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Deoxythymidine triphosphate (dTTP) is essential for DNA synthesis and cellular growth
in all organisms. Here, genetic capacity analysis of the pyrimidine pathway in insects
and their symbionts revealed that dTTP is a kind of metabolic input in several host
insect/obligate symbiont symbiosis systems, including Bemisia tabaci MED/Candidatus
Portiera aleyrodidarum (hereafter Portiera). As such, the roles of dTTP on both sides
of the symbiosis system were investigated in B. tabaci MED/Portiera. Dietary RNA
interference (RNAi) showed that suppressing dTTP production significantly reduced
the density of Portiera, significantly repressed the expression levels of horizontally
transferred essential amino acid (EAA) synthesis-related genes, and significantly
decreased the reproduction of B. tabaci MED adults as well as the hatchability of their
offspring. Our results revealed the regulatory role of dTTP in B. tabaci MED/Portiera
and showed that dTTP synthesis-related genes could be potential targets for controlling
B. tabaci as well as other sucking pests.

Keywords: Bemisia tabaci MED, candidatus portiera aleyrodidarum, deoxythymidine triphosphate, RNAi, pest
control

INTRODUCTION

Sucking insects harbor intracellular symbionts such as obligate symbionts and facultative
symbionts, which affect the fitness of their host in many ways (Baumann, 2005; Ferrari and Vavre,
2011; Douglas, 2015). These intracellular symbionts provide essential nutrients for their hosts
(Zientz et al., 2004; Douglas, 2015), protect their hosts from natural enemies and stress (Oliver et al.,
2003; Oliver and Higashi, 2019; Zhang et al., 2019) and suppress the plant defense of their hosts
(Frago et al., 2012). Because obligate symbionts have reduced genomes and lose many functional
genes (McCutcheon and Moran, 2011; Moran and Bennett, 2014), they generally require their host
to provide metabolic inputs (Martinez-Cano et al., 2014; Wilson and Duncan, 2015). To date,
metabolic inputs supplied by hosts have been shown to directly participate in the metabolism
of obligate symbionts. For example, Portiera relies on host-provided phosphoenolpyruvic acid,
erythrose-4P, pyruvate and 5-phosphoribosyl diphosphate for synthesizing EAA (Xie et al., 2018).
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Similar trends have also been identified in other complementary
EAA biosynthesis pathways in the Acyrthosiphon
pisum/Buchnera aphidicola (hereafter Buchnera) symbiosis
system (Wilson et al., 2010), Pachypsylla venusta/Carsonella
ruddii symbiosis system (Sloan et al., 2014), Planococcus
citri/Tremblaya princeps symbiosis system (Husnik et al.,
2013), and Nilaparvata lugens/yeast-like symbiont symbiosis
system (Xue et al., 2014). In addition to directly participating
in the metabolism of obligate symbionts, the regulatory role
of metabolic inputs has also been revealed. A previous study
reported that cystathionine input determined methionine
production in the A. pisum/Buchnera symbiosis system
(Russell et al., 2014).

The compound dTTP, which is produced by thymidylate
synthase via de novo biosynthesis or thymidine kinase via
pyrimidine salvage, is a kind of pyrimidine nucleotide and
is essential for housed bacteria as well as bacterial pathogens
(Samant et al., 2008; Hashimoto et al., 2012; Wilson et al.,
2012; Leija et al., 2016; Yang et al., 2017). As free-living
bacteria encode all genes involved in dTTP synthesis, dTTP
is not frequently considered an essential exogenous nutrient
in bacteria (Turnbough and Switzer, 2008). However, several
obligate symbionts of insects have been reported to be unable
to produce dTTP (Zientz et al., 2004; Degnan et al., 2011;
Moran and Bennett, 2014; Waterworth et al., 2020). As there
is a great demand for dTTP throughout the life cycle of
symbionts, these findings indicated that dTTP is likely a
kind of metabolic input in several insect/obligate symbiont
symbiosis systems. Among dTTP synthetic genes, it has
been shown that thymidylate synthase and thymidine kinase
served key roles (Carter, 1956; Hartman and Buchanan, 1959).
Considering that functions of the two genes have been revealed
by previous publications which indicated the two genes are
critical for the growth of bacterial pathogens (Fivian-Hughes
et al., 2012; Hashimoto et al., 2012; Wilson et al., 2012; Leija
et al., 2016; Yang et al., 2017), thymidylate synthase and
thymidine kinase have been put forward as molecular targets
for bacterial pathogens in recent years (Choi et al., 2016;
Leija et al., 2016).

