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Idiopathic pulmonary fibrosis (IPF) is a fatal disease of the lower respiratory tract with
restricted therapeutic options. Repetitive injury of the bronchoalveolar epithelium leads
to activation of pulmonary fibroblasts, differentiation into myofibroblasts and excessive
extracellular matrix (ECM) deposition resulting in aberrant wound repair. However,
detailed molecular and cellular mechanisms underlying initiation and progression of
fibrotic changes are still elusive. Here, we report the generation of a representative
fibroblast reporter cell line (10-4ABFP) to study pathophysiological mechanisms of IPF in
high throughput or high resolution in vitro live cell assays. To this end, we immortalized
primary fibroblasts isolated from the distal lung of Sprague-Dawley rats. Molecular
and transcriptomic characterization identified clone 10-4A as a matrix fibroblast
subpopulation. Mechanical or chemical stimulation induced a reversible fibrotic state
comparable to effects observed in primary isolated fibroblasts. Finally, we generated a
reporter cell line (10-4ABFP) to express nuclear blue fluorescent protein (BFP) under
the promotor of the myofibroblast marker alpha smooth muscle actin (Acta2) using
CRISPR/Cas9 technology. We evaluated the suitability of 10-4ABFP as reporter tool in
plate reader assays. In summary, the 10-4ABFP cell line provides a novel tool to study
fibrotic processes in vitro to gain new insights into the cellular and molecular processes
involved in fibrosis formation and propagation.

Keywords: idiopathic pulmonary fibrosis, lung, myofibroblast, TGF-β, extracellular matrix, alpha smooth muscle
actin

INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible and usually fatal lung disease
with poor prognosis. IPF is characterized by subpleural fibrosis, subepithelial fibroblast foci, and
microscopic honeycombing (Raghu et al., 2011; Wuyts et al., 2013; Lederer and Martinez, 2018;
Sgalla et al., 2018). Various risk factors, including air pollution and smoking, have been associated
with the development of IPF (Selman and Pardo, 2001; Kage and Borok, 2012; Liang et al., 2016;
Kasper and Barth, 2017; Richeldi et al., 2017). In recent years, it has become clear that IPF is also
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strongly associated with genetic aberrations (Armanios et al.,
2007; Seibold et al., 2011; Ryu et al., 2014; Stuart et al., 2015;
Evans et al., 2016). Hence, an approach in understanding
IPF pathogenesis is to consider it as a three-stage process:
predisposition, initiation, and progression.

The conceptual model for the pathogenesis of IPF postulates
that recurrent micro-injuries to the bronchoalveolar epithelium,
superimposed on accelerated epithelial aging, result in aberrant
wound repair. The reduced renewal capacity of bronchoalveolar
stem cells, including alveolar type II cells, leads to reduced
alveolar-epithelial cell proliferation, and secretion of profibrotic
mediators (Selman and Pardo, 2001; Plantier et al., 2011; Kage
and Borok, 2012; Ryu et al., 2014; Chambers and Mercer,
2015; Liang et al., 2016; Xu et al., 2016; Kasper and Barth,
2017; Richeldi et al., 2017; Lederer and Martinez, 2018). The
main and most studied profibrotic cytokine is transforming
growth factor beta 1 (TGF-β1). Several other cytokines play a
major role in immune and inflammation responses for fibrosis
formation, including interleukins (IL) like IL-13 (Zhu et al.,
1999; Kolodsick et al., 2004; O’Reilly, 2013), IL-33 (Yanaba et al.,
2011; Luzina et al., 2012, 2013) and IL-4 (Huaux et al., 2003;
Saito et al., 2003), tumor necrosis factor alpha (TNFα) (Sime
et al., 1998; Oikonomou et al., 2006; Epstein Shochet et al.,
2017) as well as thymic stromal lymphopoietin (TSLP) (Datta
et al., 2013; Lee et al., 2017). Profibrotic cytokines promote
fibroblast activation and proliferation (Sime et al., 1997; Hinz,
2009; Luzina et al., 2015).

Fibroblast activation results in altered and increased ECM
production, deposition, and accumulation (Liu et al., 2010;
Bagnato and Harari, 2015). This causes remodeling processes of
the pulmonary interstitium, forming scar tissue and modifying
its mechanical properties (Booth et al., 2012; Parker et al., 2014).
Scarring is accompanied by a strong increase in the tissue stiffness
and an overall thickening of the alveolar septae (Horowitz and
Thannickal, 2006; Hinz, 2009; Richeldi et al., 2017). During this
progression phase, the matrix stiffness can increase from ∼ 0.5
to 15 kPa in healthy lung tissue to up to 100 kPa in fibrotic
tissue depending on the measured lung compartment (Liu et al.,
2010; Booth et al., 2012). The pathologically stiff matrix further
propagates remodeling independent of epithelial cell dysfunction.
In a feed-forward loop, increased matrix stiffness promotes
additional differentiation of fibroblasts to myofibroblasts and
matrix deposition (Hinz, 2009; Enomoto et al., 2013; Burgess
et al., 2016; Tschumperlin et al., 2018). Overall, these processes
result in the destruction of the overall alveolar architecture,
leading to a strong impairment of lung function and eventually
resulting in the death of the patient (Wuyts et al., 2013).

Studies regarding the onset and progress of IPF are mainly
conducted in animal models by the application of fibrosis
inducing agents like bleomycin (Gabazza et al., 2004; Xiao et al.,
2006; Löfdahl et al., 2018). However, animal models of IPF do not
fully recapitulate human pathophysiology (Lederer and Martinez,
2018). These models only partially mimic the events hallmarking
IPF but it’s challenging to gain a deep insight into cellular
and molecular processes. Hence, studies investigating molecular
alterations of affected cell populations in response to pro-fibrotic
stimuli are essential to get a more in-depth understanding of

key processes responsible for development and progression of
IPF. In this context, in vitro studies mimicking the in vivo
situation hold great promise to elucidate molecular mechanisms
underlying IPF initiation and progression. Sophisticated “lung on
a chip” approaches recapitulating the alveolar microenvironment
were developed and optimized by different groups (Huh, 2015;
Stucki et al., 2018; Felder et al., 2019). These enable co-culture
of differentiated alveolar epithelial and mesenchymal cells at air-
liquid conditions whilst mimicking breathing motion and blood
flow. However, the impact of these in vitro models depends on
the use of cells representative of the in vivo situation.

