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We review the literature to argue the importance of the occurrence of crucial events in

the dynamics of physiological processes. Crucial events are interpreted as short time

intervals of turbulence, and the time distance between two consecutive crucial events is

a waiting time distribution density with an inverse power law (IPL) index µ, with µ < 3

generating non-stationary behavior. The non-stationary condition is characterized by

two regimes of the IPL index: (a) perennial non-stationarity, with 1 < µ < 2 and (b)

slow evolution toward the stationary regime, with 2 < µ < 3. Human heartbeats and

brain dynamics belong to the latter regime, with healthy physiological processes tending

to be closer to the border with the perennial non-stationary regime with µ = 2. The

complexity of cognitive tasks is associated with the mental effort required to address a

difficult task, which leads to an increase of µ with increasing task difficulty. On this basis

we explore the conjecture that disease evolution leads the IPL index µ moving from

the healthy condition µ = 2 toward the border with Gaussian statistics with µ = 3,

as the disease progresses. Examining heart rate time series of patients affected by

diabetes-induced autonomic neuropathy of varying severity, we find that the progression

of cardiac autonomic neuropathy (CAN) indeed shifts µ from the border with perennial

variability, µ = 2, to the border with Gaussian statistics, µ = 3 and provides a novel,

sensitive index for assessing disease progression. We find that at the Gaussian border,

the dynamical complexity of crucial events is replaced by Gaussian fluctuation with

long-time memory.

Keywords: crucial events, complexity, diffusion entropy, multiscale entropy, Rényi entropy, autonomic neuropathy

1. INTRODUCTION

Heart rate analysis and specifically heart rate variability (HRV) analysis has proven to be a useful
adjunct feature for clinical medicine (Javorka et al., 2008; Huikuri et al., 2009; Hu et al., 2010;
Lake, 2011). However, obtaining results that allow classification of pathology or determining
risk of morbidity or mortality are only one part of the solution. Descriptive features sensitive to
characteristics of a time series need also to be understood in terms of their explanatory power of
the process they are measuring. Herein, we address the latter point.
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Entropy-derived measures including Sample Entropy,
Multiscale Entropy (MSE), and Rényi Entropy have been applied
for early identification of sepsis and analysis of diabetes and
cardiovascular diseases (CVD) (Oida et al., 1999; Lake et al.,
2002; Costa and Healy, 2003; Lake, 2006; Valencia et al., 2009;
Cornforth et al., 2015; Kohnert et al., 2018; Jelinek et al., 2019).
Applying MSE (SE) (Costa et al., 2002, 2005) turned out to
be a very efficient technique for the analysis of HRV and in
identifying cardiac pathology. MSE bypasses the computational
difficulties to evaluate the Kolmogorov-Sinai (KS) entropy (Costa
et al., 2002; Allegrini et al., 2003). Applying a coarse-graining
procedure to the experimental time series of the interbeat
fluctuations (RR intervals) provides a mathematical model to
describe the bio-signal associated with heart rate fluctuations.

Hereby we also adopt the research directions proposed in
Allegrini et al. (2003) to address the problem of the connection
between entropy and 1/f noise. Moving in the directions of
Allegrini et al. (2003) allows us to address the Chialvo challenge
(Chialvo, 2002) to propose a robust model describing a better
understanding of the dynamics of heart rate time series and
of physiological processes in general. This model rests on self-
organized criticality. Self-organized criticality can be used to
advocate a model generating crucial events, interpreted as short-
time turbulent intervals. Wemust stress that the main conclusion
of the present manuscript, as we shall see hereby, is that
the crucial events are important in the first phase of cardiac
autonomic neuropathy (early CAN). In the final definite CAN
condition crucial events are replaced by a source of complexity
generated by a stationary but not integrable correlation function.
Themodel to use in this case, as discussed in Bologna et al. (2013),
should be a model explaining why the two sources of complexity
may both explain the signal characteristics. We plan to devote
further research work to further build up this model.

The Rényi entropy was shown by Cornforth et al. (2014) to be
a valuable tool in the study of Cardiac Autonomic Neuropathy
(CAN). These authors, using Rényi Rényi entropy with α < 0
were able to divide a patient cohort into three distinct groups,
normal, early, and definite CAN. Rényi entropy was proposed
as an extension of multiscale entropy (MSE) and overcame the
shortcomings of SE by addressing the boundary problem inherent
in the histogram method of SE.

