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Alzheimer’s disease (AD) is the most common form of dementia, which causes abnormalities 
in learning, thinking, memory, as well as behavior. Generally, symptoms of AD develop 
gradually and aggravate over time, and consequently severely interfere with daily activities. 
Furthermore, obesity is one of the common risk factors for dementia. Dysregulation of 
adipokine and adipocyte dysfunction are assumed to be accountable for the high risk of 
obesity in people that develop many related disorders such as AD. Moreover, it has been 
observed that the dysfunction of adipose is connected with changes in brain metabolism, 
brain atrophy, cognitive decline, impaired mood, neuroinflammation, impaired insulin 
signaling, and neuronal dysfunction in people with obesity. Conversely, the pathological 
mechanisms, as well as the molecular players which are involved in this association, have 
been unclear until now. In this article, we discuss the impact of adiponectin (AdipoQ) on 
obesity-related Alzheimer’s dementia.
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INTRODUCTION

Alzheimer’s disease (AD) is the most frequent type of dementia among elderly individuals 
(Kabir et  al., 2020a; Uddin et  al., 2020d). It is characterized by the presence of two major 
hallmarks in the brain such as neurofibrillary tangles, predominantly formed by 
hyperphosphorylated tau proteins, and senile plaques, mainly composed of amyloid-beta (Aβ) 
peptides (Kabir et  al., 2020b; Mamun et  al., 2020). The latter hallmark is a major product 
of the proteolytic cleavage of the amyloid precursor protein (APP) by β- and γ-secretase 
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enzymes (Patterson et  al., 2008; Uddin et  al., 2020a). A major 
characteristic of AD is sporadic memory damages related to 
hippocampal affectation. However, several pathological changes, 
such as oxidative stress, insulin resistance, neuroinflammation, 
or mitochondrial damage, associated with obesity also result  
in AD pathological development (Najem et  al., 2014; 
 O’Brien et al., 2017; Ferreira et al., 2018; Uddin and Kabir, 2019).

Copious reports regarding the increase in body fat mass 
as well as the possibility of suffering from dementia have 
been published in the past few years (Whitmer et  al., 2005; 
Businaro et  al., 2012; Kivimäki et  al., 2018). But, their 
outcomes are disputed and at several times inconclusive. It 
appears that it is significant to distinguish between being 
overweight at middle-age and in late-life (Xu et  al., 2011), 
precisely, obesity in middle-aged life and reduction of 
bodyweight in the preclinical phase typify dementia (Singh-
Manoux et  al., 2018). Indeed, in a meta-analysis of 21 trials, 
some authors have revealed that midlife obesity (i.e., <65 years) 
is associated with the development of dementia, but not 
after 65 years (Pedditizi et al., 2016). Another study investigated 
1,349,857 individuals from 39 diverse cohorts with body 
mass index (BMI) data measured at baseline (Kivimäki et al., 
2018). This study found that 20 years before dementia diagnosis, 
increased BMI was strongly related to a higher risk of 
dementia in mid-life. Analyses also demonstrated that this 
risk was inverted among late-life where an elevated BMI 
could even be a defensive factor against the risk of dementia 
(Kivimäki et  al., 2018).

Adiponectin (AdipoQ) is a 30 KDa adipokine encoded by 
the AdipoQ gene, mostly produced by adipocytes and is rich 
in human plasma (Dendana et al., 2018). AdipoQ is recognized 
to enhance the insulin susceptibility of target organs including 
muscles and liver, finally controlling fatty acid metabolism and 
peripheral glucose levels (Hotta et  al., 2001; Yamauchi et  al., 
2001, 2002). Also, being a metabolic controller, AdipoQ is 
additionally identified for its antioxidant and anti-inflammatory 
effects (Takemura et  al., 2007; Liu et  al., 2015b). The central 
nervous system (CNS) is not relieved from the negative impact 
of obesity since obesity-related adipose malfunction has been 
connected to distorted neuroinflammation, brain metabolism, 
brain atrophy, neuronal dysfunction, cognitive decline, and 
impaired mood (Luppino et  al., 2010; Gustafson, 2012; Arshad 
et  al., 2018). People who suffer from obesity are under higher 
threat to disease progression in the case of age-linked cognitive 
failure, mild cognitive impairment (MCI), vascular dementia, 
and AD (Frisardi et al., 2010). Dysregulation of AdipoQ signaling 
may disrupt brain homeostasis and increase the risk of cognitive 
impairment. A better understanding of the impact of AdipoQ 
in AD is thus crucial. Particularly, restoring typical AdipoQ 
signaling might establish constructive, disease-modifying 
therapeutics against AD. Therefore, this article presents recent 
studies about AdipoQ on obesity-related AD.