In order to promote in vitro models for studying fibrotic
processes, we generated an immortalized pulmonary fibroblast
reporter cell line (10-4ABFP) using CRISPR/Cas9 gene-editing.
10-4ABFP cells express nuclear blue fluorescent protein (BFP)
under the promotor of the myofibroblast marker alpha smooth
muscle actin (Acta2). To this end, we isolated primary cells from
the distal lung of Sprague-Dawley rats and immortalized them
using a recently described technology (Kuehn et al., 2016). We
characterized several clones and validated selected clones for
suitability in fibrosis studies, directly comparing responsiveness
to either mechanical or chemical stimuli to responses observed
in primary isolated fibroblasts. We identified clone 10-4A as a
matrix fibroblast subpopulation that can be (reversibly) induced
to a fibrotic state comparable to primary isolated fibroblasts. The
10-4A clone was then used for generation of a reporter cell line
(10-4ABFP) expressing nuclear BFP under the promotor of the
myofibroblast marker alpha smooth muscle actin (Acta2) using
CRISPR/Cas9 technology. Finally, we evaluated the use of 10-
4ABFP cells as screening tool in plate reader assays. In summary,
the 10-4ABFP cell line provides a novel tool to study fibrotic
processes in an in vitro co-culture system at high resolution
and/or high throughput and thereby enables new insights into the
cellular and molecular processes involved in fibrosis formation
and propagation.

MATERIALS AND METHODS

Chemicals and Antibodies
Human TGF-β1 was obtained from Proteintech (cat. #
HZ-1011, Manchester, United Kingdom), rat IL-13 (cat. #
1945-RL-025) and rat TNF-α (cat. # 510 RT) from R&D
Systems (Minneapolis, MN, United States), rat IL-33 (cat. #
ab200250) from Abcam (Cambridge, United Kingdom) and
rat IL-1β (cat. # 80023-RNAE) from Sino Biological (Vienna,
Austria). All other chemicals were obtained from Sigma-Aldrich
GmbH (Steinheim, Germany) if not stated otherwise. The
following primary and secondary antibodies were used for
immunofluorescence staining: αSMA (1:200, cat. # ab5694;
Abcam; RRID:AB_2223021), vimentin (1:500, cat. # ab73159;
Abcam; RRID:AB_1271458), EpCAM (1:200, cat. # ab71916;
Abcam, RRID:AB_1603782), ABCa3 (1:500, cat. # ab24751;
Abcam, RRID:AB_448287), Aqp5 (1:200, cat. # ab92320; Abcam,
RRID:AB_2049171), caveolin 1 (1:200, cat. # ab2910, Abcam,
RRID:AB_303405), CD45 (1:500, cat. # 12-0461-80, Thermo
Fisher Scientific, Bonn, Germany, RRID:AB_2572560).
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Alexa Fluor R© 488 goat anti-chicken (1:300, cat. # A11039;
Thermo Fisher Scientific, RRID:AB_142924); Alexa Fluor R© 568
goat anti-rabbit (1:300, cat. # A11011; Thermo Fisher Scientific,
RRID:AB_143157) Alexa Fluor R© 488 goat anti-mouse (1:300, cat.
# A11029; Thermo Fisher Scientific, RRID:AB_138404).

Cell Isolation and Cultivation
All lung cells were isolated from 12 to 14-week-old male Sprague-
Dawley rats.

Primary alveolar type II (ATII) cells were isolated according to
a modified protocol described by Jansing et al. (2018) In short,
rats were anesthetized with ketamine (10%) and xylazil (2%)
and injected with heparin (400 IU/kg). Lungs were perfused,
removed, washed with BSS-A supplemented with EGTA, BSS-
A w/o EGTA and BSS-B solution. The tissue was incubated
with 0.5 mg/ml elastase (Elastin Products Co., Owensville, MO,
United States) for 20 min. Then, 2 mg/ml DNase were added
and the tissue was minced with sharp scissors into bits of about
1 mm3. The enzymatic reaction was stopped by adding FCS
(GIBCO R© life technologies, Carlsbad, CA, United States) (37◦C,
2 min). The digested tissue was filtered through gauze and nylon
meshes (mesh sizes: 100, 40, and 10 µm) and the cell filtrate
was centrifuged for 8 min at 130 rcf. For further cell separation,
density gradient centrifugation was applied by mixing the cells
in OptiPrepTM Density Gradient medium (1.077 g/mL) diluted
in BSS-B. The cells were centrifuged for 20 min at 200 rcf. The
layer containing ATII cells was collected and supplemented with
BSS-B to a total volume of 40 ml. Cells were centrifuged at 130 rcf
for 8 min, resuspended in MucilAirTM cell culture medium and
1 × 106 cells/cm2 were seeded apically on 0.4 µm transparent
Transwell R© filter inserts (Sarstedt, Nümbrecht, Germany). Purity
of the ATII cells (>90%) was determined by staining with
0.4 µM Lyso Tracker Red DND 99 for 10 min (Thermo Fisher
Scientific, Waltham, MA, United States) and more specifically
with an ABCa3 staining. The amount of LTR positive cells was
determined using a Countess II FL Automated Cell Counter
(Thermo Fisher Scientific, Waltham, MA, United States).

Primary lung fibroblasts and distal lung cells were isolated
according to the method of Dobbs et al. (1986) with minor
modifications as previously described (Miklavc et al., 2010).

For primary isolated fibroblasts further modifications
were applied:

Anesthesia, lung perfusion and removal followed the protocol
described for isolation of AT2 cells. The tissue was then incubated
with 0.5 mg/ml elastase (Elastin Products Co., Owensville, MO,
United States) and 0.05 mg/ml trypsin at 37◦C for 30 min.
2 mg/ml DNase were added, the enzymatic reaction was stopped
by FCS and the digested tissue was filtered through gauze
and nylon meshes (mesh sizes: 100, 70, and 40 µm). For
purification of primary fibroblasts, cell suspensions were depleted
of leukocytes using anti-CD45 MicroBeads (Miltenyi Biotec,
Bergisch Gladbach, Germany) before fibroblasts were isolated
using anti- CD90.1 MicroBeads (Miltenyi Biotec, Bergisch
Gladbach, Germany) according to manufacturer’s instructions.
Cells were seeded on polydimethylsiloxane (PDMS) gels or plastic
substrate in MucilAirTM culture medium containing 25.6 µg/ml
Gentamicin ± 5 ng/mL TGF-β1 at a density of 1 to 5 × 105

cells/cm2. Cells were cultured at 37◦C, 5% CO2 and 95%
humidity for up to 14 days. Culture media were changed every
2 days, with TGF-β1 being added freshly to the medium in
corresponding experiments.

Generation of Immortalized Cell Lines
Immortalization was performed by InSCREENeX
(Braunschweig, Germany) as previously described (Lipps
et al., 2018). In short: Immortalization genes were incorporated
with third generation self-inactivating lentiviral vectors.
Gene expression is controlled by an internal SV 40 promoter.
Integration of the transgenes was verified by PCR and subsequent
gel electrophoresis.

Overall, 15 immortalized cell clones were generated,
all displaying characteristics of different cell populations
of the distal lung. The incorporated genes used for the
immortalization process for the cell line 10-4A are TAg, ID2,
ID3, Rex, Nanog, and E7.

