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As opposed to the standard tolerogenic apoptosis, immunogenic cell death (ICD)

constitutes a type of cellular demise that elicits an adaptive immune response. ICD

has been characterized in malignant cells following cytotoxic interventions, such as

chemotherapy or radiotherapy. Briefly, ICD of cancer cells releases some stress/danger

signals that attract and activate dendritic cells (DCs). The latter can then engulf and

cross-present tumor antigens to T lymphocytes, thus priming a cancer-specific immunity.

This series of reactions works as a positive feedback loop where the antitumor immunity

further improves the therapeutic efficacy by targeting cancer cells spared by the

cytotoxic agent. However, not all chemotherapeutic drugs currently approved for cancer

treatment are able to stimulate bona fide ICD: some commonly used agents, such as

cisplatin or 5-fluorouracil, are unable to activate all features of ICD. Therefore, a better

characterization of the process could help identify some gene or protein candidates to

target pharmacologically and suggest combinations of drugs that would favor/increase

antitumor immune response. To this end, we have built a mathematical model of the

major cell types that intervene in ICD, namely cancer cells, DCs, CD8+ and CD4+ T

cells. Our model not only integrates intracellular mechanisms within each individual cell

entity, but also incorporates intercellular communications between them. The resulting

cell population model recapitulates key features of the dynamics of ICD after an initial

treatment, in particular the time-dependent size of the different cell types. The model is

based on a discrete Boolean formalism and is simulated by means of a software tool,

UPMaBoSS, which performs stochastic simulations with continuous time, considering

the dynamics of the system at the cell population level with appropriate timing of events,

and accounting for death and division of each cell type.With this model, the time scales of

some of the processes involved in ICD, which are challenging to measure experimentally,

have been predicted. In addition, our model analysis led to the identification of actionable

targets for boosting ICD-induced antitumor response. All computational analyses and

results are compiled in interactive notebooks which cover the presentation of the network

structure, model simulations, and parameter sensitivity analyses.
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1. INTRODUCTION

In order to ensure tissue homeostasis, programmed cell death
modalities such as intrinsic apoptosis normally eliminates
tumorigenic cells. When such initial safety mechanisms have
failed, the immune system intervenes as a backup system to
eliminate or control carcinogenic lesions (Galluzzi et al., 2017).
Innate and adaptive immune actors, embodied by natural killer
cells and cytotoxic CD8+ T cells, can mediate either extrinsic
apoptosis or lysis of the aberrant cellular targets (Kroemer
et al., 2013; Galluzzi et al., 2017). However, under immune
pressure, somemalignant cells able to evade immunosurveillance
can be selected, proliferate, and generate a tumor mass. Yet,
some cancer treatments, including several chemotherapies,
radiotherapy, or oncolytic virotherapy, have the ability to
reinstate cancer immunosurveillance (Galluzzi et al., 2017; Kepp
et al., 2018). These cytotoxic interventions trigger a particular
demise of transformed cells called “immunogenic cell death”
(ICD) (Galluzzi et al., 2017; Kepp et al., 2018). As opposed
to standard apoptosis, which is tolerogenic, ICD refers to an

FIGURE 1 | Immunogenic cell death. Schematic representation of the immunogenic cell death cycle, starting with release of DAMPs from a dying tumor cell, leading

to the maturation of a dendritic cell (DC), ultimately activating CD4+ and CD8+ T cells, which in turn trigger the death of the remaining live tumor cells.

apoptotic process that elicits an adaptive immune response
against tumor cells (Figure 1).

Following administration of an ICD-inducing treatment,
dying cancer cells expose or release damaged-associated
molecular patterns (DAMPs) together with tumor antigens
in the tumor microenvironment (Fucikova et al., 2015;
Galluzzi et al., 2017). The presence of such stress signals in the
extracellular milieu allows the recruitment and activation of
antigen-presenting cells, such as dendritic cells (DCs) (Galluzzi
et al., 2017; Giovanelli et al., 2019). Counting among the
DAMPs, extracellular ATP can be sensed by DCs through
the purinergic receptors P2RX7 and P2RY2, and triggers
their migration to the tumor bed and their activation (Elliott
et al., 2009; Saez et al., 2017). An additional stress signal
recorded upon ICD consists of calreticulin (CALR), a highly
conserved chaperone protein residing in the lumen of the
endoplasmic reticulum (ER) (Panaretakis et al., 2009). Upon
stress of the ER, CALR translocates at the surface of the plasma
membrane where it is detected by immature DCs through
their low-density lipoprotein receptor-related protein 1 (LRP1)
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(Gardai et al., 2005). Interaction of CALR with LRP1 acts as
an “eat-me” signal, which promotes tumor antigen uptake by
immature DCs (Galluzzi et al., 2017; Kepp et al., 2018). The high
molecular group B1 protein (HMGB1) is the most abundant
non-histone chromatin-binding protein. While restricted to the
nucleus in normal condition, HMGB1 is freed in the tumor
microenvironment upon ICD, thereby constituting another
“alarm” signal for the immune system (Dumitriu et al., 2007).
HMGB1 is detected by DCs through different receptors, mainly
toll-like receptor 4 (TLR4), and promotes their activation
(Apetoh et al., 2007). Similarly, cancer cells undergoing ICD
release the cytoplasmic protein annexin A1 (ANXA1), another
DAMP that binds to formyl peptide receptor 1 (FPR1) at the
surface of DCs (Vacchelli et al., 2015; Galluzzi et al., 2017; Kepp
et al., 2018). Local detection of ANXA1 by DCs contributes
to their homing at proximity of dying malignant cells. Finally,
ICD mimics a viral infection in cancer cells by triggering the
production of type 1 interferons (IFN1). These latter act in an
autocrine and paracrine manner to stimulate the secretion of
the chemokine C-X-C motif chemokine ligand 10 (CXCL10)
by cancer cells and thus favor the recruitment of activated T
cells expressing its receptor, C-X-C motif chemokine receptor 3
(CXCR3) (Galluzzi et al., 2017; Kepp et al., 2018).