In this new approach a density measure can be calculated
for the individual RR interval using a Gaussian approach. A
Gaussian kernel is centered on the individual RR interval and all
RR intervals are added, weighted by the Gaussian function, based
on the distance between the individual RR intervals. Apart from
the advantage of allowing a continuous rather than a discretised
measure, this method also allows more than one dimension,
as long as a suitable distance measure can be provided. In the
case of RR intervals, higher dimensions allow sequences of RR
intervals to be compared, rather than relying solely on individual
RR intervals. In the case of Rényi entropy, we actually calculate
the probability of each sequence. This differs from MSE, where
we count the number of sequences that are unique, so that this is a
more approximate way of calculating the PDF for each sequence.

In this paper, we find a method to determine the role of crucial
events in generating the healthy RR fluctuations. Following

Shuster (1988) we define crucial events using the concept of
intermittent turbulence. Intermittent turbulence is a concept
often applied to describe and model complex physical behaviors
that can be described as fractal. Intermittency of any physical
phenomena such as turbulence in fluid flow or changes in heart
rate changes the statistical properties of the scaling laws for the
different moments of velocity, energy distribution, and diffusion
behavior observed in intermittent systems (Jou, 1997; Mongiov
et al., 2014). The occurrence of a short region of turbulence is
a crucial event and the time distance between two consecutive
turbulent events, assumed to be of negligible time duration, is
given by an inverse power law (IPL) waiting time distribution
density with an IPL index µ < 3 and related to fractal-like
behavior that can manifest as 1/f noise. There are two forms of
1/f noise, one with and one without crucial events.

The main purpose of this paper is to contribute to a deeper
understanding of these two types of 1/f -noise. We do this by
proposing the joint use of MSE(SE), Rényi entropy (Hα) and
include Diffusion Entropy Analysis (DEA) which is another form
of entropy originally introduced to study the complexity of a
social process (Scafetta et al., 2001). Note that this was done
independently from the work of Costa et al. (2002, 2005) who
applied SE to the study of heartbeat dynamics (Grigolini et al.,
2001; Allegrini et al., 2002). The use of these three entropy
measures will make it possible to establish which form of 1/f -
noise is generated by cardiac dynamics and the role played by
crucial events.

While a general agreement exists about the importance
of 1/f -noise for neurophysiological processes, there are two
distinct origins of 1/f -noise which may be generated by either
Gaussian fluctuations, yielding stationary correlation functions,
or by non-ergodic fluctuations (Culbreth et al., 2019). The
spectrum of 1/f -noise can be realized in two ways. The first is
through a correlation function which is stationary, but has a
diverging correlation time. Such a process generates deviations
from ordinary diffusion but without crucial events. The second
mechanism results in a non-stationary correlation function
generated solely by crucial events. Multiscale analysis cannot
distinguish the first from the second mechanism. Diffusion
entropy analysis (DEA) has been suitably modified (MDEA), as
we subsequently explain, such thatMDEA applied in the first case
yields ordinary scaling, but in the second case detects anomalous
scaling. For this reason, we shall use the modified version of
DEA that was recently proposed to assess the empirical nature
of 1/f -noise (Culbreth et al., 2019). The work of Culbreth et al.
(2019) is the original DEAmethod supplemented by the adoption
of stripes, a method already used by Allegrini et al. (2002) that
Culbreth et al. (2019) adopted to establish the true nature of
1/f -noise. This method is herein applied to the classification
of cardiac autonomic neuropathy (CAN) in type 2 diabetes
mellitus (T2DM).

We end this introduction by clarifying a confusion regarding
1/f -noise that has apparently gone unnoticed in the literature.
The confusion stems from the existence of two distinctly different
kinds of 1/f -noise. There is the fractional Brownian motion
(FBM) explanation of 1/f -noise first provided by Mandelbrot
and Van Ness (1968) and Mandelbrot (1977), which we call Type
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FIGURE 1 | The multiscale entropy (SE ) is calculated for two time series, 1/f

noise and white noise. The time series are both coarse grained by using a

scale factor to aggregate the data. The multiscale entropy is graphed vs. the

scale factor, where it is seen that 1/f noise is independent of the size of the

aggregation scale factor, whereas white noise depends strongly on the scaling.