10-4A cells were maintained in the chemically defined,
standardized, cell culture medium MucilAirTM (Epithelix,
Genève, Switzerland) containing 25.6 µg/ml Gentamicin
(Thermo Fisher Scientific) at 37◦C, 5% CO2 and 95% humidity.
Cells were detached upon reaching 80% confluence using TrypLE
(Thermo Fisher Scientific), centrifuged, resuspended in cell
culture medium ± 5 ng/mL TGF-β1 and seeded on PDMS gels
or plastic dishes at a density of 0.5 × 103 to 40 × 103 cells/cm2.
Culture media were changed every 2 days, with TGF-β1 being
added freshly to the medium in corresponding experiments.
Cells from passage 11 to 25 were used for all experiments.

PDMS Gel Preparation and Coating of
Cell Culture Dishes
PDMS gels were prepared with the Sylgard 527 Silicon
Dielectric Gel Kit (Dow Europe GmbH, Wiesbaden, Germany)
as previously described (Palchesko et al., 2012) with minor
modifications. In brief, component A and B were thoroughly
mixed in a 1:1 ratio and added to 24 Well Culture Plates (Sarstedt,
Nümbrecht, Germany) or ibiTreat µSlide 8 well (ibidi GmbH,
Gräfelfing, Germany), respectively. Culture containers were kept
under vacuum for 2 h to remove potential air inclusions and
then incubated at room temperature for 48 h for polymerization.
Fully polymerized PDMS gels were sterilized in a UV Crosslinker
(GE Healthcare Europe GmbH, Freiburg im Breisgau, Germany)
for 30 min and then coated with a 0.01% w/v polydopamine
solution [50 mM Tris–HCl, pH = 8.5, 0.01% (w/v) Dopamine
Hydrochloride] for 1 h and a 38 µg/ml rat tail collagen I solution
(Advanced BioMatrix Inc., San Diego, CA, United States), diluted
in Dulbecco PBS (Biochrom, Berlin, Germany; pH 7.4) over night
at 37◦C, respectively.

Identical coating conditions were used for culture plastic
dishes w/o PDMS to ensure comparability.

RNA Isolation, cDNA Synthesis and
qPCR
Total RNA was isolated using the my-Budget RNA Mini Kit
(Bio-Budget Technologies GmbH, Krefeld, Germany) with an

Frontiers in Physiology | www.frontiersin.org 3 October 2020 | Volume 11 | Article 567675

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-567675 October 8, 2020 Time: 14:58 # 4

Nemeth et al. Reporter Cell for IPF Research

additional DNA removal step using the RNase free DNase
Set (QIAGEN GmbH, Hilden, Germany). cDNA synthesis was
performed using the SuperScript R© VILOTM cDNA Synthesis
Kit (Thermo Fisher Scientific) and cDNA was diluted in a
1:3 ratio with DEPC treated H2O (Carl Roth, Karlsruhe,
Germany) prior qPCR.

Amplification was performed on a StepOnePlus qPCR
cycle (Applied Biosystems, Foster City, CA, United States)
using EvaGreen QPCR Mix II (Bio-Budget Technologies).
The following QuantiTect R© Primer assays (QIAGEN
GmbH, Hilden Germany) were used: Rn_Plin2_2_SG
(QT01624329), Rn_Acta2_1_SG (QT01615901), Rn_Col1a1_
1_SG (QT01081059), Rn_Sftpc_1_SG (QT00179368), Rn_
ABCa3_1_SG (QT01587936), Rn_Vim_1_SG (QT00178724),
Rn_HOPX_1_SG (QT00182693), Rn_Cav1_1_SG (QT00
398181), and Rn_Hmbs_1_SG (QT00179123). The relative
quantification of mRNA expression was performed according to
the method of Pfaffl (2001).

Illumina Library Preparation and
Sequencing
The Sequencing library preparation has been done using 200 ng
of total RNA input with the TruSeq RNA Sample Prep Kit v2-
Set B (RS-122–2002, Illumina Inc., San Diego, CA, United States)
producing a 275 bp fragment including adapters in average
size. In the final step before sequencing, eight individual
libraries were normalized and pooled together using the adapter
indices supplied by the manufacturer. Pooled libraries have then
been clustered on the cBot Instrument from Illumina using
the TruSeq SR Cluster Kit v3 – cBot – HS (GD-401–3001,
Illumina Inc., San Diego, CA, United States) sequencing was
then performed as 50 bp, single reads and 7 bases index read
on an Illumina HiSeq2000 instrument using the TruSeq SBS
Kit HS- v3 (50-cycle) (FC-401–3002, Illumina Inc., San Diego,
CA, United States).

mRNA-Seq Bioinformatics Pipeline
RNA-Seq reads were aligned to the rat genome using the
STAR Aligner v2.5.2a (Dobin et al., 2013) with the Ensembl 84
reference genome1. Sequenced read quality was checked with
FastQC v0.11.22 and alignment quality metrics were calculated
using the RNASeQC v1.18 (Deluca et al., 2012). Following
read alignment, duplication rates of the RNA-Seq samples were
computed with bamUtil v1.0.11 to mark duplicate reads and the
dupRadar v1.4 Bioconductor R package for assessment (Sayols
et al., 2016). The gene expression profiles were quantified using
Cufflinks software version 2.2.1 (Trapnell et al., 2013) to get
the Reads Per Kilobase of transcript per Million mapped reads
(RPKM) as well as read counts from the feature counts software
package (Liao et al., 2014). The matrix of read counts and the
design file were imported to R, normalization factors calculated
using trimmed mean of M-values (TMM) and subsequently
voom normalized, before subjected to downstream descriptive
statistics analysis.

1http://www.ensembl.org
2http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Western Blot
Cells were washed twice with PBS, collected with RIPA
Buffer (Sigma-Aldrich) and sonicated (Sonifier 250, Branson
Ultrasonics Corporation, Danbury, CT, United States) prior
loading on gels. The protein concentration was determined by
Pierce BCA Protein Assay (Thermo Fisher Scientific). Protein
Loading Buffer and NuPAGE reducing agent (Thermo Fisher
Scientific) were added in a 1:5 and 1:10 ratio, respectively.
Samples were incubated at 70◦C for 10 min, separated
by SDS-PAGE and blotted on a nitrocellulose membrane.
Immunodetection of αSMA and HSP90 was performed using
Anti-alpha smooth muscle actin (1:200, cat # ab5694; Abcam,
RRID:AB_2223021) and HSP90 α/β antibodies (F-8) (1:500, cat.
# sc-13119; Santa Cruz Biotechnology, Dallas, TX, United States,
RRID:AB_675659) in combination with fluorescent labeled
secondary antibodies [1:20,000; IRDye R© 800CW Donkey anti-
Rabbit (cat. # 926-32213, RRID:AB_621848), IRDye R© 680RD
Donkey anti-Mouse (cat. # 926-68072, RRID:AB_10953628)]
diluted in Intercept R© Blocking Buffer (cat. # 927-60001)
(all from LI-COR Biosciences, Lincoln, NE, United States).
Primary antibodies were incubated over night at 4◦C, secondary
antibodies for 1 h at RT, respectively. Membranes were analyzed
with the Odyssey Fc Imaging System (LI-COR Biosciences).

