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Nascent adhesions are submicron transient structures promoting the early adhesion of

cells to the extracellular matrix. Nascent adhesions typically consist of several tens of

integrins, and serve as platforms for the recruitment and activation of proteins to build

mature focal adhesions. They are also associated with early stage signaling and the

mechanoresponse. Despite their crucial role in sampling the local extracellular matrix,

very little is known about the mechanism of their formation. Consequently, there is a

strong scientific activity focused on elucidating the physical and biochemical foundation

of their development and function. Precisely the results of this effort will be summarized

in this article.

Keywords: nascent adhesions, focal adhesions, integrin activation, integrin clustering, superresolution
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1. INTRODUCTION

Integrin-mediated adhesion of cells and the associated mechanosensing is of monumental
importance for the physiology of nearly any cell type (Kechagia et al., 2019; Samaržija et al., 2020).
Upon integrin activation, it often proceeds through the maturation of nascent adhesions (NAs) to
focal adhesions (FAs) (Figure 1), which are transient supramolecular assemblies, connecting a cell
to the extracellular matrix or another cell. NAs typically contain around 50 integrins (Changede
et al., 2015), and show a high turnover rate, with lifetimes of a bit over a minute (Choi et al.,
2008). FAs, which arise upon the maturation of NAs by recruitment of numerous proteins to
their cytoplasmic tails, form multimolecular integrin adhesion complexes. FAs are establishing
the linkage between the extracellular matrix (ECM) and the actin cytoskeleton (Winograd-Katz
et al., 2014). However, another cytoskeletal element, microtubules, also plays an important role in
adhesion and regulates the turnover of adhesion sites (Bouchet et al., 2016; Chen et al., 2018).

While the FAs have been studied extensively in the last decades (Geiger et al., 2009; Parsons
et al., 2010; Geiger and Yamada, 2011;Wehrle-Haller, 2012; Cooper and Giancotti, 2019; Green and
Brown, 2019), the smaller characteristic size of ∼100 nm diameter makes NAs significantly more
elusive (Changede et al., 2015). Studies of NAs require single molecule localization microscopy
(SMLM) techniques to image below the diffraction limit of conventional light microscopy, and,
furthermore, need to account for the short characteristic lifetime of few minutes (Changede
et al., 2015). The resulting scarcity of data associated with NAs makes the theoretical modeling
very difficult.
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FIGURE 1 | Formation of integrin mediated cell adhesion structures requires integrin activation (left), which induces macromolecular clustering into nascent adhesions

(middle), which upon maturation grow into focal adhesions (right). The key molecular players in this process are schematically represented as shown in the legend.

In our current understanding, the NA formation follows
three major steps (Sun et al., 2014). First, integrins activate,
going from a state of low to high affinity, potentially through
a conformational change. This can be induced by the binding
of activating proteins like talin or kindlin (Cluzel et al., 2005;
Humphries et al., 2007; Saltel et al., 2009; Ye et al., 2013; Ellis et al.,
2014; Changede et al., 2015), or by binding to a ligand (Barczyk
et al., 2010). In the second step, the integrins cluster into
NAs, which show similar structures on substrates of different
rigidities (Changede et al., 2015), and are not reliant on myosin
II (MII) activity (Choi et al., 2008; Bachir et al., 2014; Oakes
et al., 2018). Finally, these clusters are either disassembled, or they
mature into FAs and possibly further into fibrillar adhesions.

Despite the efforts leading to our current understanding,
the determinants of NA formation, turnover, or maturation,
as well as their role in mechanosensing and signaling, are
far from being fully resolved. However, the past two decades
witnessed the emergence of several novel optical imaging
techniques, technological advances in protein engineering and
mass spectrometry analysis, as well as the expansion of
theoretical modeling that now allow the investigation of protein
organization of NAs at the nanoscale. Motivated by these
perspectives, we here attempted to recapture recent advances in
the field, while identifying open questions which we believe will
be addressed in future research.

2. THE KEY MOLECULAR PLAYERS IN
NASCENT ADHESIONS

Nascent adhesion revolves around the formation of integrin-
ligand contacts between the cell and the extracellular matrix.
Integrins are cell adhesion proteins capable of sensing the
mechanical properties of the cell environment and providing

signals necessary for a number of cell functions including
proliferation, and migration (Horton et al., 2015; Cooper
and Giancotti, 2019; Green and Brown, 2019; Humphries
et al., 2019; Michael and Parsons, 2020). In humans, this
broad range of functionalities is maintained by 24 integrin
heterodimers (Shimaoka and Springer, 2003) built from 18 α-
and 8 β-subunits forming a headpiece and two legs (Xiong, 2001).
Several combinations of α and β subunits forming a heterodimer
are possible (Hynes, 2002; Campbell and Humphries, 2011).
However, only integrins assembled as heterodimers in the
endoplasmic reticulum are expressed on the cell surface.
Therefore, the composition of the plasma membrane integrin
repertoire cannot be reliably predicted by the mRNA expression
levels (Hynes, 2002) of integrin subunits. Integrin expression
can be regulated by modulating their internalization and
recycling, which contributes to the dynamic remodeling of
adhesion (Moreno-Layseca et al., 2019).

