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The bidomain equations have been widely used to model the electrical activity of cardiac

tissue. While it is well-known that implicit methods have much better stability than explicit

methods, implicit methods usually require the solution of a very large nonlinear system of

equations at each timestep which is computationally prohibitive. In this work, we present

two fully implicit time integration methods for the bidomain equations: the backward Euler

method and a second-order one-step two-stage composite backward differentiation

formula (CBDF2) which is an L-stable time integration method. Using the backward Euler

method as fundamental building blocks, the CBDF2 scheme is easily implementable.

After solving the nonlinear system resulting from application of the above two fully implicit

schemes by a nonlinear elimination method, the obtained nonlinear global system has

a much smaller size, whose Jacobian is symmetric and possibly positive definite. Thus,

the residual equation of the approximate Newton approach for the global system can

be efficiently solved by standard optimal solvers. As an alternative, we point out that the

above two implicit methods combined with operator splittings can also efficiently solve

the bidomain equations. Numerical results show that the CBDF2 scheme is an efficient

time integration method while achieving high stability and accuracy.

Keywords: cardiac, bidomain equations, fully implicit methods, operator splitting, composite backward

differentiation formula

1. INTRODUCTION

The monodomain equations or bidomain equations, consisting of a coupled system of partial
differential equations (PDEs) and ordinary differential equations (ODEs), are often used to
mathematically model the electrical activity of the heart. The PDEs describe the propagation of
the electrical signal through the cardiac tissue and the ODEs describe electrochemical reactions
in the cells which are usually nonlinear. Modern myocyte models such as the Ohara-Rudy model
and anatomically realistic spatial models enable us to achieve a quantitative understanding of the
relationship between molecular function and the integrated behavior of the cardiac myocyte in
health and disease, e.g., to predict the clinical risk of drug-induced arrhythmias. It is notable that
the cardiac electrical activity typically involves multiple and widely varying scales, which makes the
monodomain equations and bidomain equations stiff. As a result, it is computationally expensive
to get an accurate solution of the electrical activity of the heart (Tung, 1978; Keener and Sneyd,
1998; Sundnes et al., 2007).

In detailed numerical simulations, the finite element method (Sundnes et al., 2005), finite
difference method (Pollard et al., 1992), and finite volume method (Johnston, 2010) have all been
used for spatial discretization of the domain. While for temporal discretization, the easiest way is to
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use explicit methods such as the Runge Kutta method and
the forward Euler method since they do not require matrix
inversion. However, the timesteps allowed in these methods
are generally very small in order to satisfy the requirement
of stability (dos Santos et al., 2004; Potse et al., 2006). To
overcome the drawbacks of explicit methods, the semi-implicit
and Crank-Nicolson methods for solving the PDE component
of the bidomain equations are proposed (Keener and Bogar,
1998). But the nonlinear term of the bidomain equations still
has restriction on the timesteps for stability (Keener and Bogar,
1998). Although fully implicit methods (Hooke, 1992; Pollard
et al., 1992; Dal et al., 2012) preferred for stiff systems can
guarantee the stability of the numerical schemes and can use
large timesteps, they often have the significant drawback of
requiring the solution of a large-scale nonlinear system for
diffusion and reaction parts of the bidomain equations at each
timestep. For example, a fully implicit parallel Newton-Krylov-
Schwarz method for solving the bidomain equations has been
proposed in Murillo and Cai (2004). They considered a simple
case that the conductivity only varies with the co-ordinate system,
i.e., the conductivity tensor is a diagonal matrix in the two-
dimensional case. The methods proposed in Murillo and Cai
(2004) are difficult to implement for more complex geometries
and membrane models.

Operator splitting (Qu and Garfinkel, 1999; Trangenstein and
Kim, 2004; Sundnes et al., 2005) is a popular technique that
can avoid solving the large nonlinear system of the bidomain
equations by splitting the equations into more manageable
parts, e.g., splitting the bidomain equations into the linear
diffusion and nonlinear reaction parts. An operator splitting
method combined with a semi-implicit approximation or a
Crank-Nicolson approximation to update the transmembrane
and extracellular potentials of the bidomain equations has
been proposed in Whiteley (2006) which allows for much
larger timesteps.

In this work, we present a backward Euler (BE) and a two-
stage composite backward differentiation formula (CBDF2) for
solving the cardiac electrical dynamicsmodels. The finite element
method is applied for the space discretization. The CBDF2
scheme combines the second-order backward differentiation
formula and the BE method with the latter used as fundamental
building blocks thus it is fully implicit and easily implementable.
We point out that the CBDF2 scheme is unconditionally stable
and stiffly accurate for stiff problems, i.e., L-stable. After applying
the BEmethod for the bidomain equations, there are two coupled
nonlinear systems: space dependent PDEs and space independent
ODEs. The nonlinear elimination method (Ying et al., 2008) is
used in this work to solve the space dependent PDEs arising
from the fully implicit methods for the bidomain equations.
The obtained nonlinear system after elimination has a much
smaller size and has a symmetric and positive definite Jacobian
when the timestep is small. We solve the nonlinear system by
an approximate Newton approach where the residual equations
in each Newton iteration can be efficiently solved by standard
optimal solvers. As an alternative, we also combine the BE and
CBDF2 schemes with Godunov splitting and Strang splitting,
respectively, to efficiently solve the bidomain equations. From the

numerical results, the CBDF2 scheme allows for timesteps four
times larger than that of the BE method while achieving the same
high numerical accuracy.