Once recruited to the tumor bed by ICD-related DAMPs,
activated DCs can capture tumor antigens and undergo
maturation. Thus, DCs upregulate the surface class-I and class-
II major histocompatibility complex molecules (MHC-I, MHC-
II) and cross-present tumor epitopes onto them (Galluzzi et al.,
2017; Giovanelli et al., 2019). Additionally, DCs express co-
stimulatory molecules, including CD40, CD80, and CD86, and
secrete inflammatory cytokines, such as interleukin-12 (IL-12),
IL-6, and tumor necrosis factor alpha (TNF-α) (Galluzzi et al.,
2017; Giovanelli et al., 2019). In parallel, DCs upregulate the
lymphoid tissue-residing C-C chemokine receptor type 7 (CCR7)
that promote their migration to the draining lymph node (Riol-
Blanco et al., 2005; Galluzzi et al., 2017). In the lymph node,
mature DCs prime both naive CD4+ and CD8+ T lymphocytes
that display the cognate T cell receptors (TCRs) (Galluzzi et al.,
2017). Activated CD4+ T cells can differentiate into conventional
T helper cells (Th) or into regulatory T cells (Treg) (Li and
Rudensky, 2016; Zhu, 2018). Depending on the cytokines locally
present, several Th lineages can be distinguished, such as Th1
and Th17, which are involved in cancer immunosurveillance
(Zhu, 2018). By producing type-1 cytokines such as interleukin-
2 (IL-2) and IFN-γ , Th1 CD4+ T cells actually support the
differentiation of activated CD8+ T cells (preCTL) into type 1
cytotoxic CD8+ T lymphocytes (Tc1 / CTLs), which play a critical
role in eliminating malignant entities (Kurokawa et al., 2001).
Activated Th1 lymphocytes and CTLs are able to migrate from
the lymph node to the blood stream and eventually reach the
tumor site in a CXCL10-dependent manner (Galluzzi et al., 2017;
Kepp et al., 2018). In the tumor site, Th1 cells can mediate
antitumor activity via the secretion of the effector cytokine IFN-
γ and the CTL-mediated release of the pore-forming perforins
and cytotoxic granzymes (Kepp et al., 2018; Farhood et al., 2019).
This series of reactions triggered by cancer ICD form a positive
feedback loop where the mounted antitumor immunity further
improves the therapeutic efficacy by targeting cancer cells spared

by the cytotoxic agent (Galluzzi et al., 2017; Kepp et al., 2018;
Farhood et al., 2019).

In this study, our aim was to develop a model integrating
the molecular and cellular entities involved in cancer ICD,
together with the subsequent immune cascade resulting into
antitumor activity. A better characterization of the process
could help identify actionable molecular components and
thus suggest combinations of pharmacological compounds that
would favor/increase anticancer immunity. In particular, not
all chemotherapeutic drugs currently approved for the care of
cancer are able to stimulate bona fide ICD (Galluzzi et al.,
2017). Some commonly used agents, such as cisplatin or 5-
fluorouracil, fail to activate some features of ICD (Bezu et al.,
2015). Nevertheless, experimental complementation of cisplatin
with cardiac glycosides resulted in bona fide ICD and translated
into potent immunotherapeutic efficacy (Kepp et al., 2012;
Menger et al., 2012). An in silico model could accelerate the
identification of such combination regimens.

To this end, we have assembled a mathematical model
covering the major cell types and biological processes intervening
in ICD. In order to preserve the feasibility of the simulations,
we properly restricted the number of interactions and processes.
Tumor cells, dendritic cells, CD4+ and CD8+ T lymphocytes
have been selected as the main players. Our model focuses on
intercellular communications between the different cell types,
considers current knowledge on the timing of events, and
takes into account death and proliferation of tumor cells in
diverse contexts.