AdipoQ AND BRAIN TARGETS

AdipoQ was primarily identified in 1995  in 3T3-L1 adipocyte 
differentiation (Scherer et  al., 1995). It is considered as one 
of the most abundant adipokines taking into account its plasma 
levels compared to several other hormones (Matsuzawa, 2005; 
Thundyil et al., 2012; Polito et al., 2018). AdipoQ self-assembles 
into bigger shapes inducing homotrimers that further self-
assemble to construct hexamers or dodecamers. A globular 
AdipoQ resulting from the degradation of the monomer was 
additionally recognized (Waki et  al., 2003). AdipoQ is largely 
produced and discharged from adipocytes, but, it is currently 
well-documented that these adipokines are produced by the 
liver, placenta, epithelial cells, pituitary cells, osteoblasts, and 
myocytes (Wilkinson et  al., 2007; Psilopanagioti et  al., 2009; 
Thundyil et al., 2012). Remarkably, various reports demonstrated 
AdipoQ mRNA expression in human pituitary (Psilopanagioti 
et al., 2009) and chicken diencephalon (Maddineni et al., 2005; 
Wilkinson et  al., 2007). In the human pituitary, AdipoQ might 
have a role in the discharge of gonadotrophs and somatotrophs 
(Thundyil et  al., 2012). Also, it controls a wide variety of 
metabolic actions such as the regulation of body-weight, lipid 
catabolism, glucose regulation, anti-atherogenic process, insulin 
sensitivity as well as endothelial function (Berg et  al., 2002; 
Okamoto et  al., 2002; Stefan and Stumvoll, 2002; Whitehead 
et  al., 2006; Thundyil et  al., 2012). Such activities are induced 
by three diverse receptors, namely T-cadherin (CDH13), AdipoQ 
receptor 1 (AdipoQR1), and AdipoQ receptor 2 (AdipoQR2), 
and involve various signaling cascades such as AMP-activated 
protein kinase (AMPK), peroxisome proliferator-activated 
receptor (PPAR)-α, c-Jun N-terminal kinases (JNK), p38 mitogen-
activated protein kinases (p38-MAPK), and nuclear factor kappa 
B (NF-κB). These receptors look to be  largely synthesized in 
the brain of various mammals including humans, mice, and 
rats, and their expression has been reported in distinct brain 
parts such as the hypothalamus, pituitary, and subcortical and 
cortical neurons (Degawa-Yamauchi et  al., 2003; Yamauchi 
et  al., 2003; Fry et  al., 2006; Hoyda et  al., 2007; Psilopanagioti 
et  al., 2009; Thundyil et  al., 2010, 2012).

Thundyil et  al. (2012) studied the expression of AdipoQ 
receptors in the CNS and demonstrated that AdipoQR1 is 
mostly released in the brainstem, hypothalamus, and the pituitary 
gland whereas AdipoQR2 seems to be  mainly released in the 
cortex. Moreover, AdipoQR1 is intensely released in neurons 
and a smaller amount in astrocytes since AdipoQR2 is believed 
to be  weakly expressed in neurons and astrocytes (Thundyil 
et  al., 2012). The AdipoQ gene is broadly expressed in the 
hippocampus and the cortex. On the other hand, the T-cadherin 
receptor (CDH13), which is one of the receptors mediating 
AdipoQ activity, seems to be spatially and temporally expressed 
in various neuronal cells during axon development (Ranscht 
and Dours-Zimmermann, 1991). Besides, T-cadherin exhibits 
wide expression in the brain hippocampus, cerebral cortex, 
amygdala, and basal ganglia in the postnatal telencephalon of 
Callithrix jacchus (Matsunaga et al., 2013). CDH13 was further 
expressed by projection neurons within the main as well as 
accessory olfactory bulbs. Remarkably, AdipoQ deficiency is 

Abbreviations: AD, Alzheimer’s disease; AdipoQ; adiponectin; Aβ, amyloid-beta; 
APP, amyloid precursor protein; BMI, body mass index; MCI, mild cognitive 
impairment; AdipoQR1, AdipoQ receptor 1; AdipoQR2, AdipoQ receptor 2.
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related to higher levels of inflammatory signals in serious illness 
or septic patients (Venkatesh et  al., 2009; Hillenbrand et  al., 
2010, 2012). The expression of AdipoQR1 and AdipoQR2 was 
recently reported in primary human astrocytes and the U373 
MG human glioblastoma astrocytoma cell line (Wan et  al., 
2014). It was further revealed that AdipoQ mediates 
pro-inflammatory signaling by rising interleukin (IL)-6, and 
monocyte chemoattractant protein 1 (MCP-1) notably via NF-κB, 
extracellular signal-regulated kinase (ERK)1/2, and p38-MAPK 
pathways in human astrocytes (Wan et  al., 2014). Additionally, 
it has been suggested that AdipoQ may also regulate 
neuroinflammation by decreasing inflammatory cytokine 
expression through brain endothelial cells (Spranger et al., 2006).

A study reported the decreased expression of total AdipoQ 
and its high molecular weight oligomers in patients with 
common variable immunodeficiency (Pecoraro et  al., 2017). 
A further study also revealed different expression patterns of 
AdipoQR1 and AdipoQR2 in the peripheral blood mononuclear 
cells of these patients (Polito et  al., 2019).