2. MATERIALS AND METHODS

2.1. The Model
The bidomain model describing the electrical activity of the heart
or a cardiac tissue can be formulated as a system of nonlinear
ordinary and partial differential equations (Keener and Sneyd,
1998). Let � ⊂ R

d (d > 0) be the bounded computational
domain; t and x ∈ � be the temporal and spatial independent
variables, respectively; Φi = Φi(t, x) and Φe = Φe(t, x) be
the intracellular and extracellular potentials, respectively; Vm =
Vm(t, x) = Φi(t, x)−Φe(t, x) be the transmembrane potential; q
represents a set of state variables which can include both gating
and ion concentration variables. We consider the bidomain
equations of the following form

Cm
∂Vm

∂t
+ Iion(Vm, q) =

1

β
∇ · (Di∇Φi), (1)

Cm
∂Vm

∂t
+ Iion(Vm, q) = −

1

β
∇ · (De∇Φe)− Istim, (2)

∂q

∂t
=M(Vm, q), (3)

for t > 0 and x ∈ �, subject to the homogeneous Neumann
boundary condition

n · [Di∇Φi] = 0 and n · [De∇Φe] = 0 on ∂�

and one constraint on the intra- and extra-cellular potentials

∫

�

Φidx+
∫

�

Φedx = 0. (4)

Here, Cm is the membrane capacitance per unit area; β is the
surface to volume ratio of the cardiac cells; Di and De are
the space dependent intracellular and extracellular conductivity
tensors, respectively; n is the unit outward normal on ∂�;
Iion(Vm, q) and M(Vm, q) are two known functions, which are
typically nonlinear and describe the electrical dynamics of a
cardiac myocyte; Istim = Istim(t, x) is an extracellular stimulus
current. Provided some appropriate initial conditions on the
intracellular potential Φi, extracellular potential Φe, and the
vector q of state variables, the bidomain equations can be
uniquely solved. We remark that the bidomain equations for the
electrical activity of the heart may take different but equivalent
forms (Sundnes et al., 2005; Whiteley, 2006; Vigmond et al.,
2008).

2.2. The Backward Euler Method
We first introduce the BE method which is used as the
fundamental building block of the CBDF2 scheme. Set1t > 0 as
the timestep. Time integration of the bidomain equations by the
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BE method from time tn to time tn+1 leads to the semi-discrete
bidomain equations

Cm
Vn+1
m − Vn

m

1t
+ Iion(V

n+1
m , qn+1) =

1

β
∇ · (Di∇Φn+1

i ), (5)

Cm
Vn+1
m − Vn

m

1t
+ Iion(V

n+1
m , qn+1) = −

1

β
∇ · (De∇Φn+1

e )

−Istim, (6)

qn+1 − qn

1t
= M(Vn+1

m , qn+1), (7)

where Φn
i , Φn

e , Vn
m, and qn are the finite difference

approximations of the variables Φi, Φe, Vm, and q at time
tn, respectively.

To eliminate the state variables qn+1 in Equations (5) and (6),
we express the ionic current Iion(V

n+1
m , qn+1) as a function of

Vn+1
m denoted by

Iion(V
n+1
m ) = Iion

(
Vn+1
m , qn+1(Vn+1

m )
)
= Iion(V

n+1
m , qn+1),

i.e., the vector of state variable qn+1 in Equation (7) can be
regarded as a vector value function of the transmembrane
potential Vn+1

m . In our implementation in each timestep, we first
give Vn+1

m an initial guess, e.g., extrapolated from Vn
m and Vn−1

m ,
and numerically solve the nonlinear system (7) to obtain the
corresponding state variables qn+1 which is substituted into the
ionic current function Iion(V

n+1
m , qn+1) to estimate Iion(V

n+1
m ).

The value of Iion(V
n+1
m ) is used in the Newton-type iteration

formula for solving Equations (5) and (6) to update Vn+1
m . The

above steps are performed iteratively until the residual is less than
the tolerance.

We rewrite the Equations (5) and (6) as

µVn+1
m −

1

β
∇ · (Di∇Φn+1

i )+ Iion(V
n+1
m ) = µVn

m, (8)

−µVn+1
m −

1

β
∇ · (De∇Φn+1

e )− Iion(V
n+1
m ) = Istim − µVn

m,

(9)

or

[
µ− β−1∇ ·Di∇ −µ

−µ µ− β−1∇ ·De∇

] [
Φn+1

i
Φn+1

e

]

+
[

Iion(V
n+1
m )

−Iion(Vn+1
m )

]
=

[
µVn

m

Istim − µVn
m

]
, (10)

where µ = Cm/1t.
Assuming that the domain � can be partitioned into a quasi-

uniform grid if d = 2 or a quasi-uniformmesh if d = 3, the semi-
discrete bidomain Equations (10) can be further discretized by
using the continuous piecewise linear finite element method on
the grid. LetM be the finite elementmassmatrix;Ki andKe be the
finite element stiffness (non-negative) matrices corresponding to
the intracellular and extracellular diffusion operators (−β−1∇ ·
Di∇) and (−β−1∇·De∇), respectively. LetΦn

i ,Φ
n
e ,V

n
m, Iion(V

n
m),

and Istim be the column vectors whose entries are the discrete
values of the potential and current variables at the corresponding

grid nodes. The dimensions of the matrices and vectors are the
same and both are equal to the number of nodes in the triangular
grid. Using the matrix-vector notation, the discrete finite element
bidomain equations now read as

[
µM+ Ki −µM
−µM µM+ Ke

] [
Φn+1

i

Φn+1
e

]
+

[
MIion(V

n+1
m )

−MIion(V
n+1
m )

]

=
[

µMVn
m

M(Istim − µVn
m)

]
, (11)

which is nonlinear and can be solved with an approximate
Newton method.