The model is based on a discrete Boolean formalism
and is simulated by means of a software tool, UPMaBoSS,
which performs stochastic simulations with continuous time,
considering the dynamics of the system at the cell population
level (an extended presentation of UPMaBoSS is provided in
Stoll et al., 2020). The Boolean description of the model entities is
a strong approximation. In the present work, it fits the current
biological knowledge, which is mainly qualitative. However,
the grammar of MaBoSS allows to represent discrete levels
of each model entity, corresponding to different concentration
levels or different status of a protein (e.g., phosphorylated,
or in complex) entailing different levels of activity. An
example of multi-level dynamics of the protein p53 in the
context of p53/Mdm2 interaction is provided at the following
address: https://github.com/sysbio-curie/MaBoSS-env-2.0/tree/
master/tutorial/MaBoSS-2.0.

The resulting cell population model recapitulates key features
of the dynamics of ICD after an initial treatment, in particular
the time-dependent size of the different types of cell populations.
Furthermore, the time scales of some of the processes involved in
ICD, which are challenging to measure experimentally, have been
predicted by proper simulations. In addition, the analysis of our
model led to the identification of potential target components to
modulate in order to boost ICD-induced antitumor response.

2. MATERIALS AND METHODS

For modeling ICD, we use the stochastic Boolean simulation
framework UPMaBoSS (Stoll et al., 2020). It is based on
the previously defined MaBoSS grammar (Stoll et al.,
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2012), which was extended to simulate the dynamics
of the cell populations. Details about the software are
provided below.

More information about software accessibility, use cases, and
jupyter notebooks including the code used for all the analyses
presented here are available on a GitHub repository: https://
github.com/sysbio-curie/ICD.

2.1. Cell Population Described as a
Probabilistic Boolean System
The model is based on a regulatory network (directed graph),
where nodes represent molecules, cell types and processes,
whereas arcs represent positive or negative influences between
these entities. In this application, some arrows can also represent
transformation of cells. For instance, an immature DC can
becomemature (example in Figure 2, fromDC to ActDC). In the
Boolean description, the variables corresponding to these entities
can take two values, 1 for active or present, and 0 for inactive

or absent. We define a network state as a set (or a vector) of
Boolean values associated with each of these entities. We apply a
probabilistic framework to these network states. More precisely,
a probability is associated with each network state, and the sum
of probabilities over all possible network states is equal to 1.
The interpretation in terms of population is straightforward: the
number of cells in a given network state is equivalent to the
network state probability multiplied by the overall size of the
cell population.

2.2. Signaling Pathways Described as
MaBoSS Models
MaBoSS (Stoll et al., 2012, 2017) is a software dedicated to the
modeling of signaling pathways based on a Boolean probabilistic
description. Given a Boolean model, MaBoSS produces time
dependent probabilities of network states. In MaBoSS, two
transition rates (activation/inhibition) are associated with each
node of the network. These rates are written in a specific

FIGURE 2 | Phenomenological model. (A) Influence network of the simplified version of ICD: it involves three cell types: tumor cells (Tumor Cell and Dying Tumor Cell

for cells that have been treated by chemotherapeutic agents, gray nodes), dendritic cells (DC for immature dendritic cells, ActDC for mature dendritic cells, MigrDC for

migrating dendritic cells, and LNodeDC for dendritic cells in the lymph node, purple nodes), T cells (T Cell, and CTL for cytotoxic T lymphocyte, blue nodes). (B) Early

activation of ICD markers (Note: CALR overlaps with ATP). (C) Kinetics of the cell types with ICD. (D) Kinetics of the tumor cell populations without ICD.
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grammar, which combines Boolean states of other nodes
with logical (AND, OR, NOT) and arithmetic operators. In
addition to this set of transition rates, a MaBoSS simulation
requires the definition of an initial condition, i.e., a probability
distribution of network states at time zero. In practice, a
MaBoSS model is encoded into two files: a bnd file containing
the logical rules and the definition of the transition rates,
and a cfg file containing the parameters of the model (initial
conditions and values for the transition rates) together with the
simulation parameters.

2.3. Population Dynamics Described as an
UPMaBoSS Model
MaBoSS can only model a cell population composed of
non-interactive cells, with a constant population size. In order
to better represent the dynamics of the cell populations, we
recently developed an extension of MaBoSS, called UPMaBoSS
(Stoll et al., 2020). In this framework, cells can divide, die and
interact. In this respect, two additional nodes are added to
the usual MaBoSS model: Death and Division. Regarding cell
communication, ligand-receptor interactions are introduced: the
transition rates of the receptors can contain parameters that are
updated according to the state of the whole cell population. At
regular time steps, the simulation is stopped and some variables
are updated according to their status. Cells having the Division
node at 1 are doubled, whereas those having the Death node at
1 are removed. Receptors are updated according to the value of
their regulators.