This figure is taken from Costa et al. (2002), reprinted here with permission.

FIGURE 2 | The multiscale entropy (SE ) is calculated for three time series,

trajectory with crucial events with IPL index µ = 2, FBM with Hurst exponent

H = 0.99 and white noise. The time series are coarse grained by using a scale

factor to aggregate the data. The multiscale entropy is graphed vs. the scale

factor. Although both FBM trajectory and trajectory with crucial events

generate 1/f noise, trajectory with crucial events is independent of the size of

the aggregation scale factor while FBM trajectory is independent of the size of

the aggregation scale factor only for larger scale factors. White noise depends

strongly on the scale.

I. This is separate and distinct from Type II 1/f -noise that is
generated by crucial events and was first discussed in Allegrini
et al. (2002). The confusion arises because the mechanisms
generating these two types of noise can appear separately, or
they can appear together depending on the complexity of the
phenomenon being considered.

To facilitate the understanding of the significant results of
this paper, Figure 1 displays the Multiscale entropy processing
of white noise and Type I 1/f -noise, which until recently was
the only interpretation of 1/f -noise available. Figure 2, on the
other hand, compares the Multiscale entropy of white noise
with both Type I and II 1/f -noise which, as we subsequently
show has confused researchers studying heart variability and
other complex systems in the past. The black line in Figure 2

illustrates Type I 1/f -noise that asymptotically agrees with the
traditional FBM 1/f -noise depicted in Figure 1. The red line
describes Type II 1/f noise generated by crucial events and
which is remarkably different from the traditional expectation
of 1/f -noise. The analysis presented here establishes that RR
fluctuations host both forms of 1/f -noise and that in the definite
CAN case only Type II 1/f -noise remains. This remarkable
conclusion is reached through the proper use of Rényi entropy.

2. MATERIALS AND METHODS

2.1. Classification of Cardiac Autonomic
Neuropathy
2.1.1. Participant Recruitment
The project was approved by Charles Sturt University Human
Research Ethics Committee and conformed with the principles
outlined in the Declaration of Helsinki. Participants attended a
diabetes health screening clinic in rural Australia and provided
written consent following an information session. Type II
diabetics and healthy individuals with no known diabetic
symptoms, aged 35 and over were selected for this study. All
tests were conducted between 10 a.m. and 3 p.m. including
ECG recording and cardiac autonomic reflex tests (CARTs) for
determination of CAN. Participants had to be free of any diabetic
comorbidities and chronic disease including CVD, respiratory
disease, or chronic kidney disease. In addition, the health
screening included a medication review, acquiring demographic
and general health data, retinal, cardiac and foot examination
as well as blood and urine biochemistry (Jelinek et al., 2006).
Cardiac examination included a 10 s 12-lead ECG, and a 20 min
3-lead (Lead II) recording. From the 20-min RR tachogram, a 15
min segment was selected from the middle in order to remove
start up artifacts andmovement at the end of the recording. From
this shorter recording, the RR intervals were extracted for further
HRV analysis including SE, Hα , and DEA. No other information
was used in this study.

2.1.2. Cardiac Autonomic Reflex Tests
In order to characterize changes in cardiac neural control
mechanisms associated with CAN progression, a battery of five
non-invasive cardiovascular reflex tests were applied, including
lying to standing, deep breathing, and Valsealva maneuver to
identify changes in parasympathetic nervous system control of
cardiac rhythm and changes in lying to standing blood pressure
and changes in blood pressure associated with hand grip to
assess more sympathetic nervous system associated influence
on cardiac rhythm (Ewing et al., 1985; Spallone et al., 2011).
These tests allowed the cohort to be divided into groups with no
cardiac autonomic neuropathy (Normal/Control), early cardiac
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autonomic neuropathy and definite autonomic neuropathy as
outlined in Spallone et al. (2011) and Vinik et al. (2013).