We denote Jion(Vm) as the derivative of the current function
Iion(Vm) with respect to Vm, i.e.,

Jion(Vm) =
dIion(Vm)

dVm
.

Let Jion = Jion(V
n+1
m ) be the diagonal matrix with the diagonal

entries being the values of Jion(V
n+1
m ). Then we have the Jacobian

matrix of the nonlinear system (11)

A ≡
[
µM+ Ki −µM
−µM µM+ Ke

]
+

[
MJion −MJion
−MJion MJion

]
. (12)

Note that the evaluation of the current function Iion(V
n+1
m )

involves the solution of a local nonlinear system for the
vector of state variables qn+1. Since the derivative function
Jion(V

n+1
m ) of Iion(V

n+1
m ) may not be directly available, for the

convenience of implementation, it is computed approximately by
the centered difference

Jion(V
n+1
m ) ≈

Iion(V
n+1
m + δ)− Iion(V

n+1
m − δ)

2δ
(13)

where δ is a small positive parameter, typically on the order of
10−6.

Denote c = (c1, c2, . . . , cN)
T and y =

N∑
i=1

ciψi where {ψi}

are the piecewise linear basic functions for the finite element
method and N is the total number of nodes in the quasi-uniform
grid or mesh of �. Since the conductivity tensors Di and De

are symmetric and positive definite, for a non-zero vector c, the
quadratic forms of the stiffness matrices

cTKic =
1

β

∫

�

(∇y)TDi(∇y)dx

and

cTKec =
1

β

∫

�

(∇y)TDe(∇y)dx

are non-negative and vanish if and only if ∇y ≡ 0 for any x ∈ �,
which implies that c is parallel to (1, 1, . . . , 1)T . Therefore, the
stiffness matrices Ki and Ke are symmetric positive semi-definite
and have a rank of N − 1. We then discuss the property of the
Jacobian matrix A in Equation (12). Since µ = Cm/1t, the first
part of matrix A in Equation (12) will dominate as1t approaches
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zero which is positive semi-definite and has a rank of 2N − 1.
The second part of the matrix A is symmetric and negligible
compared with the first part when1t approaches zero. Therefore,
with a rank of 2N − 1, the Jacobian matrix A is irreversible,
which is consistent with the fact that the solution of the bidomain
equations is not unique if the constraint (4) is absent.

To obtain a unique solution, we take the following discrete
formula of the constraint (4) as

WTΦ i +WTΦe = 0, (14)

where W = (1, 1, . . . , 1)T/
√
N has a dimension of N. Then in

each approximate Newton iteration, we use the following matrix

B ≡ A+
[
W

W

] [
WT WT

]
(15)

to solve the bidomain equations.
Note that the column vector W1 = (1, 1, . . . , 1)T is an

eigenvector corresponding to the eigenvalue 0 of matrix A.
Denote the other eigenvectors corresponding to the non-zero
eigenvalues of matrix A by W2, W3, . . . , W2N . Then we have
R
2N = span{W1,W2, . . . ,W2N}, whereW1 is orthogonal toW2,

W3 . . . , W2N . Since matrix A is non-negative definite, we have
WT

1AW1 = 0 and WT
k
AWk > 0, for k = 2, . . . , 2N. Obviously,

we have

WT
1BW1 =WT

1AW1 +WT
1W1W

T
1W1

=WT
1W1W

T
1W1 > 0

and

WT
k BWk =WT

kAWk +WT
kW1W

T
1Wk

=WT
kAWk > 0, for k = 2, 3, . . . , 2N.

Therefore, the modified Jacobian matrix B is symmetric and
positive definite and the system has a unique solution after adding
condition (14).

In principle, we can solve the stabilized system which
has a coefficient matrix B by a direct method such as the
Gauss elimination method or an iterative method such as
the Gauss-Seidel iteration and the (preconditioned) conjugate
gradient iteration. Because the bidomain equations often need
to be discretized on a fine grid with a large number of
nodes, the computational work involved with the solution
of the linear equations by the above methods may be large
and not optimal. To achieve optimal performance, we can
apply the V-cycle geometric multigrid method or multigrid
preconditioned conjugate gradient method (Wesseling, 1995;
Saad, 2003; Ying, 2005) to solve the stabilized linear system in
each Newton iteration.

To numerically solve the bidomain equations by the BE
method, we give two nonlinear vector-valued functions from
Equations (7) and (11) as

f(q) ≡ q−1tM(Vn+1
m , q)− qn (16)

and

F
(
(Φ i,Φe)

T
)
≡

[
µMVn

m

M(Istim − µVn
m)

]

−
[
µM+ Ki −µM
−µM µM+ Ke

] [
Φ i

Φe

]
−

[
MIion(Vm)
−MIion(Vm)

]
. (17)

The system

f(qn+1) = 0 (18)

and

F
(
(Φn+1

i ,Φn+1
e )T

)
= 0 (19)

from time tn to tn+1 can be solved by the following detailed
Algorithm 1.