Most integrins promiscuously bind to several ligands.
Furthermore, their interactions are also extremely redundant,
as different integrins bind to the same ligand (Humphries
et al., 2006). Therefore, the 24 heterodimers are broadly
categorized by their specificity to the ECM as (i) Arg-Gly-Asp
receptors, binding to fibronectin, fibrinogen, and
thrombospondin, (ii) laminin receptors, (iii) collagen receptors,
and finally (iv) leukocyte-specific receptors binding to different
cell surface receptors such as intercellular adhesion molecule
and some ECM proteins (Humphries et al., 2006; Takada et al.,
2007; Barczyk et al., 2010). Additional ligands relevant in the
immunological context are the intercellular adhesion molecules,
immunoglobulin superfamily members present on inflamed
endothelium, and antigen-presenting cells. From the four
groups, however, only the first three are considered to contribute
to NAs.
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Integrin binding and clustering is promoted by, and
contributes to the formation of multimolecular integrin
adhesion complexes involving up to 2,400 proteins together
termed adhesome. The composition of integrin adhesion
complexes have been first analyzed for cells seeded on
fibronectin (Zaidel-Bar et al., 2007; Kuo et al., 2011; Schiller et al.,
2011; Byron et al., 2015; Jones et al., 2015), identifying 60 core
proteins involved in the fibronectin-induced meta adhesome,
termed the consensus adhesome (Horton et al., 2015). One
particularly important family of molecules within the consensus
adhesome are the so-called adaptor proteins which bind to
the cytoplasmic tails of integrins and bridge to the actin-based
cytoskeleton. There are four potential axes that link integrins
to actin, all implicated in different stages of NA formation,
namely (i) integrin-linked kinase-particularly interesting
new cysteine-histidine rich protein-1-kindlin, (ii) focal
adhesion kinase (FAK)-paxillin, (iii) talin-vinculin
and (iv) α-actinin-zyxin-vasodilator-stimulated
phosphoprotein (Winograd-Katz et al., 2014; Horton et al., 2015,
2016; Humphries et al., 2019). Interestingly, some adaptors, such
as talin, also coordinate the microtubule cytoskeleton at adhesion
sites through the interaction with KANK proteins (KNmotif and
ankyrin repeat-containing proteins) (Bouchet et al., 2016; Sun
et al., 2016; Chen et al., 2018; Paradžik et al., 2020), which was
shown to stimulate FA turnover (Stehbens and Wittmann, 2012).
How early this connection is established and the implication to
NAs is still unresolved.

A lot of detail regarding integrin structure and interactions
with adaptor proteins is obtained from molecular dynamics
simulations, which starting with the seminal works on
conformational changes in activation (Puklin-Faucher et al.,
2006), addressed integrin unfolding (Chen et al., 2011),
differences in integrin transmembrane domains (TMDs) (Pagani
and Gohlke, 2018), talin-integrin interactions also regarding the
surrounding lipids (Kalli et al., 2017), and interactions with other
proteins (Shams and Mofrad, 2017).

Most integrin-related research, nevertheless, involves studies
of mature adhesions, particularly in the context of the relation
between the integrin adhesion and the cell physiology. This
relation revolves around signaling involves a number of kinases,
phosphatases, guanine nucleotide exchange factors, GTPase
activating proteins, and GTPases (Horton et al., 2016). From
the perspective of NAs, they so far have been discussed in
the context of the physiology of the FAs. However, with the
recently initiated debate that NAsmay themselves act as signaling
platforms, new perspectives in targeting NA-associated processes
emerge. However, harnessing these possibilities requires detailed
knowledge of the sensory role of NAs, their dynamic behavior,
and their regulation, which are all still poorly understood.

3. THE ONSET OF NASCENT ADHESION:
INTEGRIN ACTIVATION

Activation is the first step in the formation of NAs and is
associated both with a change in integrin affinity and the
binding of integrins to extracellular ligands (Calderwood, 2004).

Activation as a term is also used to signify the switch to
the extended-open (EO) conformation, which is, with the
bent-closed (BC) and the extended-closed states, one of three
major integrin conformations (Luo et al., 2007). All three
conformations may be specific to one or more ligands, with
affinity being conformation dependent (Wang et al., 2018), Often
though, the activated EO state is the one with the highest binding
affinity (Li J. et al., 2017). For example, prior to activation, the
BC state is the most common conformation of α5β1 in the K562
chronic myelogenous leukemia cell line, making up for around
99.76% of the population (Li J. et al., 2017). Simultaneously, the
extended-closed and EO states contribute with 0.09 and 0.15%,
respectively. However, α5β1 and α4β1 in the EO state have a
4,000–6,000 fold and a 600–800 fold higher affinity for a ligand
compared to the BC state (Li and Springer, 2018). Notably, these
affinities are measured for ligands in solution, where they do not
induce integrin clustering (Cluzel et al., 2005).

The changes of conformation may be introduced by
thermodynamic fluctuations of the integrin (Sun et al., 2019) or
strong membrane deformations (Gingras and Ginsberg, 2020),
but the switch is most often induced by the very association
of integrins with ligands, adaptor proteins or Mn2+. However,
Mn2+ may induce integrin conformations that can be different
from physiological ones (Ye et al., 2012). In the cellular
environment, the process within which integrins adopt the high
affinity state is cast into twomajor activationmodels (Wang et al.,
2018), the so-called outside-in, where the activation results from
binding to extracellular ligands (Barczyk et al., 2010; Park and
Goda, 2016), and inside-out, induced by cytoplasmic factors such
as adaptor proteins (Ye et al., 2010; Calderwood et al., 2013), for
example, by talin (Cluzel et al., 2005; Saltel et al., 2009; Park and
Goda, 2016) (Figure 2).

A number of cell-related studied addressed inside-out
activation. It is now established that already talin head domain
is sufficient to activate integrins (Calderwood et al., 1999)
and synergizes with kindlin (Ma et al., 2008; Bledzka et al.,
2012; Calderwood et al., 2013). This combination may promote
binding to multivalent ligands (Ye et al., 2013). However, there
seems to be a competition between talin and kindlin, as the
overexpression of kindlin-1 and kindlin-2 can both enhance and
reduce integrin activation by talin head domain, depending on
the integrin type (Harburger et al., 2009). In other cases, kindlin
overexpression showed only a small effect compared to talin head
domain (Shi et al., 2007; Ma et al., 2008; Ye et al., 2010, 2012,
2013).