Bemisia tabaci, which comprises a number of cryptic species
(De Barro et al., 2011) and causes huge economic lost (Liu
et al., 2012; Ning et al., 2015; Pan et al., 2015), harbors an
obligate symbiont, Portiera, as well complexes of facultative
symbionts (Chiel et al., 2007; Pan et al., 2012b). To date, the
genomes of several B. tabaci cryptic species and their symbionts
have been sequenced (Jiang et al., 2012; Rao et al., 2012a,b;
Santos-Garcia et al., 2012, 2015; Chen et al., 2016, 2019; Xie
et al., 2017, 2018). Additionally, several horizontally transferred
EAA biosynthesis-related genes have been identified in B. tabaci
(Luan et al., 2015; Chen et al., 2016; Xie et al., 2018). In terms
of compensating for Portiera gene loss in EAA biosynthesis
(Luan et al., 2015; Xie et al., 2018), those genes provided an
easy route for evaluating EAA biosynthetic levels in obligate
symbiont. As EAA biosynthesis is the majority metabolism in
Portiera (Baumann, 2005; Luan et al., 2015; Xie et al., 2018),
those HTGs provided an easy route for evaluating metabolism
of Portiera.

The genomes of many sucking insects and those of their
obligate symbionts are currently available, so global views on
various metabolic interactions, such as metabolic inputs, in
insect/obligate symbiont symbiosis systems are feasible (Douglas,
2018). In this study, genetic capacity analysis of the pyrimidine
pathway, especially dTTP, was first performed in several obligate
symbionts and host insects. The B. tabaci MED/Portiera
symbiosis system was then applied to investigate the roles of
dTTP supplied on both sides of the symbiosis system. Two dTTP
synthesis-related genes of B. tabaci MED, thymidylate synthase
(BtTS) and thymidine kinase (BtTK), were identified and cloned.
By the silencing of these two genes, the influences of blocking
dTTP production on Portiera density and EAA biosynthesis were
investigated. Furthermore, the possible involvement of these two
genes in B. tabaci MED management was also investigated.

MATERIALS AND METHODS

Genetic Capacity Analysis of the
Pyrimidine Pathway in Insects and Their
Obligate Symbionts
For genetic capacity analysis of the pyrimidine pathway, genes
that are involved in these processes were identified as follows.
Initially, predicted protein sets of B. tabaci, Portiera, and other
selected species (detailed information of which is shown in
Supplementary Tables 1, 2) were annotated by KOBAS 2.0
(Wu et al., 2006). Genes that are part of the pyrimidine
pathway were then selected. In addition, the sequences of
known pyrimidine pathway-related proteins of A. pisum, Apis
mellifera, Bombyx mori, Aedes aegypti, Drosophila melanogaster,
Escherichia coli K-12 MG1655, Bacillus subtilis subsp. subtilis 168
and Staphylococcus aureus subsp. aureus N315 (MRSA/VSSA)
were also used as queries to search against both predicted
proteomes (BLASTP, e-value cutoff of 1E-3) and genome
assembly sequences (TBLASTN, e-value cutoff of 1E-5) of
selected species (Camacho et al., 2009). In the end, all hits
were pooled and verified by searching via BLAST against the nr
(NCBI) database.

Insect Strain
Bemisia tabaci MED was collected from fields in Beijing, China,
in 2009. Since then, the B. tabaci MED insects have been
reared on cotton (Gossypium herbaceum L. cv. Zhongmian 49)
in a glasshouse (Pan et al., 2012a). Every three generations,
the purity of the strain was monitored as previously described
(Chu et al., 2010).

RNA Isolation, Gene Cloning and
Quantitative Real-Time PCR Assays
Total RNA of each sample was extracted by using TRIzol
reagent (Invitrogen, Carlsbad, CA, United States) following the
manufacturer’s instructions. The integrity of the extracted RNA
was checked with 1% agarose gel electrophoresis. The quality
of the extracted RNA was then measured via a NanoDrop 2000
instrument (Thermo Scientific, Wilmington, DE, United States),
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and the concentration of each RNA sample was adjusted to
1 µg/µL.

For gene cloning, RNA from the B. tabaci MED whole
body was used to prepare cDNA with a PrimeScript II First
strand cDNA Synthesis Kit (Takara, Dalian, China). Gene-
specific full-length primers (the primer pairs used are listed in
Supplementary Table 3) were designed. The PCR was performed
on an S1000 Thermal Cycler PCR System (Applied Biosystems,
Foster City, CA, United States) using La Taq (Takara, Dalian,
China). After amplification, bands of the expected size were
purified and sequenced.