AdipoQ IN COGNITIVE FUNCTION

Synapse dysfunction is the major pathological hallmark of 
cognitive impairment in AD (DeKosky and Scheff, 1990; Terry 
et  al., 1991). Exciting data suggest that Aβ oligomers serve 
as neurotoxins that accumulate in the brain of AD patients 
leading to synaptic dysfunction and impaired synaptic plasticity 
as well as triggering synapse injury (Lambert et  al., 1998; 
Ferreira and Klein, 2011; Forny-Germano et al., 2014). Oligomeric 
Aβ prevents long term potentiation (LTP) and thus stimulates 
long term depression (LTD) of hippocampal synapses both in 
vitro and in vivo (Wang et  al., 2002; Shankar et  al., 2008;  
Li et  al., 2009; Jürgensen et  al., 2011).

Several studies have proposed that AdipoQ signaling directly 
controls synaptic activity as well as plasticity, and maintaining 
and increasing cognitive activities in a variety of models. 
In anesthetized rats, intracerebroventricular administration 
of AdipoQ potentiates high-frequency stimulation (HFS)-
mediated LTP and suppresses low-frequency stimulation 
(LFS)-mediated LTD (Pousti et  al., 2018). Also, AdipoQ 
administration mediates a chemical LTP, irrespective of 
presynaptic incentive (Pousti et  al., 2018). Treatment with 
a plant-derived homolog of AdipoQ (osmotin) modulated 
AdipoQ receptors ameliorated LTP damage and memory 
discrepancies in AD models (Shah et  al., 2017). This activity 
seems to be induced by the Nogo66 receptor 1 and AdipoQR1 
and comprises an outgrowth of neurite development and a 
rise of the dendritic spine as well as synapse density in the 
brain hippocampus (Zhang et  al., 2016; Yoon et  al., 2018).

AdipoQ-knockout mice show elevated excitability of the 
hippocampal dentate gyrus (DG) granule neurons together with 
reduced loss of contextual fear memory. AdipoQ and its analog 
drug AdipoRon, reestablished fear memory loss through 
AdipoQR2 stimulation and prevention of the excitability of 
DG neurons (Zhang et  al., 2017). Elderly AdipoQ-knockout 
mice display decreased concentrations of synaptic proteins 

proposing synapse impairment, and poor scores in contextual 
fear conditioning and spatial memory tests (Ng et  al., 2016). 
Interestingly, both osmotin and AdipoQ treatments improve 
learning as well as memory insufficiencies in AD animal models 
(Ali et al., 2015; Shah et al., 2017). Caloric constraints enhance 
circulating AdipoQ concentrations and increase cognition in 
mice perhaps through controlling the AMPK pathway in the 
mouse hippocampus (Ma et  al., 2018). Furthermore, a clinical 
trial reported that patients with elevated AdipoQ concentrations 
exert better performances in a prolonged word memory test, 
advocating the idea that AdipoQ is a protective factor against 
cognitive failure suggesting a novel therapeutic approach in 
cognitive decline (Cezaretto et  al., 2018).

AdipoQ IN ALZHEIMER’S HALLMARKS

Animal Studies
Study suggests that insufficiency in AdipoQ signaling can mediate 
an AD-like symptom in mice models (Table  1; Ng et  al., 2016). 
Aged AdipoQ-deficient mice recapitulate various features of AD 
pathology, such as increased levels of Aβ, synapse loss, 
neuroinflammation, tau hyperphosphorylation, neuronal cell 
death, and reduced insulin signaling. Significantly, aged AdipoQ 
deficient mice accomplished poor activity upon fear conditioning 
behavioral experiments and spatial memory (Ng et  al., 2016). 
This study also indicated that chronic deficiency of AdipoQ in 
aged mice inactivates AMPK signaling thus causing insulin 
desensitization and provokes AD-like cognitive impairments as 
shown in Figure 1. The above interpretations were again validated 
by another analysis showing that gene-therapy mediated AdipoQR1 
suppression further induces AD-like pathogenesis, which comprises 
dysfunction in the spatial memory as well as learning, insulin 
signaling deficiency, elevated concentrations of Aβ accretions 
and hyperphosphorylated tau, neuroinflammation as well as other 
neurodegenerative events (Kim et al., 2017). These analyses afford 
convincing reports for the implication of AdipoQ deficiency in 
the pathogenesis of AD. The nucleus basalis magnocellularis 
(NBM) is a well-known cholinergic nucleus in the basal forebrain 
that is disturbed rigorously in AD along with other 
neurodegenerative disorders. It has been reported that the 
dysfunction of NBM cholinergic neurons influences cholinergic 
loss and, more notably, is associated with clinical events of 
dementia (Arendt et  al., 1983; Iraizoz et  al., 1999; Liu et  al., 
2015a). Fascinatingly, NBM was reported to be  an eminent site 
of AdipoQR1 expression (Psilopanagioti et  al., 2009). Hence, it 
is likely that a lack of AdipoQ stimulates the development of 
AD by stimulating NBM degeneration.

Conversely, loss in AdipoQ activity was also detected in 
amyloid-induced AD prototypes, while triggering the AdipoQ 
signaling pathway declines AD-like phenotypes. APP/PS1 mice 
displaying alterations in the levels of AdipoQ receptor expression 
seemed less reactive to a stress-mediating mice model as compared 
to control mice (Várhelyi et al., 2017). In an identical paradigm, 
osmotin improved AD-like phenotypes, for example, Aβ formation 
and deposition, synaptic loss and deficient LTP, and cognitive 
decline and memory loss. AdipoQR1 silencing eliminates the 
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TABLE 1 | Several promising studies of the role of AdipoQ signaling in physiopathological processes associated with Alzheimer’s disease.