Outside-in activation has been extensively studied both in cell
and cell-mimetic systems. As pointed out already in the seventies,
and then again by more recent work, the microenvironment of
the plasma membrane and cell glycocalyx may play a significant
role in the regulation of the receptor affinity for ligands (Bell,
1978; Dembo et al., 1988; Bihr et al., 2012; Fenz et al., 2017).
Namely, the membrane, by its elasticity and fluctuations can
induce switches from low to high affinity states (Figure 3),
even without changing the actual conformation of the proteins
binding the ligands (Fenz et al., 2011; Kim et al., 2020). This
mechanism of regulation of affinity was originally suggested by
theoretical modeling (Bihr et al., 2012), and was demonstrated
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FIGURE 2 | Mechanisms of integrin activation. In the outside-in activation, extracellular factors activate the integrin (Barczyk et al., 2010; Park and Goda, 2016),

subsequently stabilized by binding adaptor proteins to the cytoplasmic tail. In the inside-out activation, binding of cytoplasmic factors induces activation (Ye et al.,

2010; Calderwood et al., 2013), which primes the integrin for ECM binding. Integrins also stochastically switch between conformations.

for a variety of membrane associated ligand-receptor pairs (Bihr
et al., 2015; Fenz et al., 2017). It relies on the modulation of
membrane fluctuations in activating cells, and the expulsion of
the glycocalyx. However, although this mechanism should be
particularly relevant for the formation of NAs, its role for integrin
binding remains to be shown explicitly. Preliminary hints for
the role of this mechanism come from mimetic system where
a liposome bind to a bilayer by the establishment of integrin-
Arg-Gly-Asp bonds (Goennenwein et al., 2003; Smith et al.,
2008; Streicher et al., 2009). The strength of adhesion and the
number of formed integrin-Arg-Gly-Asp constructs depended
sensitively on integrin density and mobility, hence the capacity
to bind in proximity of an existing bond. This suggests that the
membrane indeed mediates correlations and affects the integrin
binding rates.

Binding of ligands allows for anchoring of integrins and the
exertion of forces. Interestingly, recent work showed that even
after the links with the cytoskeleton are fully established, most
integrins existed in a state of near-mechanical equilibrium (Tan
et al., 2020). This corroborates the idea that retractive actomyosin
force is presumably acting only in FAs and not so much in NAs.
However, the polymerization of actin in the cytoskeleton couples
to the membrane fluctuations, which furthermore couples to
the integrin bonds. Consequently, the unbinding rate of the
receptor in a particular conformation is directly affected (Bihr
et al., 2012), but also the free energy of BC, extended-closed
and EO states may change. The importance of this effect was
highlighted in the model of Li and Springer (2017), who find a
sigmoidal dependence of activation probability with respect to
the applied force, where activation here signifies binding of both
ligand and adaptor protein. This resulted in full activation of
all integrins over few pN for a wide range of adaptor protein
concentrations, permitting a quick response to mechanical
stimuli. Comparable behavior was found in fibroblasts, which
reinforce early integrin adhesions ≤ 5 s under load by binding
additional integrins (Strohmeyer et al., 2017). However, in this
case the force was not applied to the integrin themselves but to
the apical membrane of the cell. The response of this system can
thus be similar to integrin decorated vesicles subject to pulling
force, where the reinforcement was also observed as part of the
thermodynamic response of the entire system (Smith et al., 2008).

Recent experiments revealed that upon mechanical stretching
(2 to 5%) FA integrin β3 displacements closely followed the
substrate’s elastic displacements (Massou et al., 2020). Such
behavior revealed that most stationary integrins inside and
outside of FAs remained connected to fibronectin. Moreover,
the same platform allowed to investigate whether proteins
mediating a dynamic mechanical coupling of integrins to F-actin
follow or deviate from integrins’ elastic behavior (Massou et al.,
2020). Massou et al. concluded that the spatiotemporal force
fluctuation in FAs probably emerges from the heterogeneous
tensional/connective states of proteins at the nanoscale (Massou
et al., 2020).

The response of individual integrins to local force has to be
considered also in the context of the catch-bond effect. Namely,
unlike slip bonds, which subject to force show an increase in
the unbinding rate (Bell, 1978), catch bonds are stabilized by
force (Dembo et al., 1988). So far, in the case of integrins, both
behaviors were found for different force regimes, which lead
to the introduction of the term catch-slip bond. The latter was
observed for example for α5β1 (Kong et al., 2009), α4β1 (Choi
et al., 2014), and αLβ2 (Chen et al., 2010). In the case of α5β1,
catch bond formation seemed to involve the headpiece, but not
integrin extension (Kong et al., 2009).

Other distinct mechanisms that, similarly to catch bonds,
strengthen integrin attachments in a force dependent manner are
cyclic mechanical reinforcement (Kong et al., 2013), and the so
called dynamic catch (Fiore et al., 2014). In cyclic mechanical
reinforcement, an increase of bond lifetime occurs over several
loading-unloading cycles. In dynamic catch, the force response
is regulated synergistically by the binding of an additional
co-receptor to form a trimolecular complex with the integrin
and the common ligand. In mimetic, actin free systems, cyclic
application of force also resulted in bond-strengthening (Smith
et al., 2008), which was shown to emerge from a thermodynamic
response of the integrin ensemble. Application of a pulling
force (Smith and Seifert, 2005) induced a regrouping of bonds
from sparse configurations to clusters in which cooperative
response is allowed (strengthening each bond on average), and
a new thermodynamic state is established (Smith et al., 2008).