2.1.3. ECG Recording
Electrocardiograms (ECGs) of participants were recorded in
a quiet room for a period of 20 min. Three disposable snap
electrodes (Brand EL503, BIOPAC System, Inc.) were placed in
a Lead II configuration to optimize identification of the QRS
fiducial peaks. The ECGs were recorded at a sampling rate set
at 400 Hz and notch filter at 50 Hz. These settings were in
line with the suggestions of Task Force TFESC (1996). All ECG
data were initially manually edited. Ectopic beats were selected
visually according to the ECG morphology and were manually
deleted. To remove high frequency noise, a 45 Hz low-pass filter
was used. In addition, a high pass filter of 3 Hz was applied to
all data to adjust for wandering baselines in ECG traces. The RR
interval series for each participant was then detrended based on
smoothness priors algorithm which does not affect the spectral
components significantly, avoiding distortion of data at the end
points (Tarvainen et al., 2002).

2.1.4. HRV Analysis
Details of the methodology for both time and frequency domain
analysis has been described by Spallone et al. (2011) and Task
Force TFESC (1996). Briefly, all HRV features were calculated
using custom software on Matlab (Mathworks R2009b) and
included SDNN and RMSSD as time domain features. The heart
rate signal was decomposed into single spectral components
using the Fast Fourier Transform (FFT) with a 50 percent overlap
function to construct a spectrum. A Hann window was chosen in
order to minimize the discontinuity effect. High frequency (HF),
low frequency (LF) power, the ratio (HF/LF), and normalized
units were determined as recommended by Task Force TFESC
(1996).

2.2. Multiscale Entropy
Entropy measures have been applied to linear and non-linear
time series and demonstrated to be useful in identifying
underlying pathology (Wessel et al., 2000a,b; Voss et al., 2009).
ECG time series, however, display multiscale characteristics or
are multifractal and can be described by scaling exponents
(Ivanov et al., 1999), multiscale entropy (Costa and Healy, 2003),
and multiscale Rényi entropy (MsRen) (Cornforth et al., 2014).

Multiscale entropy is based on the concept advocated by
Kolmogorov (1965) that a signal should be judged to be totally
random if it is proven to be computationally incompressible. The
Kolmogorov-Sinai entropy (Pesin, 1976) which is based on the
Kolmogorov complexity is applied for the analysis of a time series
ξ (t) which is defined by:

hKS = limN→∞
HN

N
, (1)

where the entropy is:

HN ≡ −
∑

ξ (1)...ξ (N−1)

p
(

ξ (1)...ξ (N − 1)
)

ln[p
(

ξ (1)...ξ (N − 1)
)

],

(2)

This has a clear connection with Shannon entropy. However,
although attractive, it is computationally challenging and Costa
et al. (2002) adopted a coarse-graining procedure leading to
results that can be easily understood with the help of Figure 1.
According to Costa et al. (2002), the time series under study
has to be converted into a coarse grained time series determined
by the scale factor τ , where the number of coarse-grained data
points is obtained by dividing N by the scale factor. The coarse-
grained data points, yj, are calculated from the original data
points, xi, according to:

y
(τ )
j =

1

τ

jτ
∑

i−(j−1)τ+1

xi ; 1 ≤ j ≤
N

τ
. (3)

Consequently, the length of each coarse-grained time series is
equal to the length of the original time series divided by the scale
factor τ . If the times series under study has a finite correlation
time τc when τ < τc this analysis suggests the existence of
a structure with some order and records a finite value of SE.
However, upon increasing τ , as depicted in Figure 1, the method
becomes more sensitive to an increasing randomness thereby
yielding smaller and smaller values of SE. In the case of a time
series generating 1/f -noise the correlation time is divergent,
thereby keeping the value of SE virtually constant. The sample
entropy is calculated (Costa et al., 2005) by taking the firstm data
points, calculating their Chebyshev distance to save the “pattern”
they make, then counting how many times that pattern occurs in
the data set and comparing it to how many times the pattern of
lengthm+ 1 occurs. The formal calculation is:

Sample Entropy = − log

(

A

B

)

, (4)

where:

A = number of pattern pairs d
[

Xm+1(i),Xm+1(j)
]

< r, (5)

B = number of pattern pairs d
[

Xm(i),Xm(j)
]

< r, (6)

with r being a given “tolerance,” X the “pattern,” and d[·]
representing the Chebyshev distance.