For qRT-PCR assays, each RNA was used to prepare cDNA
with a PrimeScript RT Kit containing gDNA Eraser (Takara,
Dalian, China). Gene-specific primers were then designed (the
primer pairs used are listed in Supplementary Table 3). The qRT-
PCR assay was performed on a QuantStudio 3 device (Applied
Biosystems, Foster City, United States) using 2 × SuperReal
PreMix Plus reagent (Tiangen, Beijing, China). Elongation factor
1 alpha (EF1α) was used as a reference gene (Li et al., 2013),
and expression variation among samples was evaluated via the
2−11Ct method (Livak and Schmittgen, 2001).

RNAi Construct and Gene Silencing
The RNAi constructs were generated and applied as previously
described (Yang et al., 2016), and dsRNA for enhanced green
fluorescent protein (EGFP) was used as a negative control.
Before performing the RNAi assay, dsRNA for BtTS, BtTK
and EGFP was prepared using a T7 RiboMAX Express RNAi
system (Promega, Madison, United States) (the primers used
are listed in Supplementary Table 3) and dissolved in 200 µL
of artificial diet [100 µg of dsRNA, 5% yeast extract and
30% sucrose (wt/vol)]. The artificial diet was then fed to
B. tabaci MED adults (mixture of both females and males)
in feeding chambers. Each treatment involved six feeding
chambers, and 70 newly emerged B. tabaci MED adults
were introduced into each feeding chamber. The feeding
chambers were then incubated in an environmental chamber
at 25◦C under a photoperiod of 14 L:10 D and a relative
humidity (RH) of 70%.

Determining EAA Biosynthesis Rates and
Portiera Density
After silencing for 2 and 4 days, the mortality of B. tabaci MED
adults was recorded. The surviving B. tabaci MED adults from
each replication were then collected and divided into two groups.
The first group contained 25 B. tabaci MED adults that were
used to determine the RNAi silencing efficiency and the effects
of silenced targeted genes on the expression of EAA biosynthesis-
related genes. Thirty of the other surviving B. tabaci MED adults
constituted the second group and were used to determine the
Portiera density of each whitefly individual. Before determining
the Portiera density of the individual insects, genomic DNA
of each individual insect was extracted as previously described
(Zheng et al., 2017). The density of Portiera in the B. tabaci
MED adults was then assessed via a QuantStudio 3 device
(Applied Biosystems, United States) using 2 × SuperReal PreMix

Plus (Tiangen, Beijing, China). The protocol for the density
of Portiera determination was the same as that described
previously (Shan et al., 2016). The relative density of Portiera
was quantified via their 16S rRNA gene, while the β-actin
gene (nuclear gene) of the whiteflies was used as an internal
standard for normalization. All the primer pairs used are listed
in Supplementary Table 3.

Impact of BtTS and BtTK on
Reproduction and Offspring Hatchability
To assess the effects of suppressing dTTP production on B. tabaci
MED females, BtTS and BtTK of B. tabaci MED females were
first knocked down via RNAi as described above. At 2 days
after the induction of silencing, five B. tabaci MED females were
released into one clip cages on health cotton plants. Three days
after the release of the females, the number of eggs that were
deposited on the leaves within the clip cages were counted. Later,
egg hatchability was calculated. Each clip cage was considered one
biological replicate, and each treatment had 20 replicates.

Statistical Analysis
SPSS version 23.0 (SPSS Inc., Chicago, IL, United States) was
used for statistical analysis. Differences among treatments were
evaluated by one-way ANOVA in conjunction with Tukey’s test
(p < 0.05).

RESULTS

Genetic Capacity Analysis of the
Pyrimidine Pathway in Selected Insects
and Symbionts
To ensure whether dTTP was a metabolic input that originated
from host insects, genome-wide genetic capacity analysis of the
pyrimidine pathway was performed. The results showed that
Portiera encodes only one gene involved in the pyrimidine
pathway (Figure 1), while B. tabaci MED encodes all the genes
involved in the pyrimidine pathway (Figure 2). The results also
showed that among selected obligate symbionts, only those of
aphids (labeled Buchnera), stink bugs (labeled Pantoea) and tsetse
flies (labeled Wigglesworthia) encode the whole set of genes
for uridine monophosphate biosynthesis. No selected obligate
symbiont was found to encode a complete set of genes for
the pyrimidine salvage pathway and pyrimidine degradation
(Figure 1). Though several obligate symbionts lacked the
majority of pyrimidine pathway genes, their host insects still
encoded them (Figure 2).