Despite all these efforts and insights, since the sequence of
binding events in a cell is not yet fully established, activation
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FIGURE 3 | (A) Membrane deformations, for example through curvature or thickness changes, can disrupt integrin TMD interactions, increasing fluctuation induced

affinity modulation (Gingras and Ginsberg, 2020). (B,C) The amount of interaction of an integrin with a ligand presenting counterpart effectively alters the integrin

binding affinity (Schmidt et al., 2012; Fenz et al., 2017) in a membrane fluctuation and therefore also glycocalyx dependent manner. The red area in (B,C) shows the

positional distribution of the integrin head as a result of membrane fluctuations. The small fluctuations in (B) result in no integrin-ECM contact, whereas the high

fluctuations in (C) result in stochastic integrin-ECM contacts, allowing stochastic binding and creating high affinity regions around the initial bond.

is still heavily studied. As elaborated above, various possibilities
for activation are available, but to what extend the cell relies
on the different mechanisms remains to be clarified. Due to
the stochastic nature of molecular binding, different types of
activation could take place simultaneously on the cell surface.
Upregulating certain molecular players then only changes the
probability for observing a certain pathway. How is the whole
process regulated? Does the cell choose to shift the balance
toward a particular activation mechanism, and if so why and how
are just some of the questions which will need to be answered in
the future.

4. FORMATION OF INTEGRIN CLUSTERS

Clustering of integrins (Figure 4), with and without the help
of adaptor proteins and independent of F-actin (Cluzel et al.,
2005) and MII activity (Choi et al., 2008), builds the second
step of NA formation. Understanding of this process is greatly
facilitated by the emergence of super-resolution microscopy
(SR) techniques. The latter provide optical images with spatial
resolutions below the diffraction limit of light of the order of
∼ 100 nm (Sigal et al., 2018). Therefore, it should be possible to
resolve the dynamic nanoscale organization of NAs and the force
transduction across individual components within FAs. However,
quantitative investigations of NAs are still lacking. The main
reason is that existing SMLM techniques require cluster analysis
tools, which have been developed for relatively simple cases,
such as membrane protein clusters without strong heterogeneity
in size, shape, and density (Nicovich et al., 2017; Nieves and
Owen, 2020). Several studies have addressed this by designing
novel approaches to investigate the inner architecture of NAs
and FAs, such as one based on the expectation-maximization
of a Gaussian mixture (EMGM) (Deschout et al., 2017). The
imagining was carried out on specifically bio-functionalized
substrates, on which ordered patterns of nanoscale adhesive
spots were provided (Arnold et al., 2004). Such substrates
have already been used to probe the behavior of FAs on the
nanoscale (Geiger et al., 2009; Schvartzman et al., 2011). In this
way, the spatial organization of FA binding sites is precisely
controlled, ensuring that the observed substructures are not
substrate artifacts. Application of this improved EMGM method

on the photoactivated localization microscopy (PALM) data
showed that FAs are composed of structures with areas between
0.01 and 1 µm2, containing 10 to 100 localizations, and exhibiting
strong eccentricities (Figure 5). This approach is very promising
for studies of NAs, and may in future provide new insights in the
cluster formation.

So far, however, various nanoscale distributions have been
observed for integrins. Clusters as small as 2–3 integrins were
reported using electron microscopy (Li, 2003), while clusters
observed in SMLM range from tens to hundreds of molecules.
Some of the first application of SR techniques yielded 100 nm
large NAs, containing on average 50 integrins (Changede et al.,
2015). This data is contrasted by a more recent work with
improved EMGM method used on PALM data, when it was
determined that FAs cover areas between 0.01 and 1 µm2. Using
EMGM, localization uncertainties, an important and unavoidable
aspect of any SMLM experiment, could be corrected, showing
that the assemblies contained 10 to 100 localizations, and
exhibited strong eccentricities (Deschout et al., 2017). Notably,
most existing SMLM clustering methods ignored this effect,
which can lead to substantial overestimation of the size of
identified localization structures.

While the dynamic behavior of NAs is still an open problem,
it is nevertheless clear that clusters allow for quick rebinding
after bond failure (Bihr et al., 2012; Sun et al., 2019), and
the control over maturation or disassembly (Schmidt et al.,
2015). Furthermore, clusters could serve as platforms for rigidity
sensing (Wolfenson et al., 2016), however it is still unclear which
point in the process of NA assembly corresponds to the onset
of signaling.

In the absence of detailed microscopy studies, even the
necessary conditions for the formation of these meta-stable
aggregates are unclear. Some studies report that integrin
activation is indispensable for clustering (Cluzel et al., 2005),
promoting the nucleation of new structures (Saltel et al., 2009).
These results are contrasted by experimental findings that show
both active and inactive integrin nanoclusters in FAs (Spiess
et al., 2018), obtained using extended state specific antibodies
that co-localized with talin, kindlin-2 and vinculin. The existence
of inactive clusters could suggest the affinity for ligands in the
inactive states is sufficiently large to promote nucleation of
domains, although with smaller probability than in the active
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FIGURE 4 | Current picture of integrin clustering. (A) Initial liganded integrins create a region with increased integrin binding probability, by membrane and glycocalyx

deformation, which effectively attracts integrins while pushing out the glycocalyx. (B) Clustering is further amplified by multivalent ligands, dimerizing adaptor proteins,

established scaffolding structures through cytoplasmic factors as well as TMD interactions (Gingras and Ginsberg, 2020).

state. Alternatively, one could conclude that ligand binding is not
necessary for clustering, although it is possible that ligand bound
states preceded cluster formation.

With mobile ligands, on the other hand, Mn2+ activated
integrins formed small adhesion domains, which significantly
increased in size if integrins themselves were maintaining lateral
mobility prior to establishing bonds (Smith et al., 2008). In
this case, the clustering of bound integrins was mediated by
the deformed membrane. The nature and magnitude of these
forces could be clearly elucidated (Janeš et al., 2019), and were
proposed to play an important role in the cluster nucleation
and growth (Bihr et al., 2012). Given that these types of
interactions are not protein specific, they should also be seen in
other ligand-receptor systems. Indeed, correlations in membrane
dynamics and topography with cell spreading was reported
recently in several studies of cell adhesions (Perez et al., 2008;
Pierres et al., 2008; Lam Hui et al., 2012), and systematically
in reconstituted passive systems based on giant unilamellar
vesicles (Smith and Sackmann, 2009), including those involving
integrins (Goennenwein et al., 2003; Smith et al., 2008; Streicher
et al., 2009). However, this mechanism remains to be directly
confirmed for integrins in the cellular context.