An UPMaBoSS model is encoded into three files: bnd
and cfg files written in MaBoSS grammar, completed by a
specific upp file. The upp file contains the declaration of
the Death and Division nodes, together with the updating
rules for the parameters controlling the transition rates of
the receptors.

All simulations of the ICD models reported here are encoded
in the jupyter notebooks provided as Supplementary Material.
These notebooks can be executed on any computer with a recent
docker or a conda environment installed, as indicated in the
dedicated GitHub repository (https://github.com/sysbio-curie/
ICD). The full parameter sensitivity analysis is not included
in the jupyter notebooks, as it is time consuming (taking over
24 h) and has been performed on a computer cluster. Results
of the computations are available in Supplementary Tables 4,
5. The notebooks contain some examples of models with
modified parameters.

2.4. Phenomenological Model
The purpose of the ICD phenomenological model is to reproduce
the succession of events observed experimentally, and to
determine the role of each of the main cell types involved in
ICD. This model serves as a basis to develop a more detailed,
“extended” model. The phenomenological model includes three
cell types with different status (Figure 1). Tumor Cell and DC
constitute the inputs of the model. The simulation starts with a
predefined tumor size and a given population of DCs. Tumor
cells can die or divide. Dying tumor cells release some danger
signals (CALR, ATP, and HMGB1), which activate DC (ActDC),

which can then migrate (MigrDC) to the tumor draining Lymph
Node (LNodeDC). There, mature DCs can activate T cells.
T cells can then differentiate into cytotoxic effectors (CTL),
proliferate, and reach the tumor through blood vessels. In contact
with a CTL, tumor cells are cleared out. Without treatment or
in the absence of T cells, tumor cells keep proliferating. The
corresponding model files can be found at: https://github.com/
sysbio-curie/ICD. The description of themodel with themeaning
of the variables and the parameter values are detailed in the
Supplementary Table 1.

2.5. Extended Model
Some modeling choices were made to refine the
phenomenological model, while preserving the overall dynamics.
This extended model includes detailed representations of the
series of events previously explored with the phenomenological
model. The abstract transitions considered in the initial model
are replaced by more refined details about which and how cells
interact with ligand-receptor dynamics. Some of the ligands
depend on the status of the cell type that produces them, and/or
on the activity (or availability) of a receptor that mediates their
activation. The transition rates associated with ligand activation
are usually set as the inverse of the time that a ligand takes to
reach its concentration peak.

In this extended model, we consider four cell types, including
tumor cells, dendritic cells, CD4+ T cells, and CD8+ T cells, as
shown in Figure 3. As for the phenomenological model, the size
of the populations of these four cell types must be defined at the
beginning of a simulation.

The extended model encompasses 57 entities, with some
entities that may correspond to different instances of the same
species or cell types (e.g., DC and aDC where “a” stands for
active). Figure 3 includes the cell types and their fate: Tumor
Cells can die under treatment and become Dying Tumor Cells,
dendritic cells (DC) can be activated in the presence of ATP,
CD4+ cells (cd4) can lead to Th1, Th2, Th17, or Treg cells, and
finally CD8+ cells (cd8) become CTL.

The cytokines and the corresponding receptors involved in
ICD are each represented by a specific node (denoted in the
model by *-o for a cytokine, and by *-rec for a receptor).
The activation rule for each cytokine relies on the cell type
producing it and possibly on the adjuvant effects of other ligands,
enhancing the activation of such cytokines. On the other hand,
a cytokine receptor node is conditioned by the presence of the
cells presenting it. The two types of nodes, ligand and receptor,
are dynamically linked, as the probability attributed to the ligand
node impacts the rate of transition toward the activation of
the receptor node. At each step of the simulation, after its first
activation, the transition rate for the receptor is controlled by
the ligands.

All the logical rules are written to account for the biological
knowledge whenever it is reported in the literature. For
instance, the rule for the CD8+ T cell receptor node TCR-I is:
CD28 & CD8, which reads as: when both CD28 (the receptor

of CD80) and a naive CD8+ T cell are present, TCR_I will be
activated at a rate $u_TCR_I$, which is defined in the cfg file.
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FIGURE 3 | Extended model. (A) Influence network of the extended version of ICD involving four cell types: tumor cells (light purple nodes), dendritic cells (dark

purple nodes), CD4+ T cells (green nodes) and CD8+ T cells (blue nodes). Green arcs correspond to activation, black arcs to cell transformation, and blue arcs to cell

fate interactions. Tumor Cell, DC, cd4, and cd8 are inputs. When the fifth input, namely ChemoT, is active, we consider that cells have incorporated a

chemotherapeutic drug. The two cell fates, Division and Death, are outputs of the model. (B) Kinetics of the populations of tumor and active dendritic cells, as well as

of CALR surface exposure. (C) Kinetics of the helper and regulatory CD4+ T cell subpopulations. (D) Kinetics of the CD8+ T cell subpopulations.

