPLICATIONS

HIF-1α in OSA Patients
To date, only few studies evaluated HIF-1α expression in
OSA patients. Increased level of HIF-1α level in serum was
observed in OSA patients compared to controls, regardless of
measurement method (ELISA/western blot) (Lu et al., 2016;
Gabryelska et al., 2019). Lack of difference between evening
and morning concentrations suggests its chronic increasement
caused by intermittent nocturnal hypoxia among OSA patients
(Gabryelska et al., 2020c). Furthermore, one-night of CPAP
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FIGURE 1 | HIF-1α influence on glucose metabolism and insulin resistance. The HIF is composed of both oxygen-regulated α-subunit and constitutively expressed
β-subunit. HIF-1α protein is highly unstable under normoxia condition. Hypoxia leads to stabilization of HIF-1α. HIF-1α under hypoxic conditions causes several
changes in glucose metabolism. It increases glucose uptake via glucose transporters GLUT-1 and GLUT-4 to cells. In the cell, glucose is used in glycolysis, which is
also enhanced due to the modulated expression of glycolytic enzymes: phosphoglycerate kinase-1, hexokinase 1, hexokinase 2, aldolase A, enolase 1, and
phosphofructokinase L. The final product of glycolysis—pyruvate—is mostly converted to lactate instead of acetyl-CoA, due to the increased lactate dehydrogenase
A activity and pyruvate decarboxylation inhibition. Pyruvate dehydrogenase kinase 1 (PDK1) action leads to suppression of dehydrogenase complex (PDH) through
its phosphorylation and thereby inhibits pyruvate decarboxylation. Secondary to the decreased levels of acetyl-CoA and the action of PDK1, the TAC is
downregulated. At the same time, the increased expression of HIF-1α reduces GLUT-2 phosphorylation and its expression in skeletal muscles. This leads to
increased IR and fasting insulinemia after exposure to chronic hypoxia. To compensate for this metabolic imbalance, the expression of GLUT-2 in liver is increased.
The glucose tolerance can also be impaired by upregulation of HIF-1α, leading to GLP-1 downregulation, which causes reduction in glucose-stimulated insulin
secretion via pancreatic β-cells. The Figure 1 was prepared in Adobe Illustrator (Adobe Inc., San Jose, CA, United States).
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therapy seems to be not sufficient to affect the increased level of
the protein (Gabryelska et al., 2020b). On the other hand, Lu et al.
(2016) observed decreased level of HIF-1α following 2 months of
CPAP treatment compared to baseline results. In another study,
Kaczmarek et al. (2013) examined skin biopsies from OSA patient
(AHI ≥ 10) and found significant differences in HIF-1α mRNA
expression level between groups with minimal oxygen saturation
during PSG above or below 75%. Possibly showing that oxygen
blood saturation might be the curtail factor for HIF-1α mRNA
expression (aside from AHI as groups were matched regarding
this variable), especially in tissues such as skin, which is more
prone to hypoxia (Kaczmarek et al., 2013).

Effects of HIF-1α on IR, TD2M, and Its
Complications in Humans
The level of serum HIF-1α was found to be significantly increased
in patients suffering from T2DM compared to the control group
(Shao et al., 2016). Furthermore, the presence of the non-
synonymous single-nucleotide polymorphism (rs11549465) in
HIF-1α gene in the Japanese and Hungarian populations reduced
the risk of developing diabetes (Geza et al., 2009). Additionally,
some reports suggested that HIF-1α is involved in development
of T2DM complications. Diabetic foot ulcers (DFU) are among
very frequent complications of diabetes mellitus, especially when
disease is not well controlled (Yazdanpanah et al., 2015). DFU
develops as a consequence of a combination of factors: peripheral
neuropathy, peripheral vascular disease, and trauma (Boulton
and Whitehouse, 2000). It has been shown that biopsy samples
obtained from the margin of chronic DFU express decreased
HIF-1α levels compared to samples from the margin of chronic
venous ulcers (Catrina et al., 2004; Catrina and Zheng, 2016).
Faint HIF-1α staining in DFU, similar to the staining pattern
characteristic of exposure to the normoxic conditions, was found.
In contrast, positive HIF-1α staining, like in cells under hypoxic
conditions, was identified in both the nuclei and cytoplasm in
majority of fibroblasts and a few endothelial cells in venous ulcers.
It may suggest an important involvement of hyperglycemia
in control of HIF1-α protein levels in tissues under hypoxia
(Catrina et al., 2004). Unfortunately, wounds in DFU heal poorly.
The reason for that phenomenon can be compromised blood
vessel formation in response to ischemia and hyperglycemia
(Thangarajah et al., 2010). This impairment in vascularization
can result from hyperglycemia-induced inhibition of HIF-1α,
which is transcription factor regulating the expression of vascular
endothelial growth factor (VEGF). Deferoxamine (DFO) is a drug
that may reverse the effect of HIF1-α inhibition (Thangarajah
et al., 2010). DFO is an iron ion chelator-antioxidant. The main
indication for DFO treatment is diseases with iron overload
such as hemosiderosis (Di Nicola et al., 2015). However, DFO
can also upregulate HIF-1α via triggering the ERK signaling
pathway (Guo et al., 2016). HIF-1α upregulation accelerates
the recovery process of humanized diabetic wounds in animal

models. It suggests that HIF1-α can be the target of therapy
in this very common T2DM complication (Thangarajah et al.,
2010). There is a clinical trial pending, which investigates the
effect of local DFO (0.66 mg/ml) treatment on the wound
healing process in patients with DFU. The main endpoint of
this trial will be to reduce more than 50% the wound area after
12 weeks of DFO treatment (ClinicalTrials.gov: NCT03137966).
The other drug increasing HIF1-α expression in DFU being
tested in clinical trials is pirfenidone (PFD) applied with modified
diallyl disulfide oxide (M-DDO). PFD indication is treatment of
idiopathic pulmonary fibrosis due to its antifibrogenic action.
M-DDO is an antimicrobial and antiseptic agent. However,
their combined administration can influence the gene expression
and increase HIF1-α action (ClinicalTrials.gov: NCT02632877)
(Gasca-Lozano et al., 2017).

Another common complication of T2DM is diabetic
retinopathy. Abnormal retinal blood vessel growth and diabetic
macular edema are two crucial problems causing vision loss
in diabetic patients (Crawford et al., 2009). Increased levels
of HIF-1α in hypoxia are significantly related to retinal
angiogenesis responsible for abnormal retinal blood vessels
growth. Suppression of HIF-1α reduced VEGF expression and
can prevent unwanted angiogenesis. This phenomenon suggests
that HIF-1α may be a target in pharmacological treatment for
diabetic retinopathy (Cheng et al., 2017; Zhang et al., 2018).

CONCLUSION

Available literature shows that HIF-1α is involved in regulation
of metabolic processes and mediates development of IR and
diabetes mellites. However, vast majority of the studies are based
on cellular and animal models of hypoxia. As few available studies
show that HIF-1α in OSA patients is upregulated, it is probable
that HIF-1α might be involved in development of metabolic
comorbidities in this group. Nevertheless, further studies are
needed to support this plausible pathomechanism. Taking under
consideration the fact that animal studies suggest HIF-1α as a
possible therapeutic target in impaired glucose metabolism, this
might be a promising research direction in OSA patients.
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