Immunofluorescence
For immunofluorescence staining, cells were washed with DPBS
(Biochrom, Berlin, Germany; pH 7.4) and fixed in a 4%
paraformaldehyde solution (dissolved in DPBS) for 10 min
followed by a 1 min incubation in ice-cold 99.8% MeOH. Cells
were permeabilized in a 0.2% w/v saponin solution (dissolved
in DPBS) containing 10% FBS (Thermo Fisher Scientific) and
50 mM HEPES. Subsequently, cells were stained for 1 h with
primary antibodies, washed twice with DPBS and stained with
secondary antibodies diluted in saponin solution for 1 h. Images
were taken on an iMIC digital microscope (FEI Munich GmbH,
Gräfelfing, Germany) with an Olympus UApo/340 40x/1.35
Oil Iris, Infinity/0.17 lens (Olympus Europa SE & Co. KG,
Hamburg, Germany) and the corresponding software (Live
Aquisition v2.6.0.14).

Generation of the Acta2-BFP Reporter
Cell Line
CRISPR/Cas9 dependent gene editing of 10-4A cells was
performed according to the method described in Ran et al. (2013).

A 20 bp single guide RNA (sgRNA) (AAACAGGAGT
ATGACGAAGC), binding at the end of the coding region of
the Acta2 gene was designed by using the R&D Benchling
software3. The sgRNA was cloned into SpCas9(BB)-2A-GFP
(Addgene plasmid ID: 48138). A donor vector was designed
to allow for in-frame fusion of a T2A-BFP-NLS (BFP from
Evrogen, Heidelberg, Germany) cassette at the 3′ end of the
Acta2 gene. Primers used were listed in Table 1. DNA sequences
flanking the sgRNA cutting site at the 5′and 3′ end were
amplified from genomic DNA isolated from 10-4A cells (isolated
with DNeasy Blood ans Tissue Kit, QIAGEN GmbH), and

3https://www.benchling.com
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TABLE 1 | Primers used for cloning of T2A-BFP-NLS and homology arms into
donor vector pGEX-6P-1.

Primer Name Sequence 5′ → 3′

pGEX-6P-1_fwd tgtggaattgtgagcggataac

pGEX-6P-1_rev cattatacgcgatgattaattg

T2A-BFP-NLS_fwd tcggctcgtataatggagggcagaggaag

tctgct

T2A-BFP-NLS_rev gctcacaattccacattatacctttctcttcttt

tttgga

Acta2_right_homologous_right_arm_fwd tcggctcgtataatgccctctgtgttgggcag

Acta2_right_homologous_right_arm_rev acttcctctgccctcccacatctgctgga

aggtaga

Acta2_left_homologous_right_arm_fwd caggaaacagtattcgtcacgcccccaccct

Acta2_left_homologous_right_arm_rev aacttccagatccgatgtaaacacatgtata

attgtttttacttatccggtcac

pGEX-6P-1_T2A-BFP-NLS_right_arm_rev cattatacgcgatgattaattgtcaacag

pGEX-6P-1_T2A-BFP-NLS_right_arm_fw gagggcagaggaagtctgctaac

pGEX-6P-1_T2A-BFP-NLS_left_arm_fw tcggatctggaagttctgttccagg

pGEX-6P-1_T2A-BFP-NLS_left_arm_rev gaatactgtttcctgtgtgaaattgttatccg

subcloned into the targeting pGEX-6P-1 Vector (GE Healthcare,
28-9546-48) using the In-Fusion kit (Clontech, Mountain View,
CA, United States). 10-4A cells were co-transfected with the
sgRNA/SpCas9(BB)-2A-GFP plasmid and the pGEX-6P-1 donor
plasmid in a ratio of 2:1 using Lipofectamine LTX (Ratio: LTX
Reagent: PLUSTM Reagent, 1:1) (Thermo Fisher Scientific). The
efficiency of sgRNA/Cas9-mediated integration of the BFP was
evaluated after addition of 5 ng/ml TGF-β1 via fluorescence
microscopy. 72 h after transfection, isolation of clonal cells was
achieved by fluorescent activated cell sorting (FACS). Cells were
selected for GFP and BFP expression using the BD FACSAriaTM

III (Becton Dickinson GmbH) with the corresponding BD
FACSDivaTM v6.1.3 software. Single cells were seeded in 96-well
plates containing cell culture medium.

Functional Testing of BFP Integration
The DNA of the cell clones was extracted as described above.
The region of interest was amplified by PCR and the respective
products (WT: 1000 bp, with BFP insert: 1880 bp) were verified
by Sanger Sequencing (Eurofins).

Additionally, in order to verify the functionality of the Acta2
coupled BFP reporter system, cells were seeded in plastic or 5 kPa
PDMS coated ibiTreat µSlide 8 well at a density of 25000/cm2

in MucilAir ± 5 ng/ml TGF-β1. Pictures were taken with an
iMIC Digital Microscope (FEI Munich GmbH). All images were
obtained using an Olympus Objective UApo/340 40x/1.35 Oil
∞/0.17 and a 405 nm excitation filter for BFP.

Microplate Reader Assay
Cells were seeded in PDMS coated 96-well plates (Sarstedt,
Nümbrecht, Germany). Respective growth factors were added
24 h post-seeding and the BFP signal was measured at
indicated time points. For fluorescence measurements, cells were
trypsinized, transferred to a collagen (Advanced BioMatrix Inc.)
coated black 96-well plate (Sarstedt) and let adhere for 3 h.

Cells were stained with Calcein AM (Thermo Fisher Scientific)
for 30 min in bath solution (in mM: 140 NaCl, 5 KCl, 1
MgCl2, 2 CaCl2, 5 glucose, and 10 HEPES; pH 7.4), washed
twice with PBS w/o Ca2+/Mg2+ and maintained in 200 µl bath
solution during analysis of BFP signal with the plate reader
(Tecan, Salzburg, Austria). Excitation wavelength were 385 nm
and 485 nm and BFP and Calcein emissions were collected at
445 nm and 535 nm, respectively. BFP and Calcein signals were
background subtracted and the BFP signal was normalized to the
Calcein signal to adjust for cell number.

Statistical Analysis
GraphPad Prims7 software (GraphPad, La Jolla, CA,
United States) was used for statistical analysis, curve fitting
and data representation. Respective tests are given within the
figure legend. Data are represented as means ± SEM unless
stated otherwise. Statistical significance was determined using
the non-parametric Mann–Whitney-U test for comparison of
two independent samples at the same time point. The number
of experiments (N) indicates individual animals for primary
fibroblasts and cells from varying passages for immortalized
fibroblasts. Data was considered significant if the p value was
< 0.05 and is indicated with an asterisk. Statistical significance
is indicated in the graphs as follows: p-values < 0.05: ∗,
p-values < 0.01: ∗∗, p-values < 0.001: ∗∗∗.