The model files can be found at: https://github.com/
sysbio-curie/ICD, the model description with the meaning
of the variables and the parameter values are detailed in
Supplementary Table 2, and the list of logical rules are provided
in Supplementary Table 3.

3. RESULTS

To simulate the different steps of ICD, we considered two
models: the Phenomenological and the Extended models. The
first model contains ICD markers and a minimal number of
cell types. It is easy to handle because of its limited size
and serves as a basis for the more detailed version, the
Extendedmodel.

3.1. Phenomenological Model of ICD
We constructed a simplified model of ICD, focusing on a few key
cell types and their interactions (Figure 2). This model contains

13 nodes (therefore 213 = 8192 possible states) and 19 transition
rate parameters (see Supplementary Material). The nodes of the
regulatory network are each associated with a Boolean variable,
and transition rates account for the timing of events.

In the regulatory graph shown in Figure 2A, the ellipses
represent the different cell types considered: Tumor cell, Dying
Tumor Cell, Dendritic Cell (DC), Activated Dendritic Cell
(ActDC), Migrating Dendritic Cell (MigDC), Lymph Node
Dendritic Cell (LNodeDC), T Cell (TCell), and Cytotoxic T
Lymphocyte (CTL).

To keep the model as simple as possible, the network contains
numerous shortcuts and over-simplifications: for instance, the
arc from LNodeDC to TCell in Figure 2A represents the
fact that a single dendritic cell usually activates a single
T Cell.

We introduce different successive status for the dendritic cells
(Activated, Migrating, in the Lymph Node), which delay T cell
activation. This insures that T cells do not activate immediately
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after the activation of DC by the ICD-emitted danger signals
(CALR, ATP, and HMGB1).

Out of the 19 parameters of this model, 14 must be set
manually (the 5 others are updated at the population level and
their initial values are set to 0). As the timing of ICD can
vary between experimental models, we decided to choose values
that have the correct order of magnitude and reproduce the
expected timing of ICD (these parameter values are given in
Supplementary Table 1). More specifically, we set the mean time
of “activation” of CALR and ATP at 4 h, and of HMGB1 at
6 h post-ICD inducing chemotherapy (Fucikova et al., 2011).
Additionally, we set at “low” the direct cytotoxic efficacy of the
treatment, the mean time of DCmigration from the tumor to the
lymph nodes at 5 days, the mean time of division of tumor cells
and CTLs at 10 and 1/2 day(s), respectively, and the mean time
of differentiation of T Cells into CTLs at 2 days.

The results of the simulations of the model are shown in
Figures 2B–D. Following ICD-inducing intervention, the release
of CALR, HMGB1, and ATP by dying cancer cells is observable
within hours (Figure 2B). After 100 h (Figure 2C), the immune
system is activated with a slow increase of T cells, which peaks
at 200 h. The tumor cells are cleared out at about 220 h, which
coincides with an increase of the CTL population. To investigate
the role of the immune system in the disappearance of the
tumor cells, we removed the clonal expansion of the CTLs in the
phenomenological model, i.e., the recruitment of immune cells
following chemotherapy. In the absence of such increase of the
immune effector population, tumor cell clearance becomes less
efficient since it relies mostly on the direct cytotoxicity of the
treatment (Figure 2D).

The phenomenological model successfully reproduces the
series of events that are associated with ICD and leading to tumor
cell killing following immunogenic chemotherapy. However, the
predictive power of this model remains limited because of the
lack of molecular details. Hence, we decided to extend this model
by further detailing the molecular intermediates, with a focus on
the intercellular dialogues.

3.2. Extended Model of ICD
To improve our phenomenological model, we introduced
additional nodes representing molecular factors. More precisely,
variables such as MigrDC and LNodeDC, accounting for the
activated dendritic cells transiting in the circulation or reaching
the tumor draining lymph node, respectively, were replaced by
molecules mediating these phenomena.

In this extended version of the model (Figure 3A), four
populations of cells are considered: tumor cells, dendritic cells,
CD4+ and CD8+ T cells. As for the phenomenological model,
tumor cells can be converted into dying tumor cells when treated
by chemotherapeutic agents, whereas dendritic cells become
active after sensing ATP, HMGB1, CALR, and/or ANXA1.

Without treatment, tumor cells proliferate indefinitely. In our
model, we implicitly assume that the cells have been treated by
an ICD-inducing therapy (node ChemoT). Also, we set the initial
size of the tumor cell population. These tumor cells produce
stress-induced ligands (DAMPs) (Fucikova et al., 2015): CALR,
ATP, ANXA1, and HMGB1, whose activation is conditioned by

several constraints. For instance, HMGB1 is ready to be released
only if ANXA1 is present in the extracellular milieu.