Cloning, Phylogenetic Analysis and
Expression Pattern Analysis
Before investigating the impacts of dTTP on Portiera, two
important dTTP synthetic genes, BtTS and BtTK, were firstly
cloned (Figures 3A,D). Phylogenetic analysis showed that BtTS
and BtTK were relatively clustered with their homologous
proteins in hemipteran insects (Figures 3B,E). The expression
patterns of two genes showed that BtTS was most highly
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FIGURE 1 | Content of genes involved in the pyrimidine pathway of obligate symbionts. The boxes representing genes involved in uridine monophosphate
biosynthesis are colored yellow; pyrimidine ribonucleotide biosynthesis, blue; the pyrimidine salvage pathway, red; and pyrimidine degradation, green. The
biosynthetic processes are shown in their reaction order. The EC number of each gene is also shown. For the obligate symbiont Portiera, the genes present are
colored red. Detailed information on the select symbionts is listed in Supplementary Table 1.

FIGURE 2 | Content of genes involved in the pyrimidine pathway of host insects. The boxes representing genes involved in uridine monophosphate biosynthesis are
colored yellow; pyrimidine ribonucleotide biosynthesis, blue; the pyrimidine salvage pathway, red; and pyrimidine degradation, green. Biosynthetic processes are
shown in their linear order. The EC number of each gene is also shown. B. tabaci is colored red. Detailed information on the select insects is listed in
Supplementary Table 2.

expressed in 3rd nymph stage while BtTK was most highly
expressed in 1st and 2nd nymph stage (Figures 3C,F).

Impact of BtTS and BtTK Silencing on
EAA Biosynthesis and Portiera Density
To determine the effects of silencing BtTS and BtTK on B. tabaci
MED adults and Portiera, RNAi constructs were applied to
B. tabaci MED adults. The qRT-PCR results showed that upon

silencing for 2 days (BtTS, F2,15 = 99.100, p < 0.0001; BtTK,
F2,15 = 124.046, p < 0.0001) and 4 days (BtTS, F2,15 = 338.345,
p < 0.0001; BtTK, F2,15 = 256.058, p < 0.0001), the expression
levels of BtTS and BtTK significantly decreased (Figures 4A,C).
Compared with control treatments in which B. tabaci MED adults
were fed a normal diet or dsEGFP, feeding B. tabaci MED adults
with dsBtTS and dsBtTK significantly decreased the expression
levels of EAA biosynthesis-related genes (Figures 4B,D and
Supplementary Table 4). For BtTS, silencing for 2 days
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FIGURE 3 | Cloning, phylogenetic analysis and expression patterns of both BtTS and BtTK. (A,D) Complete coding sequence amplification of BtTS and BtTK from
MED. For panel (A), line 1, Tiangen DNA marker III; line 2, BtTS. For panel (D), line 1, Tiangen DNA marker III; line 2, BtTK. (B,E) Phylogenetic tree of BtTS and BtTK
from MED. LcTS, Lucilia cuprina, XP_023302452.1; DmTS, Drosophila melanogaster, NP_001285570.1; AgTS, Anopheles gambiae, XP_311491.3; VtTS, Vanessa
tameamea, XP_026491376.1; TnTS, Trichoplusia ni, XP_026747379.1; OfTS, Ostrinia furnacalis, XP_028163869.1; PdTS, Polistes dominula, XP_015173877.1;
MrTS, Megachile rotundata, XP_003705109.1; ObTS, Osmia bicornis, XP_029051538.1; TcTS, Tribolium castaneum, XP_008191570.1; AgTS, Anoplophora
glabripennis, XP_018568721.1; OtTS, Onthophagus taurus, XP_022918259.1; ApTS, Acyrthosiphon pisum, NP_001155666.1; MsTS, Melanaphis sacchari,
XP_025205323.1; AcTS, Aphis craccivora, KAF0760635.1; FoTS, Frankliniella occidentalis, KAE8752504.1; BgTS, Blattella germanica, PSN45388.1; CsTS,
Cryptotermes secundus, XP_023702879.1; ZnTS, Zootermopsis nevadensis, XP_021913580.1; AlTK1, Apolygus lucorum, KAE9428612.1; ClTK, Cimex lectularius,
XP_014254368.1; AlTK2, Apolygus lucorum, KAE9423970.1; HhTK, Halyomorpha halys, XP_014279550.1; LsTK, Laodelphax striatellus, RZF40272.1; NlTK,
Nilaparvata lugens, XP_022188850.1; DcTK, Diaphorina citri, XP_026679347.1; CsTK, Cryptotermes secundus, XP_023714579.1; ZnTK, Zootermopsis
nevadensis, KDR10834.1. (C,F) Expression patterns of BtTS and BtTK across developmental stages. Egg, egg stage; N12, first and second nymph; N3, third
nymph; N4. fourth nymph; AD, adult. The values shown are the means and standard errors, and the different letters indicate treatment differences at p < 0.05
(one-way ANOVA with Tukey’s test).