Algorithm 1: the BE method

1 The initial guess (Φn+1
i ,Φn+1

e )Tν (ν = 0) is calculated by
linear extrapolation

(Φn+1
i ,Φn+1

e )Tν = 2(Φn
i ,Φ

n
e )

T − (Φn−1
i ,Φn−1

e )T ,

2 where ν is the number of Newton iteration.

3 while
∥∥F

(
(Φn+1

i ,Φn+1
e )Tν

)∥∥ > tolNewton do

4 Denote Vn+1
m = (Φn+1

i )ν − (Φn+1
e )ν and update the state

variables qn+1 of each space point by solving the local
nonlinear system (18) using Vn+1

m .
5 Compute Iion(V

n+1
m ) by substituting qn+1 into the ionic

current Iion(V
n+1
m , qn+1) and compute Jion(V

n+1
m ) by

Equation (13).
6 Solve the linear system

F′
(
(Φn+1

i ,Φn+1
e )Tν

)
wν + F

(
(Φn+1

i ,Φn+1
e )Tν

)
= 0

7 by a standard V-cycle multigrid method with
Gauss-Seidel smoother such that

∥∥∥F′
(
(Φn+1

i ,Φn+1
e )Tν

)
wν + F

(
(Φn+1

i ,Φn+1
e )Tν

)∥∥∥
< tolMultigrid.

8 Update the vector

(Φn+1
i ,Φn+1

e )Tν+1 ← (Φn+1
i ,Φn+1

e )Tν + wν .

9 Update the iteration number ν ← ν + 1.

10 end

11 Accept the vector (Φn+1
i ,Φn+1

e )Tν as an approximation of

(Φn+1
i ,Φn+1

e )T .

It is worth noting that the updated membrane potential
Vn+1
m = (Φn+1

i − Φn+1
e ) has a corresponding updated qn+1,

which is computed by solving the nonlinear system of Equation
(18), e.g., by the Newton iteration or the damped Newton
iteration method.
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2.3. The Composite Backward
Differentiation Formula
We then introduce the CBDF2 scheme (Ying et al., 2008, 2009) to
solve the bidomain equations. The CBDF2 scheme has second-
order accuracy and is L-stable. It uses the BE method as a
fundamental building block. As we have presented how to
discretize and solve the bidomain equations with the BE method,
the CBDF2 scheme can be readily and easily implemented.

For ease of illustration, we first give the CBDF2 scheme for the
abstract form

du(t)

dt
= f (u), for t > 0, (20)

which can then be straightforwardly extended to the bidomain
equations. The CBDF2 scheme for Equation (20) is given by

un+γ − γ1tf (un+γ ) = un, (21)

un+1 − γ1tf (un+1) =
(
2−

1

γ

)
un +

(
1

γ
− 1

)
un+γ , (22)

where the parameter γ takes the value of 1 −
√
2/2 to obtain

a second-order numerical accuracy (Ying et al., 2009). Here, un

is an approximation of u(tn) at time tn = n1t and un+γ is an
approximation of u(tn+γ ) at the intermediate time tn+γ = tn +
γ1t. The right hand side of Equation (22) is an approximation
of u(tn+1−γ ) at time tn+1−γ = tn+1 − γ1t which is extrapolated
from the solutions at tn and tn+γ . Equation (21) is called the
first stage and can be regarded as the BE discretization from time
tn to time tn+γ , while Equation (22) is called the second stage
and can be regarded as the BE discretization from time tn+1−γ

to time tn+1. The form of the two stages of the CBDF2 scheme
are the same as that in the BE temporal discretization except
that the timestep is replaced by γ1t. Thus, un+γ and un+1 in
Equations (21) and (22) can be computed iteratively as previously
discussed in Algorithm 1, i.e., the BE method is the building
block of the CBDF2 scheme. To extend the CBDF2 scheme to the
bidomain equations, we only need to rewrite the system (1)–(3)
to a vector form of Equation (20). The detailed CBDF2 scheme
for the bidomain equations is given in the following Algorithm 2.

2.4. Stability Analysis of The CBDF2
Scheme
We first analyze the stability function of the CBDF2 scheme of a
simple ODE

du

dt
= λu, for λ ∈ C,

which is

S(z) =
1+ (1− 2γ )z

(1− γ z)2
, for z ∈ C.

The stability function S(z) has been proven to be bounded by one
for all numbers on the left half complex plane and converge to
zero as the real part of the complex number z tends to negative
infinity with a particular value of the characteristic constant γ =
1−
√
2/2 (Ying et al., 2008), i.e., the CBDF2 scheme is L-stable.

Algorithm 2: the CBDF2 method

1 Denote the discrete initial condition by V0
m and q0.

2 Denote the simulating time as T and let K = T/1t.
3 for i = 0 to K do

4 Get the concrete form of the nonlinear system by

substituting Vi
m and qi into the Equations (18) and (19).

5 Solve the system f(qi+γ ) = 0 and

F
(
(Φ

i+γ
i ,Φ

i+γ
e )T

)
= 0 from time ti to ti+γ by the

Newton iteration method as shown in Algorithm 1 but
using timestep of γ1t.

6 Compute the intermediate variable

V
i+1−γ
m = (2−

1

γ
)V i

m + (
1

γ
− 1)V

i+γ
m

qi+1−γ = (2−
1

γ
)qi + (

1

γ
− 1)qi+γ

7 Get the concrete form of the nonlinear system by

substituting the variable V
i+1−γ
m and qi+1−γ into the

equations (18) and (19).