Therapeutic agent/target Species/studied material/
model(s)

Effects Mechanism References

AdipoQ AdipoQ-deficient (Adipo−/−) 
mice, AdipoQ-haploinsufficient 
(Adipo+/−) mice

Neurotrophic effects on dendritic spine 
remodeling and neurogenesis in the 
dentate gyrus

Neurotrophic effects of AdipoQ Zhang et al., 2016

AdipoQ AdipoQR2−/− mice, Adipo−/− 
mice, AdipoQR1-floxed mice 
(AdipoQR1flox/flox)

Regulates contextual fear extinction and 
excitability of dentate gyrus neurons

AdipoQ/AdipoQR2 activation Zhang et al., 2017

Osmotin AdipoQ−/− mice, B6.Cg-Tg 
(APPswe, PSENdE9)85Dbo/
Mmjax AD model mice, 
C57BL/6 J-Tg (NSE-APPsw) 
KLAR mice

Enhances the non-amyloidogenic 
pathway by activating the α-secretase 
gene and reverses the suppression of 
long-term potentiation

Modulates AdipoQR1/AMPK (AMP-
activated protein kinase)/SIRT1 (Sirtuin 
1)/SREBP2 (sterol regulatory element-
binding protein 2) signaling pathway

Shah et al., 2017

AdipoQ Adult male Wistar rats Modulates synaptic plasticity in the 
hippocampal dentate gyrus

Enhances the long-term potentiation 
and suppresses long-term depression

Pousti et al., 2018

Osmotin C57BL/6 J-Tg (APPswe/
PSEN1dE9) mice

Enhances neurite outgrowth and 
synaptic complexity

Modulates AdipoQR1/NgR1 signaling Yoon et al., 2018

AdipoQ AdipoQ-deficient mice AdipoQ deficiency causes AD-like 
synapse loss and memory impairment

AMPK inactivation and cerebral insulin 
resistance

Ng et al., 2016

Osmotin Male wild-type C57BL/6 J 
mice

Prevents Aβ42-induced apoptosis, 
neurotoxicity, tau phosphorylation, and 
neurodegeneration

Modulates AdipoQR (adiponectin 
receptor)

Ali et al., 2015

AdipoQ AdipoQR1−/− mice AdipoQ deficiency leads to memory 
dysfunction and AD-like pathologies

Suppresses AdipoQR1 Kim et al., 2017

AdipoQ (enriched 
environment-mediated)

AdipoQ−/− mice Reduces neuroinflammation and 
depressive-like behaviors

Activates anti-inflammatory state Chabry et al., 2015

Globular AdipoQ AdipoQ−/− mice, AdipoQR2−/− 
mice

Anti-inflammatory and anti-oxidant 
actions on microglia

Modulates AdipoQR1 (adiponectin 
receptor 1)/NF-κB (nuclear factor-κB) 
signaling Pathway

Nicolas et al., 2017

AdipoQ 5xFAD male transgenic mice, 
wild-type male C57BL/6 mice

Promotes anti-inflammatory responses 
on microglia

Modulating PPAR-γ (peroxisome 
proliferator-activated receptor-γ) 
signaling

Song et al., 2017

Recombinant C1q/TNF-
related protein 9 (CTRP9)

BV2 microglial cells exposed 
to Aβ

Attenuates neuroinflammation, reduces 
brain edema, and improves neurological 
function

Activates AdipoQR1/AMPK/NF-κB 
signaling

Zhao et al., 2018

AdipoQ Male Sprague-Dawley rats Inhibits cerebral expression of 
myeloperoxidase and inflammatory 
mediators

Activates anti-inflammatory state and 
controlling NF-κB (p65)

Chen et al., 2009

AdipoQ Male ICR mice Protects hippocampal neurons Preservation of the integrity of the 
blood-brain barrier (BBB)

Jeon et al., 2009

AdipoQ Primary hippocampal cell 
cultures

Reduces the level of reactive oxygen 
species, attenuates apoptotic cell death, 
and also suppresses the caspase-3 
activation

Modulates AMPK pathway Qiu et al., 2011

AdipoQ SH-SY5Y cell line Reduces Aβ neurotoxicity Activates AMPK and suppresses the 
NF-κB activation

Chan et al., 2012

Globular AdipoQ Male C57BL/6 mice Promotes antioxidant capacity Inhibits NADPH oxidase-mediated 
oxidative damage

Song et al., 2013

Globular AdipoQ Adult male C57BL/6 mice Improves neurological scores and 
reduces the infarct volumes

Modulates AdipoQ/AdipoQR 
expression

Song et al., 2015

AdipoQ (electroacupuncture 
pretreatment)

Male C57BL/6 mice Exerts neuroprotective effects AdipoQR1-mediated phosphorylation 
of glycogen synthase kinase-3β (GSK-
3β)