RESULTS

10-4A Cells Resemble Matrix Fibroblasts
but Not Myo-/Lipofibroblasts
Isolation and immortalization of primary cells from the distal
lung yielded 15 individual cell clones (Figure 1A). Subsequently,
cell clones were analyzed for phenotypic expression patterns
resembling primary epithelial and mesenchymal cells. Expression
of marker genes for alveolar type II (ATII) [Abca3, Sftpc
(Beers et al., 2017)], alveolar type I (ATI) [Hopx, Aqp5, Cav1
(McElroy and Kasper, 2004; Beers et al., 2017)], pan-epithelial
[Epcam (Hasegawa et al., 2017)], leukocyte [CD45 (Barletta
et al., 2012)], and mesenchymal [Vim (Cheng et al., 2016)]
cells was analyzed on the gene and protein level. Both, semi-
quantitative RT-PCR and immunofluorescence data identified
the presence of mesenchymal and absence of epithelial and
leukocyte cell markers in several clones (Figures 1B,C). Taking
into consideration that Cav1 is also expressed in lung fibroblasts
(Xiao et al., 2006) the data indicate a fibroblast phenotype of all
investigated cell clones.

Based on gene expression analysis and protein localization,
clone 10-4A was selected for further analysis. In-depth
characterization was performed by transcriptomic analysis.
Gene expression in 10-4A cells was also compared to expression
in healthy primary distal lung fibroblasts and primary ATII cells.
The 10-4A cell line exhibits high expression of matrix fibroblast
marker genes, in particular Col1a1 and Vim, and low expression
of myofibroblast marker genes. Lipofibroblast marker gene
expression was low in 10-4A cells when compared to primary
fibroblasts (Figure 2). Expression of specific pan- and alveolar
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FIGURE 1 | Gene and protein expression pattern of the immortalized cell lines. (A) Schematic representation of the immortalization process. Right: Genes
incorporated in 10-4A cells for immortalization (B) Semi-quantitative RT-PCR of ATII cell (Sftpc, Abca3), ATI cell (Hopx, Cav1), and mesenchymal cell (Vim) marker
genes. N = 5 (C) Immunofluorescent staining of 10-4A cells for expression of epithelial cell (EpCAM), alveolar type II cell (ABCa3), alveolar type I cell (aquaporin 5,
caveolin 1), leukocyte (CD45), and mesenchymal cell (vimentin) marker expression. 10-4A cells predominantly express mesenchymal marker vimentin and
caveolin-1, that is also expressed in lung fibroblasts. Scale bar = 50 µm.

epithelial marker genes was very low. Together these data suggest
that 10-4A cells exhibit a matrix fibroblast phenotype (Zepp
et al., 2017; Xie et al., 2018).

Interestingly, 10-4A exhibited high expression of Pdgfrα,
which is associated with the capability of myofibroblast
differentiation (Li et al., 2018).

Increased Substrate Stiffness Exhibits of
Myofibroblast Characteristics in 10-4A
Cells
The high expression of Pdgfrα suggested that these cells may
constitute a model to study activation/differentiation of fibroblast

cells observed in pulmonary fibrosis. To test whether 10-4A cells
resemble a suitable surrogate cell model for in vitro fibrosis
studies, we first investigated the responsiveness of 10-4A cells
to mechanical stimuli (Hinz, 2009). We analyzed expression of
myofibroblast marker genes in response to changes in substrate
stiffness. Results in 10-4A cells were compared to effects on
freshly isolated primary fibroblasts.

Expression of myofibroblast marker Acta2 and ECM
component Col1a1 were unchanged over a 14 days period
in 10-4A and primary fibroblasts when maintained on soft
PDMS gels with physiological stiffness (Young’s Modulus of
5 kPa) (Palchesko et al., 2012). In line, with maintenance of a
quiescent phenotype, Plin2, a marker for lipofibroblasts, did not
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FIGURE 2 | Transcriptomic profile of 10-4A compared to freshly isolated rat fibroblasts and ATII cells. (A) Heat map of selected pan-epithelial, ATII, ATI and different
fibroblast subtype marker genes. Values are given as log2-fold change of the mean reads per million base pairs. 10-4A and primary fibroblasts, N = 4, primary ATII
cells, N = 3. (B) Detailed presentation of rpm values obtained for selected marker genes.

significantly change (Figures 3A–C). In some cases, a faint alpha
smooth muscle actin (αSMA) signal (the product of Acta2) was
detected in Western Blots at day 0 in 10-4A.

In contrast, culture on rigid plastic substrate resulted in
significantly increased Acta2 expression in 10-4A (day 4,

p = 0.008; day 7, p = 0.03; day 14, p = 0.008) and primary
fibroblasts (day 4, p = 0.007; day 7, p = 0.053; day 14,
p= 0.03) (Figure 3A). Consistently, αSMA stress fiber formation
was detected from day 7 onward, in immunofluorescence
experiments and was confirmed by Western Blot (Figures 3D,E).
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FIGURE 3 | Mechanical stimulation of 10-4A cells and primary fibroblasts. Semi-quantitative RT-PCR analysis of Acta2 (A), Col1a1 (B), and Plin2 (C) expression in
10-4A cells (top graph) and primary fibroblasts (bottom graph) maintained on soft PDMS or stiff plastic substrate, respectively. Data are expressed as fold
expression of the housekeeping gene hydroxymethylbilane synthase (Hmbs). Primary fibroblast data were obtained from seven different animals, 10-4A data from
five different passages. Statistical significance for the respective time points was tested with the non-parametric Mann–Whitney-U-Test. Statistical significance is
indicated as follows: p-values < 0.05: *, p-values < 0.01: **. Box plots show data as median values, the boxes represent percentiles, the whiskers indicate the
minimum/maximum. (D) Immunofluorescence staining of 10-4A cells (left) or primary fibroblasts either seeded on PDMS or plastic directly after adherence (d0) or
7 days post-seeding. Cells were stained for the mesenchymal marker vimentin (green) and the pro-fibrotic protein αSMA (red). Scale bar = 50 µm. (E) Western Blot
for αSMA in 10-4A cells and primary fibroblasts cultured over 14 days on soft (PDMS) and stiff (Plastic) matrices, respectively. HSP90 was used as loading control.
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This likely originates from αSMA expressed during cell culture
in plastic culture flasks that had not been degraded by the time
samples were collected (approx. 6 h after seeding on PDMs
substrate). Expression of Col1a1 and Plin2 were not affected
by stiff substrate within the 14 days culture period, suggesting
that the time course might not be sufficiently long enough for
full differentiation and activation of fibroblasts. A weak αSMA
signal was detected in Western blots for day 0 samples from
10-4A cells.

TGF-β1 Induces a Transient
Myofibroblast Phenotype in 10-4A Cells
To further characterize the response of 10-4A cells to fibrotic
stimuli, we stimulated the cells with the potent profibrotic
cytokine TGF-β1.