8 Solve the system f(qi+1) = 0 and F
(
(Φ i+1

i ,Φ i+1
e )T

)
= 0

from time ti+1−γ to ti+1 by the Newton iteration
method.

9 end

10 Accept the vector (ΦK
i ,Φ

K
e )

T as an approximation of

(Φ i,Φe)
T at the simulating time T.

We then derive the global error of the CBDF2 scheme for
Equation (20). Assume the function f (u) in Equation (20) is
Lipschitz continuous in u over some feasible domainD, i.e., there
exists some constant L ≥ 0 such that |f (u)−f (u∗)| ≤ L|u−u∗| for
all u and u∗ in D. The local truncation error (LTE) of the CBDF2
scheme (Ying, 2005) has been proven to be

ECBDF2 =
(
1

6
−

2γ 2 − 2γ + 1

4(1− γ )

)
f ′2f1t3

+
(
1

6
−

1− γ
4

)
f 2f ′′1t3, (23)

which is on the order of (1t)3.
From the form of the second stage of the CBDF2 scheme (22),

we have

u(tn+1)−
((

2−
1

γ

)
u(tn)+

(
1

γ
− 1

)
ũ(tn+γ )

)

γ1t

= f (u(tn+1))+
ECBDF2

γ1t
, (24)

where ũ(tn+γ ) satisfies

ũ(tn+γ )− u(tn)

γ1t
= f (̃u(tn+γ )). (25)
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Let Equation (25) subtract Equation (21) and we can obtain

(1− Lγ1t)|̃en+γ | ≤ |en| (26)

where en = u(tn) − un and ẽn+γ = ũ(tn+γ ) − un+γ . By
subtracting Equation (24) from Equation (22), we have the
following inequality

(1− Lγ1t)|en+1| ≤ |en| +
(
1

γ
− 1

)
Lγ1t|̃en+γ | + CCBDF21t3

≤ |en| +
(
1

γ
− 1

)
Lγ1t

1− Lγ1t
|en|

+CCBDF21t3, (27)

i.e.,

|en+1| ≤ |en|
1+ L1t − 2Lγ1t

(1− Lγ1t)2
+

CCBDF21t3

1− Lγ1t
, (28)

where CCBDF2 =
∣∣∣∣
1

6
−

2γ 2 − 2γ + 1

4(1− γ )

∣∣∣∣ ||f
′ ||2∞||f ||∞ +

∣∣∣∣
1

6
−

1− γ
4

∣∣∣∣ ||f ||2∞||f
′′ ||∞. When L1t ≤ 1.12, we have

1+ L1t − 2Lγ1t

(1− Lγ1t)2
≤ 1 + 2L1t and we can further obtain the

global error of the CBDF2 scheme at simulation time T as

|eT/1t| ≤ (e2LT − 1)
CCBDF21t2

2L(1− Lγ1t)
. (29)

Similarly, the LTE of the BE method for the abstract form (20) is

1t2f
′
/2, while its global error satisfies

|en+1| ≤ (1+ 2L1t)|en| +
1t2||f ′ ||∞
2(1− L1t)

, (30)

and has the form at simulation time T as

|eT/1t| ≤ (e2LT − 1)
1t||f ′ ||∞

4L(1− L1t)
(31)

when L1t ≤ 0.5. Since the restriction for the CBDF2 scheme is
L1t ≤ 1.12, the CBDF2 scheme allows a larger timestep than the
BE method for the abstract form (20).

3. NUMERICAL RESULTS

In this section, we compare the numerical results from the BE
and CBDF2 schemes with different spatial step sizes and timestep
sizes. The computational domain is partitioned into a quasi-
uniform triangular grid in the two-dimensional space and a
hexahedral mesh in the three-dimensional space, respectively.
A linear approximation is used to obtain the solution on each
element. The detailed refinement of a coarser grid to get a finer
grid and the numbering principle of the triangular grid are shown
in Supplementary Figure 1. Denote the quasi-uniform partition
by Th = {T(1),T(2), . . . ,T(M)} with M being the total number of

elements in the partition where T(i) is the i-th element. Denote
h as the mesh parameter which measures the maximum of the
elements’ edges, i.e.,

h = max
1≤i≤M

edge{T(i)}.

The transmembrane polarization is driven by an extracellular
stimulus which is modeled as a virtual battery with an anode and
a cathode in the center of the domain (Vigmond et al., 2008) and
is given by

Istim(x) =

{
Vm
stim, if r < 0.1,

−Vm
stim, if s < 0.1,

(32)

where Vm
stim is a constant, r is the distance between x and the

anode and s is the distance between x and the cathode.
The operator splitting technique (Qu and Garfinkel, 1999;

Trangenstein and Kim, 2004; Sundnes et al., 2005) is also
used to efficiently solve the bidomain equations where the
linear diffusion part and the nonlinear reaction part are solved
separately. To be specific, the Godunov splitting combined with
the BE method and the Strang splitting combined with the
CBDF2 scheme are used to solve the bidomain equations (see
Supplementary Material for details). The linear system obtained
from discretizing the diffusion part is solved by the standard
multigrid V-cycle with Gauss-Seidel smoother. Notice that the
coefficient matrix of the discrete linear system obtained from
the operator splitting does not contain the evaluation of the
derivative function Jion(V

n+1
m ), i.e., the second part of matrix A.