Most of membrane-related mechanisms include the existence
of the cellular glycocalyx implicitly (Bruinsma et al., 2000; Smith
and Sackmann, 2009), which was indeed found to play an
important role in integrin clustering (Paszek et al., 2014). The
compression and consequent expulsion of glycocalyx, by the
formation of the initial bond primes the surroundings for further
interactions. Concomitantly the membrane deforms toward the
ligand (Janeš et al., 2019), creating a microenvironment in which
the additional bonds have a much higher likelihood to form (Bihr
et al., 2015; Fenz et al., 2017) (Figures 4, 6B). The tension
on the bond furthermore increases their lifetimes (Kong et al.,
2009), in a synergistic fashion. These effects can be further
strengthened by membrane thermal (Helfrich, 1978) and active
fluctuations (Turlier and Betz, 2018), which adds to the portfolio
of forces acting on NAs, the latter being regulators of adhesion
formation (Li and Springer, 2017; Strohmeyer et al., 2017; Oakes
et al., 2018).

While the interplay between these many factors contributing
to the NA formation in its early stages is not yet fully understood,

there is a consensus that integrin activation increases binding to
anchored, clustered ligands. Specifically, strong increase in the
number of spreading cells was found for a basic pattern of 4
ligands at ∼ 60 nm distance compared to 3 ligands at the same
density (Schvartzman et al., 2011). If formation of NAs is seen
as nucleation process, this result would suggest that the critical
number of bonds to achieve a stable adhesion domain is around
three, which well corresponds to theoretical predictions (Bihr
et al., 2012). A similar result was confirmed by an agent-based
model (Jamali et al., 2013), where large agglomerates of ligands
provide the largest integrin clusters.

Simulations can also account for the competition between
ligand binding and clustering different integrin types, as
demonstrated on the example of β1 and β3. Closely spaced
multivalent ligands promoted clusters of more than two
integrins. Weak lateral intra-integrin interactions allowed
transient dimer interactions with switching partners (Brinkerhoff
and Linderman, 2005) but they also led to smaller number of
integrins in the cluster (Bidone et al., 2019).

One scenario suggests that the link between integrin activation
and clustering emerges from the lateral interactions between tails
of TMDs (Li, 2003; Mehrbod and Mofrad, 2013; Ye et al., 2014).
However, limited size of NAs (Changede et al., 2015; Changede
and Sheetz, 2017) requires further regulation of such interactions.
Moreover, the necessary activation energy between TMDs also
seems too high to overcome without help (Mehrbod andMofrad,
2013). In addition, the TMD could not drive the clustering in
Mn2+ activated integrins, without ligands present (Cluzel et al.,
2005).

Besides ligands, a number of adaptor proteins have been
involved in cluster formation. The most prominent examples
are kindlin (Ye et al., 2013; Changede et al., 2015) and talin
(particularly its head domain) (Cluzel et al., 2005; Saltel et al.,
2009; Calderwood et al., 2013; Changede et al., 2015), that have
been already implicated in integrin activation (Moser et al., 2008;
Zhang et al., 2008; Ye et al., 2013; Theodosiou et al., 2016). Both
kindlin (Kammerer et al., 2017; Li H. et al., 2017) and talin (Golji
andMofrad, 2014) have a capacity for dimerization. For example,
talin rod, which, using its integrin binding site, can rescue
clustering in talin depleted cells (Changede et al., 2015). However,
the efficiency of talin rod fragments was found to be inferior to
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FIGURE 5 | EMGM analysis of PALM data of integrin β3 on nanopatterned substrates. (A) Shown here are summed TIRF images of the mEos2 off-state of fixed REF

cells expressing integrin β3 labeled with mEos2, growing on nanopatterned substrates with 56- or 119-nm spacing between the AuNPs. (B) Shown here are zoom-in

PALM images corresponding to the red rectangles in (A). (C) Given here is the result of the EMGM analysis of the PALM data shown in (B). The red dots symbolize the

localizations,and the blue ellipses symbolize the 2σ error ellipses of the mixture components. (D–F) Given here is the result of the EMGM analysis of PALM data

corresponding to different REF cells (n = 10). The number of localizations in each mixture component is shown as a function of the area of its 2σ error ellipse, for (D)

fibronectin-coated substrates, (E) nanopatterned substrates with 56-nm spacing, and (F) nanopatterned substrates with 119-nm spacing. The dashed white rounded

rectangles in (D,E) are visual guides. [Figure and figure caption reproduced from (Deschout et al., 2017), figure reference omitted]. Reprinted from Biophysical Journal,

113, Hendrik Deschout, Ilia Platzman, Daniel Sage, Lely Feletti, Joachim P. Spatz, Aleksandra Radenovic, Investigating Focal Adhesion Substructures by Localization

Microscopy, 2508-2518, Copyright (2017), with permission from Elsevier.

the full length talin (Saltel et al., 2009). This points to a possible
synergy between dimerization and binding the monovalent, and
even more so for multivalent ligands with larger stoichiometries
(Figures 4B, 6A), which can be perfectly well-understood on the
basis of cooperative binding within the membrane.