Guo et al., 2015

CTRP3 Adult male Sprague-Dawley 
rats

Attenuates brain injury Modulates AMPK-dependent pathway Wang et al., 2016

CTRP3 Male Sprague-Dawley rats Reduces cerebral edema, oxidative 
stress, and BBB damage and improves 
neurological functions as well as brain 
antioxidant enzymes

Modulates NADPH pathway Yang et al., 2017

AdipoQ (caloric restriction-
induced)

C57/BL mice Improves hippocampus-dependent 
learning and memory

Modulates AMPK signaling pathway Ma et al., 2018

AdipoQ (physical exercise-
induced)

Male WT C57BL/6 J mice, 
AdipoQ−/− mice

Promotes hippocampal neurogenesis 
and depression

Activates the ADNR1/AMPK signaling 
pathways

Yaua et al., 2014

AdipoQR1 and AdipoQR2 Wild-type C57BL/6 J mice, 
APP(swe)/Presen(e9d)1 (AD) 
mice

AdipoRs are less sensitive to stress Modulates AdipoQR expression Várhelyi et al., 2017
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beneficial effects of osmotin and additionally aggravates brain 
pathology in AD-mice (Shah et  al., 2017). Osmotin was also 
found to diminish Aβ accumulation in the cultured cells of 
SH-SY5Y human neuroblastoma overexpressing APP. Osmotin 
actions are induced by stimulation of the AMP kinase, an enzyme 
downregulated by oligomeric Aβ in hippocampal neurons (Seixas 
da Silva et al., 2017). An intracerebroventricular dose of AdipoQ 
recovered cognitive decline and reduced glycogen synthase kinase 
3β (GSK3β)-induced tau hyperphosphorylation in AD-related 
areas in a rat paradigm of streptozotocin-mediated brain pathology 
(Xu et  al., 2018). These reports propose the stimulation of the 
AdipoQ signaling pathway, predominantly via AdipoQR1, as a 
novel therapeutic target in AD (Ng and Chan, 2017). Considering 
this, chronic administration of a widely used anti-AD 
acetylcholinesterase antagonist (i.e., donepezil) was found to 
elevate serum concentrations of AdipoQ (Pákáski et  al., 2014). 
Furthermore, thiazolidinediones (TZDs) including pioglitazone 
and rosiglitazone, as well as PPARγ agonists (i.e., used for type 2 
diabetes mellitus; Saltiel and Olefsky, 1996; Malinowski and 
Bolesta, 2000; Hong et al., 2018) were just repurposed to combat 
AD. The insulin-sensitizing function of TZDs is in part induced 
by triggering peripheral AdipoQ receptors and AdipoQ gene 
expression (Yu et  al., 2002; Tsuchida et  al., 2005; Nie and Li, 
2017). Consequently, it is feasible that AdipoQ exerts part of 
the experimental benefits of TZDs and donepezil.

AdipoRon, an AdipoQ receptor agonist (Okada-Iwabu et al., 
2013), has been shown to regulate hippocampal synaptic 
transmission and to accelerate fear memory loss in rodents 

(Zhang et  al., 2017). Also, AdipoRon was shown to control 
dopaminergic neuronal activity in the ventral-tegmental site 
(Sun et  al., 2019) and act as a metabolic and antidepressant 
controller in a mouse model of depression (Nicolas et  al., 
2018). Notably, central AdipoRon activities were achieved by 
peripheral inoculation, and it has been found that this drug 
passes the blood-brain barrier (BBB) to trigger AdipoQ receptors 
in the brain. It would be  exciting to further examine the 
effects of this AdipoQ-drug analog with translational potential 
in AD models.

Human Studies
In humans, analyses relating AdipoQ concentrations to AD 
are debatable. Improved baseline AdipoQ concentrations in 
plasma were found to be  involved with an elevated risk of 
developing AD and other forms of dementia in women, but 
not men (Table  1; van Himbergen et  al., 2012). Moreover, 
increased AdipoQ levels were revealed in the cerebrospinal 
fluid (CSF) and plasma of individuals with MCI as well as 
sporadic AD (Une et  al., 2011; Khemka et  al., 2014), while 
plasma concentrations of AdipoQ was positively associated with 
dementia. The relationship between AD and increased blood 
AdipoQ levels has been advocated by meta-analysis (Ma et  al., 
2016). Though the afore-mentioned reports suggest elevated 
AdipoQ concentrations to be  related to Alzheimer’s dementia, 
conflicting effects have also been described. Data analysis has 
shown decreased concentrations of AdipoQ in MCI and AD 
individuals. Furthermore, based on the AdipoQ levels, one is 

TABLE 1 | Continued

Therapeutic agent/target Species/studied material/
model(s)

Effects Mechanism References

AdipoQ supplements Streptozotocin injected male 
Sprague-Dawley rats

Reduces tau hyperphosphorylation and 
increases dendritic branches number 
and mushroom percentage

Activates the PI3K 
(phosphatidylinositol 3-kinase)/Akt 
(protein kinase B)/GSK-3β signaling 
pathway

Xu et al., 2018

AdipoQ Middle-aged-to-elderly 
community-dwelling persons

Deficiency of plasma AdipoQ was 
associated with mild cognitive 
impairment (MCI) in men