In the numerical simulation of the above methods, the
membrane capacitance per unit area and the surface-to-volume
ratio are set as Cm = 1 (units: µF/cm2) and β = 1, 000
(units: cm−1), respectively. Other constant parameters are set
as tolNewton = 10−7, tolMultigrid = 10−7, and the number of
smoothing iterations νMultigrid = 6. The absolute tolerance in
the Newton iteration method for solving the nonlinear system
(18) is chosen to be 10−10. The parameter δ in Equation (13) is
selected to be 10−6 for all simulations. The units for the time
steps, spatial steps, and voltage aremilliseconds (ms), centimeters
(cm), and millivolts (mV), respectively. The unit of conductivity
is millisiemens per centimeter (mS/cm−1). The fully implicit
integration methods are implemented with custom codes written
in C++ and the numerical simulations are all performed on a 3.6
GHz computer with an Intel Core i3-4160 CPU.

We should mention that the computational domain is not
limited to the regular areas. For example, circular regions can
be divided into a quasi-uniform triangular grid by the same
principle as shown in Supplementary Figure 8 and a solid
sphere can be partitioned into a quasi-uniform tetrahedral
mesh (Liu and Joe, 1996; Everett, 2010). The additional
numerical results solved on a circle and sphere are shown in
Supplementary Figures 9–13.

3.1. Numerical Example in
Two-Dimensional Space
For the numerical simulations of the bidomain equations in the
two-dimensional space, we model the square consisting of fibers
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which rotate counterclockwise around the point c = (c0, c1) =
(−0.5,−0.5). The conductivity tensor is space dependent with
unequal anisotropy ratios: in the intracellular space, it is 12.0
along the fiber and 2.0 perpendicular to the fiber; in the
extracellular space, it is 8.0 along the fiber and 4.0 perpendicular
to the fiber. The conductivity tensors Di(x) and De(x) with x =
(x0, x1) can be expressed by

Di(x) = σ l
i ele

T
l + σ

n
i ene

T
n andDe(x) = σ l

eele
T
l + σ

n
e ene

T
n ,

where σ l
i = 12, σ n

i = 2, σ l
e = 8, σ n

e = 4, el = (sinθ , cosθ)T , and

en = (−cosθ , sinθ)T with cosθ =
x0 − c0

|x− c|
and sinθ =

c1 − x1

|x− c|
.

The positions of the anode and cathode are set as (0.875, 1.0) and
(1.125, 1.0), respectively.

In this work, we first use a variant of the FitzHugh-Nagumo
(Vfhn) model as the membrane dynamics which is governed by

Iion(Vm, q) = GVm

[(
1−

Vm

Vth

) (
1−

Vm

Vpeak

)
+ q

]

M(Vm, q) = γ
(
αVm

Vpeak
− q

) (33)

with the parameters set as
Vpeak = 1, G = 20, Vth = 0.125, α = 3, and γ = 1. The gating
and ion concentration variables q, the intracellular potential 8i,
and the extracellular potential 8e are set to be at rest at time
t = 0.

We first discuss the numerical performance of the CBDF2
scheme. Using the same timestep size1t = 1/32 and spatial step
size h = 1/64, we compare the CBDF2 scheme with the other
different time integration methods. A high precision solution
obtained from the BE method using a very small timestep size
1t = 1/256 and spatial step size h = 1/256 is set as a benchmark.
As shown in Figure 1, the CBDF2 scheme using a large timestep
can obtain a highly accurate trajectory of the membrane voltage
compared with the benchmark while that obtained from the BE
method using a large timestep is inaccurate. Besides, the Strang
operator splitting (SOS) combined with the CBDF2 scheme is
stable but less accurate than the CBDF2 scheme in the membrane
voltage trajectory. We point out that the Godunov operator
splitting combined with the BE method is unstable using the
timestep size 1t = 1/32 and spatial step size h = 1/64.
Figure 2 shows the isopotential lines Vm = 0.1 at time T =
8.75 for the bidomain simulations from the above methods,
while Figure 3 shows the isopotential lines Vm = 0.1 and the
Newton iteration number obtained from the CBDF2 scheme
using different timesteps.

We next study the convergence of the four different time
schemes, i.e., the BE method, the CBDF2 scheme, the Godunov
splitting combined with the BE method, and the Strang splitting
combined with the CBDF2 scheme with the Vfhn membrane
model. Comparing with the high precision numerical solution
obtained from the BE method with a quite small timestep size
1t = 1/512 and spatial step size h = 1/512, we compute
the errors of the membrane voltage which is summed over the
whole space at the discrete times. To be specific, we use the scaled

FIGURE 1 | The membrane voltage trajectories obtained from different

methods with timestep size 1t = 1/32 and spatial size h = 1/64. A high

precision solution is obtained from the BE method with a small timestep size

1t = 1/256 and spatial size h = 1/256. The membrane model is the Vfhn

model.

discrete l2-norm of a vector v = (v1, v2, · · · , vd)T ∈ R
d defined

as

||v||l2 =

√√√√ 1

d

d∑

i=1
v2i

to compute the error of voltage summed over the whole
domain, i.e., e(x) = (e(x1), e(x2), · · · , e(xN))T . By halving both
the timestep and spatial step size, we can obtain a first-order
convergence of the BE method and the Godunov splitting
combined with the BE method and a second-order convergence
of the CBDF2 scheme and the Strang splitting combined with the
CBDF2 scheme, respectively, as shown in Table 1.