(F3,716 = 7.236, p = 0.015) and 4 days (F3,716 = 5.880, p = 0.027)
significantly reduced the density of Portiera (Figures 5A,B). The
density of Portiera was also significantly reduced when BtTK was
silenced for 2 days (p = 0.003) and 4 days (p = 0.033). Knocking
down BtTS (2 days, F3,20 = 0.131, p = 0.999; 4 days, F3,20 = 0.144,
p = 0.942) and BtTK (2 days, p = 0.989; 4 days, p = 0.992) did not
cause a significant lethal effect (Figures 6A,B).

Impact of BtTS and BtTK on Female
Production and Offspring Hatchability
The effects of silencing BtTS and BtTK on the fitness of
B. tabaci MED were also measured. Suppressing BtTS

significantly decreased the reproduction of B. tabaci MED
females (F3,76 = 23.986, p < 0.0001, Figure 6C) and the
hatchability of B. tabaci MED offspring (F3,76 = 91.020,
p < 0.0001, Figure 6D). Furthermore, suppressing BtTK
also significantly decreased the reproduction of B. tabaci
MED females (p < 0.0001, Figure 6C) and the hatchability
of B. tabaci MED offspring (p < 0.0001, Figure 6D).
Though no significant difference in the reproduction of
B. tabaci MED females was observed between the dsBtTS-
treated groups and dsBtTK-treated groups (p = 0.730),
suppressing BtTK expression more significantly reduced
hatchability than did suppressing BtTS expression
(p < 0.0001; Figure 6D).
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FIGURE 4 | Temporal expression profiles of BtTK, BtTS, and EAA biosynthetic HTGs in B. tabaci MED treated with dsRNA or artificial diet. (A) Expression profiles of
BtTK and BtTS in B. tabaci MED that had been treated for 2 days with RNAi constructs. (B) Expression profiles of EAA biosynthetic HTGs in B. tabaci MED after
2 days of treatment. (C) Expression profiles of BtTK and BtTS in B. tabaci MED after 4 days of treatment. (D) Expression profiles of EAA biosynthetic HTGs in
B. tabaci MED after 4 days of treatment. For each gene, transcript levels in group of adults fed the artificial diet were normalized to one. The values shown are the
means and standard errors, and the different letters indicate treatment differences at p < 0.05 (one-way ANOVA with Tukey’s test).

FIGURE 5 | Temporal dynamics of Portiera in B. tabaci MED fed dsRNA or artificial diet. (A) Density of Portiera in B. tabaci MED after 2 days of treatment. (B) The
density of Portiera in B. tabaci MED after 4 days of treatment. The changes in symbiont density were measured in terms of the number of 16S rRNA gene copies per
β-actin gene copy. The different letters indicate treatment differences at p < 0.05 (one-way ANOVA with Tukey’s test).
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FIGURE 6 | Effects of BtTK and BtTS silencing on B. tabaci MED. (A) Survival of B. tabaci MED adults upon treatment with dsRNA or artificial diet for 2 days.
(B) Survival of B. tabaci MED adults after treatment with dsRNA or artificial diet for 4 days. (C) Effects of dsRNA or artificial diet on the egg production of B. tabaci
females. (D) Effects of dsRNA or artificial diet on the hatchability of B. tabaci offspring. The values shown are the means and standard errors, and the different letters
indicate treatment differences at p < 0.05 (one-way ANOVA with Tukey’s test).

DISCUSSION

Here, a genetic capacity survey revealed that many obligate
symbionts required their insects’ hosts to supply dTTP. Two
dTTP synthesis-related genes, BtTS and BtTK, were then
identified and cloned. Later, the influences of blocking dTTP
production on Portiera and B. tabaci MED were investigated.
Our results showed that suppressing dTTP production greatly
repressed EAA biosynthesis, significantly decreased Portiera
density and caused a serious decline in B. tabaci MED.