These potentially complex stoichiometries are, however, a
challenge for SMLM. Complex photo-physics of interacting
fluorophores can lead to over-counting of molecules at a

given location (Annibale et al., 2011a). This complicates
the accurate determination of protein stoichiometries from
the data. It is, however, possible to estimate the number
of labeled-proteins contained in a single cluster (Annibale
et al., 2011b; Baumgart et al., 2016; Spahn et al., 2016; Pike
et al., 2019), but more accurate quantifications are needed
and their accuracy demands further validation. A recently
developed supervised machine-learning approach to cluster
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FIGURE 6 | Different theoretical models of the NA formation. (A) In the Monte Carlo simulation by Brinkerhoff and Linderman, dimerization interactions between

integrins, as well as spatial ligand distribution patterns are studied (Brinkerhoff and Linderman, 2005). They find that clustered ligand islands can increase integrin

clustering, as dimerization interactions between immobile, ligand-bound integrins and mobile, unbound integrins can guide the latter toward unoccupied spots on the

same ligand island. The lattice shown here is simplified compared to the one used in the publication for illustration purposes. (B) The coarse-grained Monte Carlo

simulation in Fenz et al. (2017) allows a detailed look at one source of spatial integrin interaction, namely membrane and glycocalyx deformations (Fenz et al., 2017).

Repulsions between cell and substrate, stemming among others from the shape and size of glycocalyx proteins, can result in a mismatch between the equilibrium

separation of the two surfaces h0 and the combined size of integrin and ligand l0. The initial bond formation therefore has to be accompanied by a membrane

deformation, imposing an additional energy cost. After initial bond formation, however, the surrounding membrane is already partly deformed, reducing the energy

cost of forming additional integrin-ligand bonds, which can locally increase the rate of bond formation by several magnitudes, as well as stabilize these bonds against

dissolution. (C) MacKay and Khadra employ rate equations to study the NA formation (MacKay and Khadra, 2019). Here the NA is defined not by their integrin

content, but solely by an area of cytoplasmic adaptor proteins, which, through stochastic binding and unbinding, build the backbone of the NA, the so-called adhesion

plaque. Integrins inside the plaque can bind with the surrounding adaptor proteins, which stabilizes them against unbinding, allowing a sustained or even growing NA.

(D) In the rate equation model by Welf et al., the growth of NAs is driven by the PIP2-talin interaction. A feedback loop between PIP2 generation, subsequent release

of talin autoinhibition, which, in turn, activates further integrins, can result in a sudden increase in bound integrins after the initial bond formation (Welf et al., 2012).

analysis can be an interesting candidate to cope effectively
with NAs sample heterogeneity (Williamson et al., 2020). It
was successfully applied on data of the C-terminal Src kinase
and the adaptor PAG in primary human T cell immunological
synapses (Williamson et al., 2020), but was not yet tested
for talin-integrin complexation or even more generally on
NA data.

Talin rod has an additional property important for
the formation of NAs, namely it possesses a binding
site for vinculin. Vinculin is a cytoskeletal protein with
binding sites, besides talin, for actin, α-actinin, and lipids
and it is usually associated with the force transmission.
However, recently it was found that the talin rod domain is
available to vinculin in a force-independent manner upon
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the release of talin autoinhibition (Dedden et al., 2019;
Atherton et al., 2020). This would suggest that vinculin
could play a role in NAs even before the cytoskeletal forces
are involved.

The integration of vinculin could be facilitated by PI(4,5)P2.
This phospholipid regulates talin-integrin interactions at the level
of the membrane. Its association with the β3 units opens a
binding site for the integrin on the talin head, hence controlling
the talin auto-inhibition. Furthermore, the PI(4,5)P2 interaction
with the integrin creates a salt bridge toward the membrane
that prevents the close interactions of the α and β subunits.
Therefore, the integrin remains in an activated, clustering-
competent state (Cluzel et al., 2005; Saltel et al., 2009; Dedden
et al., 2019). Consistently with these findings, sequestering of
PI(4,5)P2 diminishes the formation of clusters (Cluzel et al.,
2005).

One more protein strongly investigated in the context
of integrin-clustering is α-actinin (Sun et al., 2014). It is
microfilament protein necessary for the attachment of actin.
Both positive and negative effects were demonstrated for β1

and β3 integrins, respectively (Roca-Cusachs et al., 2013; Shams
and Mofrad, 2017), which could relate to an integrin crosstalk
strategy (Bharadwaj et al., 2017). However, its role in clustering is
still debated (Theodosiou et al., 2016).

This large number of molecular players involved through
various interactions poses a significant challenge for
comprehending the formation of NAs. A promising approach
that can address this diversity is theoretical modeling based on
rate equations (Zhu and Williams, 2000; Schwarz et al., 2006;
Li et al., 2010; Walcott and Sun, 2010; Harland et al., 2011).
An early attempt focused purely on the talin-PIP2 interaction
(Figure 6D) and is therefore limited in scope (Welf et al., 2012).
However, more recently, emulating the formation of entire
NAs has been attempted (MacKay and Khadra, 2019). In the
latter case, a higher emphasis is set on the crosslinking function
of adaptor proteins (Figure 6C). The model reproduces some
features found in experiments, for example the limited area of
NA, even at high integrin density. It also predicts unliganded
clusters. Actually, the model defines NAs as plaques of adaptor
proteins and not as integrin clusters. Integrins stabilize the
plaque but are not required, which allows for the possibility of
preclustering adaptor proteins in the absence of integrins.

5. CLUSTER DISASSEMBLY OR
MATURATION

Clustering of NAs into FAs or disassembly is the last step in the
NA life time. The fate of NAs depends on the cell type, protein
composition, andmechanical properties of the substrate (Parsons
et al., 2010), as well as the attachment to the actin cytoskeleton
and both MII isoforms (Vicente-Manzanares et al., 2007).