We further consider two more realistic membrane models,
i.e., the DiFrancesco and Noble (DFN) model (DiFrancesco
and Noble, 1985; Cabo and Barr, 2006) and the Courtemanche
et al. (CRN) model (Courtemanche et al., 1998) which have 15
and 20 state variables other than the transmembrane potential,
respectively. In each simulation, the state variables q are all
assumed to be at rest at time t = 0 and the initial condition of
the membrane potential Vm is given by

Vm(x, t = 0) =
100

1+ exp

(
200(

√
x21 + x22 − 0.2)

) − 80.

The iso-contours and trajectories of the membrane voltage
obtained from the CBDF2 scheme using the more realistic DFN
and CRN models in the two-dimensional space is shown in
Supplementary Figure 6.

We study the stability of the four different time integration
methods with the DFN membrane model. The simulations
for the bidomain equation with the DFN model use timestep
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FIGURE 2 | The isopotential lines Vm = 0.1 at time T = 8.75 from different methods with timestep size 1t = 1/32 and spatial size h = 1/64. A high precision solution

is obtained from the BE method with a small timestep size 1t = 1/256 and spatial size h = 1/256. (A) The isopotential lines in the entire computational domain. (B) A

zoomed region of (A) to clearly display the different isopotential lines. (C) Contours for the transmembrane potential Vm of an anisotropic bidomain equation at

T = 8.75 from the high precision solution.

FIGURE 3 | (A) The isopotential lines Vm = 0.1 obtained from the CBDF2 scheme using different timesteps in the area around the point (1.4, 1) at T = 8. (B) The

number of Newton iteration in each simulation using different timesteps sizes. The spatial step size in (A,B) is h = 1/64.

sizes of 1/8, 1/16, 1/32, 1/64, 1/128, and spatial step sizes
of 1/128. As shown in Table 2, the CBDF2 scheme is stable
for the timestep sizes ≤1/8 while the BE method is stable for
timestep sizes ≤1/32. The Strang operator splitting together
with the CBDF2 scheme is stable for the timestep sizes less
than or equal to 1/8 while the Godunov operator splitting
together with the BE method is stable for the timestep sizes
less than or equal to 1/16. The numerical results show that
the CBDF2 scheme has better stability compared with the
BE method which is consistent with the stability analysis in
section 2.4.

As shown in Table 2, the Godunov splitting combined
with the BE method is less stable than the Strang splitting
combined with the CBDF2 scheme. A possible reason is that
the BE method is less stable than the CBDF2 scheme. To
fairly compare the stability of the Godunov splitting and
Strang splitting, we further perform numerical experiments

using Strang splitting combined with the BE method
which allows using a much larger time step (maximum
1t ≈0.20) than the Godunov splitting combined with
the BE method. Our experiments indicate that the Strang
splitting has better stability than the Godunov splitting for the
bidomain equations.

To compare the numerical accuracy of each scheme, a high
precision solution is obtained from the BE method with a very
small timestep 1t = 1/1, 024 and spatial step size h = 1/128.
As shown in Table 2, the CBDF2 scheme using a large timestep
1t = 1/8 is more accurate and efficient compared with the
BE method using a small timestep 1/64. Besides, the CBDF2
scheme, combined with the nonlinear elimination method, has
better accuracy than the CBDF2 scheme combined with Strang
operator splitting although taking a bit more time as shown in
Table 2. Note that the errors in Table 2 do not convergence to
zero as the timestep size is reduced. This is because the errors
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TABLE 1 | Errors of membrane potentials in the scaled discrete l2-norm of four

different time integration methods.

1t = h = 1/32 1t = h = 1/64 1t = h = 1/128 1t = h = 1/256

BE 1.66e-01 9.98e-02 4.92e-02 1.72e-02

Order – 0.7 1.0 1.5

CBDF2 1.05e-01 3.08e-02 8.20e-03 1.82e-03

Order – 1.8 1.9 2.2

Godunov * 1.14e-01 6.13e-02 2.73e-02

Order * – 0.9 1.2

Strang 1.49e-01 4.15e-02 1.25e-02 4.15e-03

Order – 1.8 1.7 1.6

The computational domain is a rectangle [0, 2]2 and the total run time is T = 2. The

membrane model is the Vfhn model and asterisk(*) indicates overflow error.

TABLE 2 | The comparison of CPU times (minutes) and the error of membrane

voltage of the four methods.

BE CBDF2 Godunov Strang

1t CPU ||e(x)||l2 CPU ||e(x)||l2 CPU ||e(x)||l2 CPU ||e(x)||l2

1/128 20.27 8.92e-03 50.96 7.10e-03 15.27 9.97e-03 34.23 8.19e-03

1/64 16.79 1.07e-02 30.36 8.09e-03 9.32 1.43e-02 19.63 1.35e-02

1/32 15.75 3.05e-02 21.54 8.33e-03 6.61 3.96e-02 11.21 1.52e-02

1/16 * * 14.79 8.60e-03 4.88 9.07e-02 7.36 1.57e-02

1/8 * * 13.75 9.78e-03 * * 4.97 2.59e-02

The computational domain is a rectangle [0, 1]2, the total run time is T = 10, and the

spatial step size is 1/128. The membrane model is the DFNmodel and asterisk(*) indicates

overflow error.

depend on both the timestep size and spatial step size which have
a lower bound when using a fixed spatial step size.