Because of genomic decay, obligate symbionts rely on their
hosts to supply metabolic inputs for synthesizing essential
nutrients (Moran et al., 2008; McCutcheon and Moran, 2011;
Moran and Bennett, 2014). To date, host-supplied metabolic
inputs have been largely reported in the EAA biosynthesis of
obligate symbionts (as described in the introduction). Here, we
found that many selected obligate symbionts such as Portiera
were not able to produce dTTP, while their host insects retained
such capacities. In view of the great demand for dTTP across
whole life cycles, our study revealed that, except for EAA
biosynthesis, dTTP is another kind of metabolic input in several
insect/obligate symbiont symbiosis systems.

The metabolic input cystathionine was previously reported
to determine methionine production in A. pisum/Buchnera
symbiosis systems (Russell et al., 2014). It has also been proposed
that metabolic inputs control obligate symbiont growth in insects

(Ankrah et al., 2018). Here, our results showed that blocking
dTTP production repressed the expression level of EAA synthetic
HTGs and significantly reduced the density of Portiera. Given
that those HTGs compensated for the gene loss of Portiera and
that the majority of reactions of EAA biosynthesis were still
afforded by Portiera (Luan et al., 2015; Xie et al., 2018), our
observations indicated that suppressing BtTS and BtTK slowed
the EAA biosynthesis of Portiera. Taken together, our results
indicated that dTTP is applied as a regulator to control obligate
symbionts in the B. tabaci MED/Portiera symbiosis system.

In addition, we also observed that blocking dTTP production
significantly decreased the reproduction of B. tabaci MED adults
and the hatchability of their offspring. The supply of enough
EAAs is essential for insect reproduction (Roy et al., 2018;
Toshima and Schleyer, 2019). EAAs also construct vitellogenin,
which is a nutrient needed in egg hatching (Franz, 1979). As
Portiera supplies EAAs for B. tabaci MED (Baumann, 2005; Xie
et al., 2018), the negative effects we observed were likely caused
by the fact that blocking dTTP production reduced the density of
Portiera as well as EAA biosynthesis. As B. tabaci causes severe
unfitness, BtTS and BtTK were suggested to be potential targets
for symbiont-targeted B. tabaci MED management. Antibiotics
have also been suggested to serve as novel pesticides for
symbiont-targeted B. tabaci MED management (Zhang et al.,
2015). Though also causing a series of negative effects on B. tabaci
MED, the release of high concentrations of antibiotics was shown
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to take a heavy toll on the environment, such as influencing
the structures and activities of microbes in the environment
(Martinez, 2009). As silencing the two targeted genes blocked
dTTP production only in B. tabaci MED and was not detrimental
to environmental microbes, it seems that managing B. tabaci
MED by silencing dTTP synthesis-related genes such as BtTS
and BtTK is more friendly to the environment than managing
B. tabaci MED by using antibiotics.

In addition to B. tabaci MED, other sucking insects such
as psyllids and mealybugs are also important agricultural pests
and harbor obligate symbionts (Baumann, 2005). Since obligate
symbionts are essential for the survival of their hosts (Husnik
et al., 2013; Sloan et al., 2014) and cannot be acquired from
the environment (Koga et al., 2012; Luan et al., 2018), these
obligate symbionts have been proposed as novel targets for pest
control (Douglas, 2015). Here, we showed that the two dTTP
synthesis-related genes that produce the dTTP that regulates the
growth and metabolism of Portiera were potential targets for
symbiont-targeted B. tabaci MED management. Interestingly, we
also found that obligate symbionts of psyllids and mealybugs lack
the capacities for biosynthesising dTTP. The results indicated
that those symbionts may also require their hosts to supply
dTTP. As dTTP is essential for cellular growth that is required
throughout the whole life cycle, it is probable that genes involved
in dTTP production could also serve as molecular targets for
psyllid and mealy bug management.

In summary, we showed that suppressing dTTP production
caused a series of negative effects on both Portiera and B. tabaci
MED. Our results indicated that two dTTP synthetic genes, BtTS
and BtTK, could be used as molecular targets for B. tabaci MED
management. The study demonstrated a regulatory mechanism
in the MED/Portiera system and likely revealed new molecular
targets for whitefly pests and even management of other
sucking insects.
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