Transforming growth factor beta 1 (5 ng/ml) treatment
resulted in significantly increased Acta2 gene expression after
2 days in 10-4A cells (day 2, p = 0.008; day 4, p = 0.008;
day 7, p = 0.057; day 14, p = 0.03) and after 4 days in
primary fibroblasts (day 4, p = 0.003; day 7, p = 0.003; day 14,
p = 0.003) (Figure 4A). In line, αSMA stress fiber formation
was more prominent from day 2 post-seeding onward in 10-4A
cells as well as primary fibroblasts (Figures 4D,E). Interestingly,
the TGF-β1-induced increase in Acta2 expression followed a
transient course in the 10-4A cells, peaking at day 2 after TGF-
β1 addition and returning to baseline at day 4–5. A similar
trend was noticeable in primary fibroblast post day 7. In contrast
to mechanical stimulation, TGF-β1 administration also resulted
in significantly increased Col1a1 (day 2, p = 0.008, day 7,
p = 0.03, day 14, p = 0.03) and a reduced Plin2 (day 2,
p = 0.008, day 4, p = 0.02) gene expression in 10-4A cells
(Figures 4B,C) and primary fibroblasts (Col1a1 day 4, p= 0.003,
Plin2, day 4, p = 0.003). Together these data suggest that TGF-
β1 administration triggers changes observed in fibrosis in 10-4A
cells and primary fibroblasts, respectively. However, the effect
was not sustained over a 14-day time course, despite constant
exposure to TGF-β1.

Combination of Stiff Matrix and TGF-β1
Stimulation Leads to Strong and
Persistent Expression of Myofibroblast
Markers in 10-4A Cells
In pulmonary fibrosis mechanical and chemical cues act
simultaneously. Therefore, we investigated the combination of
mechanical and chemical stimulation seeding cells on plastic
substrate and stimulated them with TGF-β1.

The combination of mechanical and chemical stimulation
resulted in significantly increased Acta2 gene expression in 10-
4A cells from day 2 onward (day 2, p = 0.008, day 4, p = 0.008,
day 7, p = 0.008, day 14, p = 0.008) and 4 days onward in
primary fibroblasts (day 4, p = 0.003, day 7, p = 0.003, day 14,
p = 0.003) (Figure 5A). This was also observed on the protein
level (Figures 5D,E). Similar changes were observed for Col1a1
(Figure 5B) (10-4A: day 2, p = 0.008, day 4, p = 0.008, day 7,
p= 0.008, day 14, p= 0.008; primary fibroblasts: day 4, p= 0.05,
day 7, p = 0.003, day 14, p = 0.003). In line, Plin2 expression

(Figure 5C) was decreased in both cell types after 4 and 2 days,
respectively (10-4A: day 2, p = 0.008, day 4, p = 0.02, day 14,
p= 0.03; primary fibroblasts: day 4, p= 0.005, day 14, p= 0.003).

Overall, the combination of mechanical and chemical
stimulation induced a robust and persistent expression of
myofibroblast markers in 10-4A cells and primary fibroblasts.
Interestingly the transient effect observed by TGF-β1 treatment
alone was counteracted by increased substrate stiffness.

Generation of a 10-4A Reporter Cell Line
to Monitor Fibroblast to Myofibroblast
Differentiation in Live Cell in vitro Assays
In order to track fibroblast to myofibroblast differentiation
within living cells, we designed a reporter system targeting the
Acta2 gene locus in 10-4A cells by generating a BFP-reporter
of Acta2 expression. We inserted a T2A-BFP-NLS sequence
at the end of the Acta2 CDS in 10-4A cells (10-4ABFP). The
correct integration of the BFP sequence was verified via PCR and
Sanger sequencing. Induction of myofibroblast differentiation
(TGF-β1) resulted in a nuclear BFP signal in 10-4ABFP cells
(Figures 6A,B).

To exclude changes in Acta2 gene expression arising from
genetic modifications, we compared the 10-4ABFP cell line
to wildtype 10-4A cells during quiescence (on PDMS, soft
matrix) and after TGF-β1 stimulation, respectively. 10-4ABFP

cells showed similar responses to PDMS and TGF-β1 stimulation
as 10-4A cells when analyzing Acta2, Col1a1, and Plin2 gene
expression (Figures 6C–E), indicating no adverse effects of T2A-
BFP-NLS cassette integration.

Next, we tested on the protein level, whether the BFP signal
correlated with αSMA expression. TGF-β1 treatment resulted
in double-positive cells, whereas cells cultured on soft substrate
without TGF-β1 were negative for BFP and αSMA (Figure 6F).
Correlating the αSMA and BFP signal within individual cells,
confirmed a linear correlation between BFP intensity and αSMA
expression (R2

= 0.82, p < 0.0001) (Figure 6G).
For a high throughput evaluation of fibrotic signals, a

fluorescence-based 96-well assay was established. First, a linear
correlation between BFP signal and cell count was verified under
different culture conditions.

For a more thorough characterization and verification of the
10-4ABFP cells, cytokines elevated during pulmonary fibrosis
(TGF-β1, IL-33, IL-4, and TSLP) were screened to establish
dose- and time-response curves (Figure 7). EC50 values following
a 2-day incubation post-seeding were 1.45 ng/ml for TGF-β1,
400 pg/ml for TSLP, 12 ng/ml for IL-4, and 22 pg/ml for IL-
33. Time course analysis of BFP signal expression revealed that
the BFP signal was transiently increasing following TGF-β1 and
IL-33, respectively, similar to what was observed for wildtype
10-4A cells (Figure 4). In contrast, TSLP and IL-4 show an
increase in BFP expression until day 2 and afterward a stable BFP
expression up to day 7.

In summary, the 10-4ABFP cell line resembles a valuable
tool for high throughput analysis of factors driving fibroblast
to myofibroblast differentiation in pulmonary fibrosis, enabling
screening with limited sample preparation and processing.
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FIGURE 4 | Chemical stimulation of 10-4A cells and primary fibroblasts with TGF-β1 on a physiological substrate. Semi-quantitative RT-PCR of Acta2 (A), Col1a1
(B), and Plin2 (C) expression in 10-4A cells (top graph) and primary fibroblasts (bottom graph) cultured in the presence or absence of 5 ng/ml TGF-β1 on a soft
PDMS substrate, respectively. Data are expressed as fold expression of housekeeping gene Hmbs. Primary fibroblast data were obtained from 5 different animals,
10-4A data from five independent passages. The respective time points were tested with the non-parametric Mann–Whitney-U-Test. Statistical significance is
indicated as follows: p-values < 0.05: *, p-values < 0.01: **. Box plots show data as median values, the boxes represent percentiles, the whiskers indicate the
minimum/maximum. (D) Immunofluorescence staining of 10-4A cells (left) or primary fibroblasts seeded on PDMS with administration of 5 ng/ml TGF-β1 directly
after adherence (d0) or 7 days post-seeding. Cells were stained for the mesenchymal marker vimentin (green) and the pro-fibrotic protein αSMA (red). Scale
bar = 50 µm. (E) Western Blot for αSMA in 10-4A cells and primary fibroblasts cultured over 14 days on PDMS substrate in the presence or absence of TGF-β1,
respectively. HSP90 was used as loading control.