Initially inactive and distant from the tumor bed, DCs become
active (denoted by aDC) after the stimulation of purinergic
receptors upon tumor-derived extracellular ATP binding (mainly
the high-affinity metabotropic P2Y2R and the low-affinity
ionotropic P2X7R; Rossi et al., 2012), which ignites the migratory
status of the DC. This biological information has been translated
into a Boolean rule as follows: if a DC and P2X7R are both active
at the same time, then DC switches to its active state. Interaction
between the activated DC and CALR at the surface of the dying
tumor cell triggers its phagocytosis, thereby promoting tumor
antigen uptake by the DC (Galluzzi et al., 2017).

Along their way to the lymph node, activated DCs (aDCs)
capturing antigens upregulate MHC (class-I and II) molecules
together with co-stimulatory molecules such as CD80. Once
in the secondary, or eventually tertiary, lymphoid tissue, the
encounter between such mature DC presenting tumor antigens
and a naive undifferenciated T lymphocyte can lead to an
activated T cell (Zehn et al., 2012). T cell activation occurs when
the cognate TCR and CD28, that are exposed on the lymphocyte,
interact with the antigen-loaded MHC and CD80 at the surface
of mature DCs, respectively (Galluzzi et al., 2017; Patente et al.,
2018). The transition rate associated with the activation of each
receptor node is function of the state of the ligand to which it
binds. Thus, the activity of the CD8+ T cell receptor (labeled
“TCR-I”) node is affected by the activity of the MHC-I node. The
more MHC-I is produced (i.e., high activation probability), the
more likely it is to activate TCR-I.

CXCR3 is a chemotactic receptor on activated T cells, which
binds CXCL10 released by tumor cells and by intratumoral
activated DCs, following autocrine and paracrine stimulation
by type-1 IFNs (Figure 3) (Zitvogel et al., 2015; Galluzzi et al.,
2017). When CD28 is active, we are considering a single T
cell (either CD4 or CD8) whose CXCR3 receptors have already
been activated. Further details regarding these interactions are
provided in the Supplementary Figures 1, 2.

Activated DCs not only secrete type-1 IFNs but also additional
ligands such as the cytokines IL-6 and IL-12, which impact
the differentiation of naive T cells as detailed below (Figure 3)
(Henry et al., 2008; Subbiah et al., 2018).

For the sake of simplicity, we considered a CD4+ T cell
as activated (denoted by cd4_Act ON) when a lymphocyte
expressing both CD28 and a “TCR-II” (i.e., a TCR that recognizes
a cognate MHC-II associated with an antigen epitope) interacts
with a mature DC (Zehn et al., 2012; Chen and Flies, 2013).
Following activation, CD4+ T cells differentiate into effector or
regulatory subtypes, depending on the cytokines locally present.
Of note, the memory compartment, including the central and
effector memory T cell subsets, is not taken into consideration
in our current model. Therefore, in the presence of DC-
produced IL-12, CD4_Act will differentiate into Th1 CD4+ T
cells. By contrast, the sensing of T cell-produced IL-4 induces
the Th2 program. Alternatively, the detection of IL-6, TGFb
as well as IL1B promotes Th17 differentiation. Also, binding
of TGFb engages the undifferenciated lymphocytes into the
immunosuppressive Treg lineage (Figure 3A).
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To account for the fact that Th0 cells do not solely lead to
Th1 or Th2 cells, we included Th2, Th17 and Treg subtypes, even
though their respective role in the series of immune reactions that
follow cancer ICD remains poorly characterized (Galluzzi et al.,
2017).

It has been reported that IL-4 is produced by either Th0,
Th2 or precursors of CD8+ cytotoxic T lymphocytes (CTLs)
(see below for details about CD8+ T cell subtypes) (Zhu,
2015; Farhood et al., 2019). The activation (or release) of this
interleukin is thus conditioned by the presence of either cell type.

This means that a naive CD4+ can be driven into proliferation
by sensing IL-4, while Th2 is able to sustain its activity.

In parallel, naive CD8+ T lymphocytes can be primed (i.e.,
co-stimulation of TCR-I and CD28) by mature DCs presenting
tumor antigen epitopes onto MHC-I molecules and turned into
cytotoxic precursors (preCTL). Through the release of both IL-2
and IFNg, Th1 lymphocytes further support the differentiation
of preCTL into CTLs (Galluzzi et al., 2017; Farhood et al.,
2019). preCTL can be activated by the co-stimulation of MHC-
I (represented by the receptor TCR-I in the model) and in the
presence of IL-2. They turn into CTL under the influence of
IFNg or that of IL-2. While IL-2 is produced by several cell types
includingmature DCs, Th0, Th1, and Th2, IFNg is only produced
by Th0, Th1 and CTLs under the combined effect of several
cytokines that enhance its production (Bhat et al., 2017).

CTLs can then release perforin, a cytolytic protein able to form
pores in target cells and allow pro-apoptotic proteases to initiate
cell death (Halle et al., 2016). Intracellular granules of perforins
can be replenished allowing CTLs to kill more than one target
tumor cell. If tumor cells can die following a chemotherapeutic
treatment, they can also be efficiently eliminated by CTLs
excreting perforins. It is modeled here by an amplification factor
which ensures a rapid decrease of the remaining tumor cells.