Most NAs disassemble when the lamellipodium moves past
them (Choi et al., 2008) following one of several competing
ways of NA disassembly, as discussed in the literature (Gardel
et al., 2010). Particularly, well-studied is the role of the
non-receptor tyrosine kinase FAK that is known to regulate

adhesion disassembly (Webb et al., 2004), possibly through talin
proteolysis (Lawson and Schlaepfer, 2012). In addition, FAK
might be inhibited at the leading edge of the lamellipodium
through interactions with Arp2/3, a protein complex that is
related to the actin branching (Swaminathan et al., 2016). Because
the regulation of rearrangements of the actin cytoskeleton is
crucial for filopodia extension (He et al., 2017) and lamellipodia
formation (Small et al., 2002), FAK is implicated in the spatial
control of the advance of the leading edge and the NA
disassembly. This regulation is facilitated by the binding of FAK
to paxillin, which is also recruited by kindlin (Humphries et al.,
2007; Böttcher et al., 2017; Zhu et al., 2019), to further control
the adhesion turnover (Shan et al., 2009; Choi et al., 2011).
Interestingly enough, vinculin, can impede the FAK-paxillin
interaction (Subauste et al., 2004), while FAK may play a role in
recruiting talin toNA sites (Lawson and Schlaepfer, 2012; Lawson
et al., 2012), as well as Arp2/3 (Lawson and Schlaepfer, 2012).
As FAK also plays an important role in signaling (Swaminathan
et al., 2016), it is difficult to unravel the precise dynamical
interactions in NAs.

Another simple way to dissolve NAs is by offering soluble
ligands (Cluzel et al., 2005). The latter either exhibit a lateral
pressure on the NA site or they compete for the integrin upon
stochastic unbinding (Smith et al., 2006). Since the 3D affinity of
soluble ligands is always larger than the 2D affinity of surface-
confined ligands, the cluster becomes unstable.

Alternative to disassembling is the sequential maturation of
NAs into FAs, and in some cases, to centrally positioned fibrillar
adhesions enriched in tensin and integrin α5β1 (Iwamoto
and Calderwood, 2015). The inhomogeneous structure of these
assemblies were observed already over a decade ago using
PALM for imaging FA proteins (Betzig et al., 2006). Just 1
year later, Shroff et al. used dual-color PALM to determine
the ultrastructural relationship between different pairs of FA
proteins (Shroff et al., 2007). The consensus today is that
integrins bind via talin and other adaptor proteins with the
actin cytoskeleton, allowing MII generated forces to act on the
clusters (Yu et al., 2011). Under force the bonds strengthen,
and tilt in the direction of the retrograde actin flow (Nordenfelt
et al., 2017). The reinforcement of integrin assemblies is further
promoted by the recruitment of vinculin (Huang et al., 2017),
the crosslinking by myosins (Burridge and Guilluy, 2016), and
the exposure of force-dependent cryptic binding sites (Ciobanasu
et al., 2014; Yao et al., 2015, 2016) that allow for the attachment
of other adhesome proteins. Finally, through mature adhesions,
force is propagated from the ECM to the actin cytoskeleton
over the unfolding talin that permits vinculin binding (Asaro
et al., 2019), resulting in a strong signaling cascade and
mechanoresponse along the adhesome, that regulates a number
of physiological processes in cells.

6. CHALLENGES AND PERSPECTIVES IN
THE FIELD OF NASCENT ADHESIONS

As presented in the above discussion, many molecular players
contributing to the formation of NAs have been identified,
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and their mutual interplay have been established, although
further investigation of specific interactions is necessary. For
example, very little is known about the crosstalk between
integrins of the same and different types, recently reported
for early adhesions (Bharadwaj et al., 2017; Strohmeyer et al.,
2017; Diaz et al., 2020; Samaržija et al., 2020). However, new
research avenues in studying molecular interactions in NAs
can emerge only from advances in the development of robust
quantitative colocalization analysis (Levet et al., 2019). This needs
to be accompanied by progress in genome editing and novel
protein labeling strategies that could enable quantitative SR. So
far, only very few colocalizations of active integrins with talin
and kindlin (Spiess et al., 2018) and vinculin and talin (Xu
et al., 2018) could be observed. This can be either a technical
issue, associated with protein expression, probe photophysics,
and the limited choice of labeling pairs and fluorophores.
It could also point to unknown integrin regulators (Spiess
et al., 2018), and hidden interactions that remain to be
revealed. For this purpose, molecular dynamics simulations
will become increasingly important as they provide unmatched
details in competing binding interactions (e.g., Mehrbod and
Mofrad, 2013). With appropriate level of coarse-graining, larger
complexes and slower structural changes are coming within reach
of molecular dynamics simulations, which now can explicitly
address integrin activation and clustering.

Probably, however, the most acute issue is the spatiotemporal
evolution of NAs and the role of complex stoichiometries.
Namely, the dynamics of NAs is subject of intense debate as
the constitutive clusters could be either stationary or showing
stochastic transient immobilization (Spiess et al., 2018). This
problem is very closely related to the sensory capacity of
NAs and the onset of signaling, that are equally understood.
Resolution of these open questions requires new techniques
that can deal with the fast molecular turnover within NAs.
However, this is still a significant challenge for the singlemolecule
localization microscopy (Orré et al., 2019) such as PALM (Betzig
et al., 2006), stochastic optical reconstruction microscopy (Rust
et al., 2006) or super-resolution optical fluctuation imaging
(Dertinger et al., 2009). First promising insights into the
dynamics of NAs nevertheless were provided by the single
particle tracking PALM (Inavalli et al., 2019), which revealed
integrin cycling between free diffusion and immobilization, while
transient interaction with talins promoted integrin activation and
immobilization (Rossier et al., 2012). Further studies of integrin
dynamics will require techniques such that can operate at micro
second-time scales with 1 nm precision of molecules located few
nanometers apart. An example of such a method is minimal
photon fluxes nanoscopy (Balzarotti et al., 2017), although other
approaches are starting to appear and will need to be employed
in the research of NAs.

Another challenge in studies of NAs is the impact of force.
Although not strictly related to actomyosin activity, forces on
integrin complexes arise due to the spacial confinement of the
molecular players and result in load-dependent competition for
binding partners. Different sources of forces may play a role in
NA formation, prior to their maturation into FAs. Specifically,
the glycocalyx and the membrane are anticipated to generate

relatively strong tensions and direct stochastic forces on the
individual integrins and the clusters (Paszek et al., 2014; Li
and Springer, 2017; Strohmeyer et al., 2017; Sengupta and
Smith, 2018). The understanding of these effects relies on the
development of force sensors (Tan et al., 2020), and techniques
which combine the force application with SR. Furthermore, given
the intrinsically non-equilibrium and noisy setting, theoretical
support in formulating and validating the appropriate hypothesis
on the role of confinement is necessary.