- Kamogawa et al., 
2010

AdipoQ Non-diabetic participants of 
ELSA-Brasil

Enhances cognitive performance Neuroprotective effects of AdipoQ Cezaretto et al., 
2018

AdipoQ MCI and Alzheimer’s disease 
(AD) patients

Plasma AdipoQ was considerably higher 
in MCI and AD, while cerebrospinal fluid 
(CSF) AdipoQ was meaningfully higher in 
MCI compared to controls

- Une et al., 2011

AdipoQ Women with a median age of 
76 years (prospective cohort 
study)

Increased plasma AdipoQ levels serve as 
a risk factor (independent) for the 
progress of all-cause dementia and AD

- Van Himbergen 
et al., 2012

AdipoQ MCI and AD patients Deficiency of AdipoQ was linked to 
cognitive dysfunction (however additional 
cognitive decline/dementia was not 
predicted in this cohort)

- Teixeira et al., 2013

AdipoQ Probable AD patients Alteration of serum AdipoQ levels implies 
amyloid pathology, neurodegeneration, 
and hypometabolism of glucose

- Khemka et al., 2014

AdipoQ Type 2 diabetes patients AdipoQ deficiency correlates with AD-like 
brain changes

- García-Casares 
et al., 2016

AdipoQ (Baduanjin Qigong 
exercise-induced)

Female participants with 
chronic fatigue syndrome-like 
illness

Reduces symptoms of depression Modulates AdipoQ levels Chan et al., 2017
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not able to foresee the development of cognitive decline from 
normal conditions to MCI and from MCI to AD, respectively 
(Teixeira et al., 2013). Another report also revealed that reduced 
concentrations of AdipoQ in plasma were involved with MCI, 
although this link was identified in males, but not in females 
(Kamogawa et  al., 2010). From these experiments, it has been 
found that decreased levels of plasma AdipoQ in diabetic patients 
is associated with a lower volume of gray-matter and lower 
glucose uptake in the temporal region of the brain, comparable 
to what is perceived in AD (García-Casares et  al., 2016).  

Furthermore, another study reveals that AdipoQ concentrations 
in blood are elevated but the lower levels are reported in 
CSF of MCI and AD individuals. Existing studies concerning 
a link between AdipoQ concentrations in blood and CSF to 
MCI and AD are inconsistent and questionable. Hence, more 
analyses are needed to explore the precise impact of AdipoQ. 
Several reports have shown that the relationship between 
dementia and AdipoQ levels might be  sex-dependent 
(Kamogawa et al., 2010). This might be particularly significant 
in the case of AD, where a significant sexual dichotomy has 

FIGURE 1 | The role of AdipoQ deficiency in the pathogenesis of Alzheimer’s disease through AMPK inactivation. In neurons, AdipoQ deficiency leads to decreased 
AMPK activation and increased phosphorylation of IRS-1S616 that inhibits the pIRS-1Tyr formation, and thus deactivates insulin signaling. On the other hand, insulin 
resistance is gradually developed and reduces pAktS473 Levels. Thus, decreased Akt induction and increased GSK3β activation results in increased Aβ production 
and tau phosphorylation. Furthermore, insulin resistance exacerbates the extracellular Aβ deposition as well as impaired synaptic plasticity. AMPK, AMP-activated 
protein kinase; IRS, insulin receptor substrate; GSK3β, glycogen synthase kinase 3β; Akt, protein kinase B; Aβ, amyloid beta peptide.
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been reported with females being at a considerably increased 
risk of developing AD than males (Uddin et  al., 2020c).

AdipoQ IN NEUROINFLAMMATORY 
SIGNALING OF ALZHEIMER’S DISEASE

The brain of AD patients exerts a prolonged state of low-level 
inflammation, which is induced by the activation of microglial 
cells that leads to the secretion of several inflammatory cytokines 
such as interleukin (IL)-6, tumor necrosis factor-α (TNFα), 
and IL-1β (Bamberger et  al., 2003; Lourenco et  al., 2013; 
Heneka et  al., 2015; Hansen et  al., 2018; Uddin et  al., 2020b). 
These cytokines induce various harmful incidents in the AD 
brain such as endoplasmic reticulum stress, neuronal insulin 
resistance, synaptotoxicity, and finally neurodegeneration 
(Bomfim et al., 2012; Lourenco et al., 2013; Rizzo et al., 2018).