The extendedmodel contains 98 parameters. Among them, 20
are updated at the population level and are initially set to 0. The
parameter values are listed into the Supplementary Table 2. As
for the phenomenological model, not all the parameter values are
found in the literature; thus, most of them were set to reasonable
values with a correct order of magnitude. Specifically, the mean
activation time of proteins have been set to 6 h, except for ATP
and CALR, for which this parameter is set to 4 h, according to
the literature (Liu et al., 2019; Turubanova et al., 2019; Galluzzi
et al., 2020; Humeau et al., 2020), and the mean degradation time
of proteins is set to 12 min. We also considered a short activation
time of 12 min for the cell types: aDC, Th1, Th2, Th17, Treg,
preCTL, as the timing is controlled by proteins. This is not the
case for CTL activation, whose mean activation time is in the
order of 2.4 h. We consider a very slow growing population of
tumor cells (mean time of division is 100, 000 h), and the half-
life of the chemotherapeutic agent was estimated at 3 days in the
tumor tissue (An and Morris, 2012).

ICD induction was considered to occur 1 h after delivery
of the pharmaceutical compound, as it needs 50, 000 h for a
tumor to be cleared out by direct cytotoxicity of chemotherapy.
We chose a slow growing population of tumor cells and a slow
direct cytotoxicity of chemotherapy in order to focus the model
on ICD.

During clonal expansion, a lymphocyte needs 20 h to divide.
If a tumor cell is completely surrounded by CTLs with perforins,
it dies within 1 h. If a CTL with active perforin is completely
surrounded by tumor cells, it will loose its perforins in 6 h (but
perforin may be reactivated), and will be definitively inactive
after 10 days when CTL is estimated to experiment death. These
latter parameters are difficult to estimate from experimental data,
which justified the sensitivity analysis below.

The simulations of the extended model recapitulated the
succession of events leading to ICD. The initial population is
composed of 80% of tumor cells, 10% of dendritic cells, and
5% of inactive CD4+ and CD8+ cells. As shown in Figure 3D,
following the chemotherapeutic treatment, cells start to die,
expose CALR on their surface, and release other DAMPs (ATP,
ANXA1, HMGB1), ultimately triggering DC maturation. CD4+

and CD8+ cells are then activated and are able to differentiate
into T helpers and cytotoxic subtypes. The population of tumor
cells undergoes a fast decay starting from 250 h (Figure 3B),
corresponding to the activation of the adaptive immune response,
when Th1 (as well as other subtypes), and most importantly
CTLs, are engaged (Figures 3C,D). Ultimately, tumor cells are
targeted and cleared out by perforins upon CTL degranulation
(Figure 3D).

3.3. Sensitivity Analysis
We performed a sensitivity analysis to test the global robustness
of the extended model. The model contains 98 parameters,
but 20 of them have 0 as initial value and are updated
at the population level. Therefore, the sensitivity analysis is
performed on the 78 remaining parameters. In this respect,
we systematically increased and decreased each parameter by
50% separately, which corresponds to 156 model variants (see
Supplementary Table 4). To assess the effect of the immune
system on the killing of the population of tumor cells, we plotted
the tumor size at time = 220 h and time = 280 h, which
corresponds to the time frame when the tumor cell population
undergoes a swift decrease of its size in the initial “standard”
conditions (WT) of the extended model (Figure 3B).

The sensitivity analysis shows that the model is quite robust
to parameter changes. Indeed, the drop in size of the tumor cell
population is slightly anticipated or delayed for a few parameter
changes when compared to the WT condition (Figure 4A). For
instance, the parameters that control the number of DCs are
showing the strongest effect ($InitDC in WT model, and
More_InitDC and Less_InitDC in the model variants):
a lower amount of DCs is delaying time of death whereas
a higher amount is accelerating the process. A similar effect
is observed for the parameter controlling the rate of T cell
clonal expansion ($clonal_exp_rate in the WTmodel, and
More_clonal_exp_rate and Less_clonal_exp_rate
in the model variants). Nevertheless, these strongest effects only
affect slightly the drop of tumor size (Figure 4B). A full list of the
effects observed following parameter changes can be found in the
Supplementary Table 4, where the acronym “More” corresponds
to+50%, and “Less” correspond to−50%.