DISCUSSION

Frequently, when studying molecular and cellular mechanisms
in pulmonary fibrosis, primary fibroblasts are used for in vitro

experiments (Pierce et al., 2007; Huang et al., 2012; Pardo
and Selman, 2016). However, use of primary cells is often
limited by availability, restricted propagation, ethical hurdles,
the cost and difficulty of repetitive cell isolations and often
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FIGURE 5 | Combination of chemical and mechanical stimulation of 10-4A cells and primary fibroblasts with TGF-β1 on a physiological substrate. Semi-quantitative
RT-PCR of Acta2 (A), Col1a1 (B), and Plin2 (C) expression in 10-4A cells (top graph) and primary fibroblasts (bottom graph) cultured on either soft substrate (PDMS)
or in the presence of 5 ng/ml TGF-β1 stiff substrate (Plastic), respectively. Data are expressed as fold expression of housekeeping gene Hmbs. Primary fibroblast
data were obtained from five different animals, 10-4A data from five independent cell culture experiments. The respective time points were tested with the
non-parametric Mann–Whitney-U-Test. Statistical significance is indicated as follows: p-values < 0.05: *, p-values < 0.01: **. Box plots show data as median values,
the boxes represent percentiles, the whiskers indicate the minimum/maximum. (D) Immunofluorescence staining of 10-4A cells (left) or primary fibroblasts seeded on
PDMS with administration of 5 ng/ml TGF-β1 directly after adherence (d0) or 7 days post-seeding. Cells were stained for the mesenchymal marker Vimentin (green)
and the pro-fibrotic protein αSMA (red). Scale bar = 50 µm. (E) Western Blot for αSMA in 10-4A cells and primary fibroblasts cultured over 14 days on PDMS
substrate or on Plastic in the presence of TGF-β1, respectively. HSP90 was used as loading control.

a heterogeneity of isolated cells within or between isolations
from different donors (Kaur and Dufour, 2012). Thus, well-
characterized, representative cell lines provide a useful alternative
for high-throughput, live-cell assays and can be used for
in vitro disease modeling. Genetic modifications are easily

introduced to study specific signaling pathways. In addition, they
offer the opportunity for long-term studies replicating diseases
progression in vitro. The aim of our work was to generate a
representative cell line to be used for in vitro fibrosis research. To
this end, we immortalized primary rat lung cells, screened them
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FIGURE 6 | Generation and verification of an Acta2 coupled BFP reporter cell line. (A,B) Schematic representation of 10-4A cell transfection. Cells were transfected
with a plasmid containing Cas9 and the sgRNA binding at the desired gene (exon 10) and a donor plasmid. The donor plasmid contained a BFP flanked by a
self-cleaving T2A cassette, a nuclear localization sequence and two 500 bp homologous arms of the sgRNA cutting site. After cell transfection, Acta2 gene
expression was induced by addition of 5 ng/ml TGF- β1 and cells were FACS sorted for BFP. Semi-quantitative RT-PCR analysis of Acta2 (C), Col1a1 (D), and Plin2
(E) expression in 10-4A and 10-4ABFP cells with and without administration of 5 ng/ml TGF-β1 on a soft PDMS substrate, respectively. Values are means from five
individual culture experiments. The respective time points were tested with the non-parametric Mann–Whitney-U-Test. Statistical significance is indicated as follows:
p-values < 0.05: *, p-values < 0.01: **. Box plots show data as median values, the boxes represent percentiles, the whiskers indicate the minimum/maximum.
(F) Immunofluorescence staining of 10-4ABFP cells seeded on PDMS with and without administration of 5 ng/ml TGF-β1 directly after adherence (d0) or 7 days
post-seeding. Cells were monitored for BFP and stained for the mesenchymal marker vimentin (green) and the pro-fibrotic protein αSMA (red). Scale bar = 50 µm.
(G) Correlation of the BFP and αSMA signal intensity within individual cells 7 days post seeding. N = 48 cells. A linear regression line and the corresponding indicator
R and p-value show the linear dependency of BFP and αSMA signal.
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FIGURE 7 | High-throughput screening using the 10-4ABFP cell line. (A) Schematic of plate reader assay to study the fibrotic response of 10-4ABFP to cytokine
treatment in live cell assays. For normalization to the cell number, cells were stained with Calcein AM. (B) Dose-response curves of BFP expression in 10-4ABFP cells
in response to 2 days exposure with increasing doses of TGF-β1, TSLP, IL-4, and IL-33. (C) Time-response curve of 10-4ABFP cells to continuous exposure to
TGF-β1, TSLP, IL-4, and IL-33.

for fibroblast characteristics and tested the induction of fibrosis
after mechanical as well as chemical stimulation.

Within recent years, various cell and, in particular, fibroblast
subpopulations were reported for the distal lung. Diverse roles
in development, lung homeostasis, aging and injury repair were
attributed to distinct populations, raising the complexity for
modeling pulmonary fibrosis (Zepp et al., 2017; Xie et al., 2018).
Interestingly, some myo-and lipofibroblast marker genes like
Mmp7, Mmp10 or Plin2 (Adams et al., 2019; Reyfman et al., 2019;
Strunz et al., 2019) were also expressed in ATII cells, emphasizing
the importance to look in detail at a combination of distinct
marker genes in order to assign cells to a cellular group. The
presence of Epcam in the RNA sequencing data from primary
fibroblasts likely indicates small impurities of epithelial cells,
whereas the presence of Vim indicates minor impurities in the
epithelial cell in the primary cell isolates. The presence of small
fractions of other cell types after the isolation of primary lung
cells is also described by other groups (Dobbs et al., 1986; Driscoll
et al., 2012; Lee et al., 2018).