AdipoQ-deficient mice possess a variety of clinical  
features in the AD brain, such as decreased concentrations of  
synaptic proteins, insulin resistance, and the existence of 
neuroinflammatory markers including astrogliosis, microgliosis, 
and higher concentrations of the inflammatory cytokines such 
as IL-1β and TNFα (Ng et al., 2016). Environmental upgrading 
like housing situations that stimulate social interactions, 
cognitive engagement, and physical activity, has been found 
to increase cognitive activities in AD mice. These results are 
at least in part owing to the alteration of the microglial 
effect to the insults of neurotoxic Aβ oligomers (Xu et  al., 
2016; Vieira and Beckman, 2017). Recently, it has been shown 
that beneficial outcomes of environmental upgrading to the 
brain are induced by AdipoQ including the advancement of 
an anti-inflammatory state of microglia with the lower secretion 
of inflammatory cytokines (Chabry et al., 2015; Nicolas et al., 
2015). It has also been reported that globular AdipoQ prevents 
the microglia inflammatory profile directly in vitro and  
in vivo (Nicolas et  al., 2017) via a mechanism involving 
NF-κB and AdipoQR1. AdipoQ also regulates the in vitro 
activation of microglia under Aβ toxicity through PPARγ 
stimulation (Song et  al., 2017). Another report suggesting the 
anti-inflammatory effects of AdipoQ in the CNS shows that 
an AdipoQR1 agonist (i.e., CTRP9) reduces neuroinflammatory 
effects in an in vivo mouse model of intracerebral hemorrhage 
via AdipoQR1/AMPK/NF-κB signaling pathways (Zhao et  al., 
2018). Besides, AdipoRon usage was found to block the 
recruitment of macrophages in an experimental model of spinal 
cord damage (Zhou et  al., 2019).

AdipoQ was reported to prevent the pro-inflammatory 
response, remarkably by blocking IL-6 discharge from BBB 
endothelial cells (Spranger et  al., 2006). It has been shown 
that AdipoQ regulates inflammatory signaling indirectly 
through the BBB by adversely modulating TNFα and IL-6 
release. Laboratory analysis of hippocampal neurons has 
indicated that AdipoQ mediates neuroprotective effects via 
the AMPK signaling pathway (Qiu et  al., 2011). Such effects 
are additionally supported by experiments demonstrating that 
AdipoQ knockout mice show enlarged brain injuries and 
increased neurological deficits after ischemia-reperfusion 

compared with wild-type mice (Nishimura et al., 2008). These 
studies provide evidence that the neuroprotective effect of 
AdipoQ is induced via an endothelial nitric oxide synthase 
(eNOS)-reliant mechanism (Nishimura et  al., 2008). Thus 
the neuroprotective role of AdipoQ takes part in the regulation 
of brain inflammation; it was proposed that the lack of 
AdipoQ in obesity might induce neuroinflammation leading 
to AD and other dementias.

AdipoQ IN INSULIN SIGNALING OF 
ALZHEIMER’S DISEASE

Neuronal insulin signaling plays an important role in memory 
and synaptic plasticity, mostly by controlling glutamate receptor 
transport (Beattie et  al., 2000; Man et  al., 2000; Skeberdis 
et  al., 2001; Zhao et  al., 2004). Defective insulin signaling 
is well-reported both in AD individuals and in a number of 
AD animal models (Steen et  al., 2005; Bomfim et  al., 2012; 
Talbot et  al., 2012). Impaired insulin signaling is responsible 
for the neuronal loss and cognitive decline in AD (Ferreira 
et  al., 2014; Vieira et  al., 2018). The synaptotoxicity of Aβ 
is associated with a loss of insulin receptor activity in vivo 
and in vitro and can be  inhibited by using insulin itself and 
by insulin-sensitizing medications (De Felice et  al., 2009; 
Bomfim et  al., 2012; Batista et  al., 2018). These findings 
prompted numerous groups to investigate the activity of 
various types of anti-diabetic therapies in AD prototypes, 
and progressive preclinical outcomes triggered researchers to 
complete human clinical tests (De Felice, 2013; Yarchoan and 
Arnold, 2014; de la Monte, 2017). In this regard, attention 
has been focused on the insulin-sensitizing activities of AdipoQ 
to rectify the abnormal insulin signaling in AD.

A diminished brain insulin signaling cascade was detected, 
along with various other AD-resembling pathological symptoms, 
in AdipoQ-deficient mice as well as in AdipoQR1-knockout 
mice (Ng et  al., 2016; Kim et  al., 2017). In contrast, AdipoQ 
was found to enhance insulin susceptibility in the SH-SY5Y 
neuroblastoma cell line exhibiting insulin resistance, via 
AdipoQR1 initiation of AMPK (Ng et  al., 2016). These studies 
reveal that AdipoQ possesses the possibility to reestablish 
neuronal insulin signaling, with potential therapeutic effects 
for AD and also other neurodegenerative disorders (Bloemer 
et  al., 2018). Nevertheless, more translational analyses using 
AD models are needed to authenticate the neuroprotective 
role of AdipoQ as therapeutic interventions to halt brain insulin 
resistance in AD.

Other studies suggested that insulin resistance (Capurso 
and Capurso, 2012; Johnson and Olefsky, 2013; Medina-Urrutia 
et  al., 2015) is associated with an excess of adiposity induced 
by high free fatty acid (Perseghin et  al., 2003) and lower 
levels of plasma AdipoQ (Arita et  al., 2012). Furthermore, 
acute lowering of free fatty acid is linked to decreased AdipoQ 
levels (Bernstein et  al., 2004). A study has revealed that the 
altered plasma status of both docosahexaenoic acid and other 
fatty acids unrelated to docosahexaenoic acid are linked to 
AD (Cunnane et  al., 2012).
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AdipoQ PARADOX IN ALZHEIMER’S 
DISEASE