In order to suggest possible points of intervention to
further stimulate ICD, we performed the same sensitivity
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FIGURE 4 | Sensitivity analysis of the Extended Model. (A) Tumor size at time= 220 h vs. time= 280 h when the different parameters of the extended model were

increased or decreased by 50%. Initial amount of Dendritic cells and rate of clonal expansion show the strongest effect (for WT, $InitDC= 0.1, $clonal_exp_rate= 0.05;

for High DC, $InitDC= 0.15 and Low DC, $InitDC= 0.067; for Fast Clonal Exp., $clonal_exp_rate= 0.075, and for Slow Clonal Exp., $clonal_exp_rate= 0.033). (B)

Kinetics of the size of the tumor cell population according to the parameters changes highlighted in (A). (C) Tumor size at time= 220 h vs. time= 280 h when the

different parameters of the extended model were multiplied or divided by 5. Faster activation of IL2 and slower activation of CD80 have the strongest effect. (D)

Kinetics of the size of the tumor cell population following a treatment with IL2 (IL2 treat) or a mutation of CD28 on T cells (CD28 mut), inspired by the parameters

changes highlighted in (C).

analysis, but by multiplying and dividing by a factor of 5
each parameter separately (Figure 4C), thus mimicking a
mutation of the corresponding node. Among the strongest
effects, we selected two conditions: the slower activation
rate of CD80 and the faster activation rate of IL-2, labeled
LLess_rate_CD80_i and MMore_rate_IL2_i,
respectively (cf. Supplementary Table 5). These observations
led us to simulate a complete knock out of CD28 (CD28 is
the target of CD80) and an external treatment by IL-2. The
results of these two modifications are shown in Figure 4D.
In the case of a CD28 knock-out, we observed that 80% of
the tumor cell population persists at t=280 h, sign of a failure
of the ICD-inducing treatment (knowing that the tumor cell
population is initially set to represent 80% of the total number of
cells at the beginning of the simulation). Similarly, a treatment

that would lead to an increase of IL-2 could kill the tumor cells
faster at t = 200 h.

This analysis shows that our extended model enables the
exploration of perturbations that potentiate the killing of tumor
cells by boosting the adaptive immune response which follows
an ICD-inducing chemotherapeutic treatment. It is important
to note, though, that the approach is not quantitative, and
cannot provide regimens of drug treatments, but it can highlight
potential mechanisms and molecular targets that could increase
tumor clearance.

4. DISCUSSION

ICD of tumor cells is induced by a combination of factors
and requires a cooperation between several players of the
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tumor microenvironment, in particular T cells and DCs. If we
still lack a full understanding of the molecular mechanisms
governing ICD, as well of the cross-talk between the ICD-
induced immune players and the tumor cells, we believe
that mathematical modeling could contribute to a more
comprehensive understanding of these processes. For this
purpose, we integrated information about ICD dispersed in
multiple scientific papers into regulatory networks, which
explicitly consider how the main cell types communicate.

More specifically, we have constructed two models with two
different purposes. The first model aimed at verifying that the
series of events that lead to ICD could be reproduced, and
at suggesting some parameter values that could mimic the
current knowledge related to the timing of these events. This
phenomenological model was then used as a basis for a more
complex model that included additional key molecules involved
in the cascade of events associated with ICD. With the extended
model, we were able to further explore the dynamics of the cell
type populations subjected to different conditions (number of
DCs, speed of some processes, etc.).

To do so, we used a stochastic simulation environment
accounting for cell death, cell division and inter-cellular
communication to monitor population sizes for different cellular
conditions. Interestingly, although certainly still over-simplified,
we could recapitulate several essential features of ICD with our
model, and even pinpoint the roles of specific components, which
might be properly acted upon to boost the immune response.

Such results could be interpreted as possible pharmacological
interventions that could improve chemotherapy outcome. The
model is an important and necessary tool in such a context
because many of these parameters that we can explore with
the model are difficult to measure experimentally. To that end,
sensitivity analyses have confirmed that the model is suited for
strong ICD inducers, like oxaliplatin. To contextualize the model
for weak ICD inducers (like mitoxantrone), other mechanisms
should be added to the model. The fact that we were only able
to switch the timing of complete removal of tumors rather than
to reduce the effect of the tumor removal suggests that some
essential molecules are still missing in the model.

Future work will include specific in vitro and in vivo
experiments in order to fit parameters to the data and match
experimentally-observed timing of the different events leading
to tumor clearance. We also plan to extend the model by
refining some already described intercellular interactions, e.g.,
details about the production and effects of IFNg or TGFb on the
immune cells, and also by including major signaling pathways
inside each cell type to allow more candidates in the search for
improving ICD.

A long-term goal is to propose feasible pharmacological
interventions that can boost ICD for killing tumor cells, probably
by targeting multiple elements throughout the ICD process. The
first step of this approach is done with the sensitivity analysis
on the refined mathematical model to identify the candidates to
target. The second step requires a confirmation of the results
with public omics data, a list of potential pharmacological
targets, as well as in vivo validation, together with further
pharmacodynamics/pharmacokinetics studies.
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Supplementary Figure 1 | Ligand-receptor dynamics related to dendritic cells.

DC shows receptors (blue nodes) on its surface (dashed arcs) that can

interact with ligands (orange nodes) and can then release ligands

(pink nodes).

Supplementary Figure 2 | CD4+ cell dynamics with description of cell

differentiated lineages and the role of the cytokines in the activation of the CD4+ T

cell dynamics. Black arcs represent activating influences and red arcs

inhibiting influences.
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