Regarding the fibroblast subpopulations stated by Xie
et al. (2018), our 10-4A cell line neither exhibits a classical
myofibroblast nor a lipofibroblast phenotype, but rather a matrix
fibroblast phenotype with unexpected high expression of Pdgfrα.
On a molecular level, the 10-4A cells could also be clearly
differentiated from alveolar epithelial cells. The ATI-related genes
Cav1 as well as Pdpn, often used to discriminate ATI and
ATII cells, are both also highly expressed in lung fibroblasts
(Xiao et al., 2006; Quintanilla et al., 2019). Considering lineage-
tracing and CRISPR/Cas9 knock-in experiments, Pdgfrα positive
cells have been shown to give rise to either myofibroblasts or
lipofibroblasts during development and to be able to differentiate
into myofibroblasts in the adult lung (Ntokou et al., 2015; Zepp
et al., 2017; Li et al., 2018). This directed differentiation of
fibroblasts into myofibroblasts, as described for Pdgfrα positive
cells, is one of the major requirements when studying pulmonary
fibrosis. Thus, the gene and protein expression pattern of the 10-
4A cell line indicates their suitability to study the mechanisms
involved in the initiation and progression of pulmonary fibrosis.
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Congruent with previous findings, we were also able to verify
that myofibroblast differentiation can be induced mechanically
(Wipff et al., 2007; Huang et al., 2012; Asano et al., 2017)
and/or chemically (Chambers et al., 2003; Thannickal et al., 2003;
Goffin et al., 2006; Blaauboer et al., 2011; Shi et al., 2013; El
Agha et al., 2017) in 10-4A cells. Moreover, our data confirmed
that fibroblasts grown on a substrate with physiological stiffness
(Huang et al., 2012; Asano et al., 2017) and serum free medium
(Baranyi et al., 2019) stay in a quiescent state over a time-course
of 14 days. Since it is well established that fetal bovine serum
exerts a heterogeneous influence on cellular behavior in cell
culture due to batch-dependent variations and variable growth
factor levels (Krämer et al., 2005; Mannello and Tonti, 2009;
Baranyi et al., 2019), we decided to use a chemically defined,
standardized, serum-free culture medium. Thereby, we were
able to exclude potential variations in cellular responses due to
heterogeneity of our culture conditions.

With regards to mechanical activation of the 10-4A cell
line, the increase in gene and protein expression of αSMA was
comparable to what has been described for primary fibroblasts as
well as cell lines (Wipff et al., 2007; Huang et al., 2012; Asano et al.,
2017). In line, a recent report from Tschumperlin et al., has shown
that Col1a1 mRNA levels were stable above a substrate stiffness of
0.1 kPa (Liu et al., 2010).

Transforming growth factor beta 1 in combination with a soft
substrate resulted in an increase of Acta2, Col1a1 and decrease
of Plin2 gene expression as well as an increase of αSMA on the
protein level. These observations are in accordance to already
published data in several studies of human (Chambers et al., 2003;
Thannickal et al., 2003; Blaauboer et al., 2011; El Agha et al., 2017)
and rodent lung fibroblasts (Goffin et al., 2006; Shi et al., 2013;
El Agha et al., 2017). Interestingly, continuous stimulation with
TGF-β1 induced an early but transient increase in profibrotic
marker gene expression. Acta2 expression was downregulated
after 4 days in 10-4A cells continuously treated with TGF-β1.
This effect was also observed in primary fibroblasts from two
out of five animals after 7 days. In accordance, Col1a1 and
Plin2 expression also adopt to control conditions for the primary
fibroblasts. This indicates, that TGF-β1 stimulation alone, is
not sufficient to maintain a myofibroblast phenotype and that
changes in substrate stiffness are essential to induce a robust,
persistent fibrotic response. The dependence of TGF-β1 on
mechanical activation was already described by Shi et al. (2013).
However, due to the lack of long-term studies examining the
TGF-β1 effect beyond >4 days, comparable data are not available.
Likewise, it has been reported, that TGF-β1 requires mechanical
induction to be able to regulate myofibroblast differentiation
(Hinz, 2009). This is again in accordance with our data, that the
combination of chemical and mechanical stimulation is necessary
to fully resemble the aspects of myofibroblast differentiation.
This is also more likely to reflect the in vivo situation where
fibrosis might be triggered by chemical stimuli but shifts to a self-
perpetuating state with increasing stiffening of the lung tissue
(spreading from fibrotic foci). We limited the observation time
to 14 days as cellular overgrowth under fibrotic conditions, due
to increased proliferation rates, resulted in inconsistent findings
at observation periods beyond 14 days.

In order to accelerate and facilitate the read-out of
fibroblast differentiation in a live cell, high-throughput setting,
we generated an Acta2-BFP coupled reporter system using
CRISPR/Cas9 technology. This reporter system is intended for
use in live-cell, long-term screening applications. CRISPR/Cas9
can lead to off-target mutations. Therefore, we have verified
correct insertion of BFP-NLS by Sanger sequencing and
that 10-4ABFP and 10-4A cells exhibit a similar behavior
under physiological cell culture conditions and after fibrotic
stimulation. Minor differences in expression of Acta2 and Col1a1
at day 0 might indicate a slightly delayed RNA turnover in 10-
4ABFP during adjustment to non-fibrotic culture conditions after
transfer from culture flasks (Kitsera et al., 2007). On the protein
level, αSMA signal and the respective BFP signal correlated very
well, confirming appropriate reporter characteristics. Similarly,
the regulation of BFP expression under the αSMA promoter
could be confirmed by the targeted induction of the BFP signal
after TGF-β1 administration.

Finally, in order to confirm the proper functionality and
the suitability to use 10-4ABFP cells in high throughput assays,
we performed plate-reader based experiments to analyze the
dose- and time-response of Acta2 expression (i.e., myofibroblast
induction) in response to exposure to distinct profibrotic
cytokines. The effective concentrations were in agreement with
previous reports for induction of fibrosis (Saito et al., 2003;
Yanaba et al., 2011; Datta et al., 2013; Lee et al., 2017;
Jones et al., 2019).

One potential limitation of the presented reporter cell line is
its origin from rat rather than human. Several human pulmonary
fibroblast cell lines are already available. However, in contrast
to the cell line presented here, none of the currently available
human cell lines has been characterized in detail with regards to
the representation of a specific mesenchymal cell sub-population
(Adams et al., 2019; Reyfman et al., 2019; Valenzi et al., 2019;
Habermann et al., 2020; Liu et al., 2020; Travaglini et al.,
2020). This might not only affect cellular responses to pro-
fibrotic mechanical and chemical cues, but also affect epithelial-
mesenchymal crosstalk and fibrotic remodeling when used in
complex co-culture in vitro models (e.g., lung-on-a-chip). It is
also accepted that in vivo animal models do not fully recapitulate
all features of IPF pathogenesis (Moore et al., 2013). The reasons
are not fully understood. The human lung contains structural
and cellular differences to the rodent lung, however, the alveolus
is one of the most conserved regions between rodents and
human lungs and whether the mesenchymal and epithelial cells
believed to be central to development of IPF are different is still
a matter of debate. Even lipofibroblasts, a cell that’s presence
has been found in rodents but has long been controversial
in the human lung (Tahedl et al., 2014), has recently been
identified in human lung (Liu et al., 2020; Travaglini et al., 2020).
Therefore, we believe that the cell line reported here provides
a valuable tool for fibrosis research, offering the opportunity to
investigate molecular and cellular responses of a representative
mesenchymal cell to mechanical and/or chemical stimuli with
high resolution and in high throughput formats.

In summary, our data clearly demonstrate that the 10-4A
cell line can be used as a valuable, novel tool for studying the
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onset and progression of fibrotic changes observed in pulmonary
fibrosis. Additionally, the deviated 10-4ABFP reporter cell line is a
useful tool for high-throughput live cell, in vitro assays to directly
monitor fibrotic changes over time.
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