AdipoQ is a well-known neuroprotective agent against various 
cytotoxicities induced by Aβ as well as MPP+ in vitro (Jung 
et  al., 2006; Chan et  al., 2012). In mice brains, AdipoQ is 
protected from kainic acid-mediated excitotoxicity in the 
hippocampus (Jeon et  al., 2009). Particularly, AdipoQ may 

control neurogenesis. Regarding this concept, AdipoQ has been 
reported to incite proliferation of mature hippocampal neural 
stem/progenitor cells via signaling pathways including GSK3β/
p38-MAPK/β-catenin (Zhang et  al., 2011). Moreover, it has 
been shown that physical exercise triggers hippocampal 
neurogenesis, facilitated by AdipoQ (Yaua et  al., 2014). 
Furthermore, AdipoQ was found to be  neurotrophic for 
spinogenesis and dendritic arborization in the DG in mice 

FIGURE 2 | Possible mechanism of AdipoQ signaling in Alzheimer’s disease. In the brain, insulin resistance is a common feature of Alzheimer’s disease. AdipoQ is 
upregulated to compensate for the compromised activity of insulin/insulin/IGF-1 receptor signaling. As a result the plasma levels of AdipoQ are transferred to the 
brain and improve the compromised insulin signaling. Furthermore, AdipoQ is sequestered by tau which leads to the formation of neurotoxic protein aggregation. On 
the other hand, such sequestration of AdipoQ is associated with its misfolding which leads to the downregulation of insulin signaling as well as decreased 
neuroprotective and neurotrophic activities. IGF-1, insulin-like growth factor 1.
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brains (Zhang et  al., 2016). Several neuropathological 
characteristics, e.g., compromised motor activity and protein 
accumulation were improved by AdipoQ treatment in mouse 
experiments of α-synucleinopathies (Sekiyama et  al., 2014). It 
was previously demonstrated that elderly AdipoQ-defective mice 
initiated an AD-like pathology linked with dysregulation of 
insulin receptor signaling (Ng et  al., 2016).

The outcome of a cohort study performed by the Mayo 
Clinic Study of Aging indicated that elevated levels of plasma 
AdipoQ were interrelated with imaging data for cortical and 
hippocampal volumes, cognitive declines, and positron emission 
tomography (Wennberg et  al., 2016). Therefore, the obtained 
results advocate that higher AdipoQ predicts cognitive decline 
and neurodegeneration in aging (Wennberg et  al., 2016). 
Amazingly, these experimental outcomes were significant in 
females but not in males, which is consistent with the analyses 
of the Framingham Heart Study (van Himbergen et  al., 2012). 
Consistent with the prediction that AdipoQ might be  included 
in neurodegenerative pathogenesis, histopathological studies of 
an autopsy of an AD brain demonstrated that AdipoQ was 
segregated into the neurofibrillary tangles by tau (Waragai 
et  al., 2016). AdipoQ also co-localized with Lewy bodies in 
the brain of dementia patients (Sekiyama et  al., 2014). Along 
with plasma data regarding AdipoQ, the overexpression of 
AdipoQ might be  associated with the progression of 
neurodegenerative disorders like AD. In a retrospective cohort 
study, Qizilbash et  al. (2015) examined the involvement of 
BMI in developing dementia. Both underweight middle-aged 
and elderly people displayed an elevated probability of developing 
dementia within the next two decades. The presence of dementia 
started to decline with an increase in BMI, with highly obese 
patients (BMI >40 kg/m2) developing a 29% reduction (95% 
CI: 22-36) in the possibility of developing dementia than those 
of healthy-weight individuals.

Until now, the mode of hyperadiponectinemia in AD has 
not been clear. Hyperadiponectinemia in AD is expected to 
be  a compensatory response to the lower efficiency of the 
insulin/insulin-like growth factor 1 (IGF-1) receptor signaling 
cascade during neurodegeneration (Waragai et  al., 2017). 
As the disease progresses, AdipoQ might be  increased as 
well as sequestered by tau, which ultimately leads to the 
aggregation of neurotoxic proteins in the AD brain (Figure 2; 
Waragai et al., 2016, 2017). A different alternative mechanism 
is that the misfolding of AdipoQ might downregulate the 

insulin/AdipoQ signal transduction network causing the 
reduction of neuroprotective and neurotrophic functions 
(Waragai et al., 2017). Therefore, it is expected that a mutation 
of AdipoQ may trigger synaptic dysfunction and neuronal 
death in AD.

CONCLUSION

Obesity in middle-aged people might be  considered as a 
critical factor in the development and progression of AD in 
the elderly. The higher possibility of people with obesity to 
develop AD reveals the ability of adipose tissue to connect 
with the brain and influence its activity. AdipoQ signaling 
has been found to interact with a variety of neuropathological 
incidents such as Aβ formation and deposition, tau 
hyperphosphorylation, neuroinflammation, insulin resistance, 
cognitive damage, and synaptic loss. The phenotypes of AdipoQ 
or AdipoQ receptor-knockout mice recapitulates most of the 
AD neuropathological features. Thus, abnormal AdipoQ 
signaling may induce obesity-mediated harmful effects on 
the CNS and increase the risk of cognitive impairment and 
AD. Notably, in the brain, restoring typical AdipoQ signaling 
might establish constructive, disease-modifying therapeutics 
to combat AD.
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