We emphasize that the computational domain is not limited
to the regular areas such as rectangle regions. Numerical results
solved on a circular region which is partitioned into a quasi-
uniform triangular grid (Liu and Joe, 1996; Everett, 2010) are
given in Supplementary Figures 9, 10. The performance of the
CBDF2 scheme is as well as that solved on the rectangle region.

3.2. Numerical Example in
Three-Dimensional Space
The numerical methods introduced in this work can be
straightforwardly extended to the case of three-dimensional
space. For ease of illustration, we first simulate the bidomain
equations with the Vfhn membrane on a unit cube x ∈
[0, 1]3 (x = (x1, x2, x3)

T). The extracellular stimulus in the
three-dimensional space is given by applying a virtual battery
with an anode and a cathode located at (0.375, 0.5, 0.5) and
(0.625, 0.5, 0.5) in the center of the domain and is given by

Istim(x) =

{
6.0, if r < 0.1,

−6.0, if s < 0.1,
(34)

where r is the distance between x and the anode and s is the
distance between x and the cathode. The computational domain

in three-dimensional space is partitioned into a quasi-uniform
hexahedron mesh. We use a linear approximation to the solution
on each element. The parameters, tolerances, andmodules are set
the same as those noted previously in this work.

In the case of three-dimensional space, the axially isotropic
conductivity tensors are formulated as

Di = σ n
i I+ (σ l

i − σ
n
i )ele

T
l andDe = σ n

e I+ (σ l
e − σ

n
e )ele

T
l ,

where I is the 3× 3 identity matrix, σ l
i = 12, σ n

i = 2, σ l
e = 8, and

σ n
e = 4. The readers can refer to Neu and Krassowska (1993) and

Ying (2005) for more details of the conductivity tensors.
The iso-contour and iso-surface plots of the membrane

potential simulated on a unit cube are shown in
Supplementary Figures 2–5. Additional numerical results
obtained from simulating the bidomain equations in a solid
sphere are shown in Supplementary Figures 11–13.

We then consider the DFN and CRN models in three-
dimensional space. In each simulation, the state variables q are
all assumed to be at rest at time t = 0 and the initial condition of
the membrane potential Vm is given by

Vm(x, t = 0) =
100

1+ exp

(
200(

√
x21 + x22 + x23 − 0.2)

) − 80.

The iso-contours and trajectories of the membrane voltage
obtained from the CBDF2 scheme using the more realistic DFN
and CRN models in the three-dimensional space are shown in
Supplementary Figure 7.

4. DISCUSSION

In this work, we have presented two fully implicit methods, the
BE and CBDF2 schemes, to numerically simulate the bidomain
equations arising from modeling the electrical activity of the
heart. The second-order CBDF2 scheme is L-stable for the stiff
problems and uses the BEmethod as building blocks. The CBDF2
scheme has better accuracy and efficiency using a large timestep
1t = 1/8 compared with the BE method using a small timestep
1t = 1/64. When the error of membrane voltage for the CBDF2
and BE schemes are approximately the same, the CBDF2 scheme
allows for timestep an order of magnitude larger than that used in
the BE method. A further advantage of the CBDF2 scheme is that
it allows temporal adaptivity to speedup, i.e., it can use a small
timestep during the action potential upstroke period (stiff region)
and a much larger timestep when the electrical activity is slowly
varying (non-stiff region) (Ying, 2005; Whiteley, 2007). The
CBDF2 scheme satisfies the requirement of stability, accuracy,
and efficiency well which enable us to achieve a quantitative
understanding of the relationship between molecular function
and the integrated behavior of the cardiac myocyte in health
and disease more effectively, e.g., to predict the clinical risk of
drug-induced arrhythmias.

When using fully implicit methods to solve the bidomain
equations, the obtained nonlinear systems are generally very
large. We use a variant of the nonlinear elimination method
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(Lanzkron and Rose, 1997) to reduce the size of the system
which includes the evaluation of the Jacobian matrix for each
timestep. The spatially and temporally discretized nonlinear
system (11) is solved with an approximate Newton method
where the coefficient matrix of the residual system is symmetric
and possibly positive definite consisting of the stiffness matrix,
mass matrix, and the derivative function Jion. The linear residual
equation can be efficiently solved by standard optimal solvers
such as the V-cyclemultigridmethod (Saad, 2003). The derivative
function Jion is time dependent and can be numerically evaluated
with sufficient accuracy.

The computational domains in this work are square and cube
(see Supplementary Figures 9–13 for results simulated on circle
and sphere), but we emphasize that the CBDF2 scheme can be
applied to more complicated computational domains since the
generation rules of the finite element mesh in both two- and
three-dimensional space do not depend on the particularity of
the square or cube. The generation rules are applicable to more
complex computational domains such as the realistic human left
ventricle model (Cai et al., 2015) which will be presented in our
future work.

In addition, the CBDF2 scheme using an adaptive mesh
refinement algorithm can further improve the computational
efficiency (Trangenstein and Kim, 2004; Ying, 2005; Whiteley,
2007). For the parallel implementation, the fully implicit methods
proposed here leads to a full space independent system which
is highly localized. As the inter-processor communication for
updating the state variables by solving Equation (7) will be much
less, the speedup for the simulations will be impressive when
the membrane model including tens of or more state variables.
In future works, we will consider more realistic computational

domains such as the human left ventricle domain (Cai et al.,

2015) combined with more realistic membrane models such as
the Tusscher-Noble-Noble-Panfilov model (ten Tusscher et al.,
2004) which can potentially help study new drugs and methods
of treatment.
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