A particularly useful tool in the research of integrin adhesion
so far have been functionalized substrates (Goennenwein et al.,
2003; Schvartzman et al., 2011; Liu et al., 2014; Changede
et al., 2019). Manipulation of stiffness, spatial coordination and
mobility of binders allowed to provide mechanical cues which
could be exploited to resolve the response of different cell models.
Based on this long standing success, it is expected that patterned
substrate will continue to play an important role in studies of
NAs. Especially interesting should be their combination with
specifically designed cell models that express different types of
integrins on the plasma membrane surface.

Furthermore, these substrates could be very successfully
combined with reconstituted systems. The latter serve as an
ideal bridge between the biological complexity and theoretical
modeling. Reconstituted systems, typically based on giant lipid
vesicles, were instrumental in elucidating the role of mechanical
properties of binders, as the role of the receptor and ligand
density and mobility in the cell recognition process (Smith
and Sackmann, 2009). Furthermore, vesicle-substrate adhesion
was successfully used to study the physical mechanisms that
regulate ligand-receptor binding, including the role of stochastic
membrane deformations, fluctuations and composition, as well
the steric repulsion role of the glycocalyx (Sengupta and Smith,
2018). However, the simplicity of these assemblies may not
represent the appropriate biological complexity of NAs. To
circumvent that issue, more recently droplet-stabilized giant
unilamellar vesicles were designed that can be sequentially loaded
with talin and kindlin (Weiss et al., 2018). These systems show
great potential for the studies of NAs, and could be used to
drive the development and validation of theoretical models and
simulations used to describe the growth process.

At the current stage, most theoretical models that attempt
to capture the formation of NAs account for the molecular
complexity of the system, but capture the bio-mechanical
context only implicitly, if at all. There is also another
class of models that is capable of resolving the stochastic
nature of NA formation and the forces acting on the bonds
with relatively high level of detail, but they are nearly
void of molecular information. Future efforts are likely
to bring closer these two distinct families of approaches,
with the aim of providing a more reliable foundation
that is required to capture the development of NAs in a
predictive manner.

Finally, it is a hope that the lessons learned in the studies
of NAs may be useful in the context of other integrin-
based structures. For example, in hemidesmosomes, linked
to the internal keratin intermediate filament network, α6β4
integrins mediate adhesion of epithelial cells to the underlying

Frontiers in Physiology | www.frontiersin.org 10 December 2020 | Volume 11 | Article 574371

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Henning Stumpf et al. Recent Advances in Nascent Adhesions

basement membrane (Walko et al., 2015). In reticular adhesions,
which serve to maintain the attachment of cells to the
extracellular matrix during mitotic rounding and division, αVβ5
integrins, clathrin and endocytic adaptors also form adhesive
complexes (Grove et al., 2014; Elkhatib et al., 2017; Leyton-
Puig et al., 2017; Lock et al., 2018, 2019). Currently, it is not
known whether these different types of adhesion have precursor
structures analogous to NAs. However, it is highly likely that
tools, methods and approaches developed in studies of NAs may
prove to be useful in these potentially different settings.

In closing, we strongly believe that joint advances in SR, the
development of model systems and technology for manipulations
of proteins, as well as theoretical approaches are required to
further propel our understanding in molecular mechanisms
of integrin organization, stoichiometry and dynamics at the
nanoscale. This will not only allow us to rationalize the
observed phenomena, but also gain important concepts and
tools that can be used to resolve the physiological role of
integrin based structures, but can be further applied beyond the
NA research.

Integrin involvement in pathological conditions is mostly
the consequence of changes in the expression, either up- or
down-regulation. Prominent examples here are tumorigenesis
but also the response to chemo- or radiotherapy (Cooper and
Giancotti, 2019). Therefore, integrin repertoire changes are an
active target for drug development in tumors with the potential
to inhibit metastasis, as well as to overcame resistance to
chemotherapy or radiotherapy. However, despite convincing
experimental evidence that demonstrates the capacity of integrin
inhibitors and monoclonal antibodies to contribute to inhibition
of cancer progression, metastasis, or boost therapeutic effects,
no integrin-targeting drugs have been registered as anti-cancer
drug (Desgrosellier and Cheresh, 2010; Seguin et al., 2015;
Dickreuter and Cordes, 2017; Hamidi and Ivaska, 2018; Alday-
Parejo et al., 2019; Cooper and Giancotti, 2019). Integrins
are, nonetheless, used as targets in the prevention of blood
clots during the opening of blood vessels in the heart (Tam
et al., 1998), multiple sclerosis (Polman et al., 2006) and
Crohn’s disease (Gordon et al., 2001; Rosario et al., 2017).

Furthermore, since the accumulation of disorganized ECM is
modulated by several integrin heterodimers via activation of

latent transforming growth factor-β , the selected integrins are
considered as promising therapeutic targets for fibrosis (Kim
et al., 2018). Besides integrin up- or down-regulation, integrin
mutations are also associated with some diseases like junctional
epidermolysis bullosa, caused by mutations in either integrin
subunit of integrin α6β4 forming hemidesmosomes or integrin
α3, which pairs with β1, forming FAs (McGrath, 2015;
Walko et al., 2015). Furthermore, integrin related diseases
may also be caused by impaired activation as observed on
platelets and leukocytes (Alon and Etzioni, 2003). Integrins are
also involved in bacterial (Hoffmann et al., 2011) and viral
infections, either in attachment or internalization (Hussein et al.,
2015), thus representing possible target molecules to combat
infectious diseases.
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