Herein, we seek to reveal the physical origin of processes that
lead to SE being scale independent. We adopt this perspective
because the 1/f -noise that generates the independence of the
scale factor τ is generated in two distinct ways. These distinct
types of 1/f -noise are herein associated with dramatically
different properties, as we show.

The first possibility is based on the stationary correlation
function. In fact, if the experimental time series generates a
stationary correlation function of the form:

8ξ (τ ) =
(

T

T + τ

)δ

, (7)

with δ < 1, its correlation function is divergent. T is a constant.
It is known (Cakir et al., 2006) that this fluctuation is a generator
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of fractional Brownian motion (FBM) with the scaling index H
(also known as Hurst exponent) given by:

H = 1−
δ

2
. (8)

This is the contribution to Type I 1/f -noise. As we have observed
earlier, in this case the complexity of the process is generated
by the non-integrability of the stationary correlation function.
The finite value of T has the twofold purpose of, (a), fitting the
normalization constraint of the stationary correlation function
of Equation (7), that should be equal to 1 when τ = 0 and, (b),
of avoiding non-physical divergence at the origin. The stationary
equilibrium correlation function becomes a non-integrable IPL
power law for τ tending to infinity. It is important to notice
(Lukovic and Grigolini, 2008) that the spectrum S(f ) becomes
proportional to 1/f β with β = 2H − 1, thereby realizing an ideal
1/f noise with H tending to 1. As we have earlier observed, there
exists another alternative that also generates 1/f -noise, which is
related to criticality, called in this paper Type II 1/f -noise.

Contoyiannis et al. (2004) investigated the spontaneous
contraction generated by the atria of a frog heart isolated in
a physiological solution and on the basis of this observation
made the conjecture that interbeat interval (RR) dynamics are
an intermittent process generated by a form of self-organization
that can be properly described by the Ising model at criticality.
This conjecture leading to 1/f -noise, requires the adoption
of principles associated with turbulence. Accordingly, we can
generate the time series ξ (t) as follows: there exist extended
laminar regions of time duration τ with the waiting-time PDF
ψ(τ ) given by:

ψ(τ ) ∝
1

τµ
, (9)

where the IPL index is within the range:

1 < µ < 3. (10)

The occurrence of an event activates the selection of a new
value of τ from the PDF ψ(τ ) completely independent of
any other inter-event time distances and therefore satisfies the
renewal condition.

The computational compressibility of these events is
established by using the concept of Kolmogorov compressibility
and the Kolmogorov-Sinai entropy hKS (Allegrini et al., 2003),
which to a very good approximation can be expressed as
Ignaccolo et al. (2001):

hKS = z(2− z)ln2, (11)

with the relation given by the IPL index:

z ≡
µ

µ− 1
. (12)

When z = 1(µ = ∞) the sequence of these fluctuations is
totally random (incompressible, according to Kolmogorov), but
it becomes more and more compressible with decreasing values

of µ, with the surprising property of generating the maximal
compressibility at z = 2 (µ = 2) where hKS vanishes. Note that
in this theoretical perspective of 1/f -noise is based on the key
formula for the spectrum (Grigolini et al., 2009):

S(f ) ∝
1

f β
, (13)

with the IPL spectral index:

β ≡ 3− µ. (14)

Grigolini et al. (2009) found that under stress, brain dynamics
move from the condition of 1/f -noise toward the condition of
white noise in accordance with the psychological experiments
of Correll (2008). This is also in line with the arguments
of phenomenological philosophy of the Dotov group (Dotov
et al., 2010, 2017). In fact, the analysis of brain dynamics led
investigators (Allegrini et al., 2009) to conclude that healthy
physiological functioning of the brain is characterized by the
condition of ideal 1/f -noise according to Equations (13) and (14)
is realized when µ = 2. In the case where crucial events exist and
the time series ξ (t) is obtained by filling the time region between
consecutive crucial events with either the value W or the value
−W, according to the tossing of a fair coin, and consequently
the resulting auto-correlation function is not stationary. In the
case when the time window of size τ begins with a crucial event,
we have:

8ξ (τ ) =
(

T

T + τ

)µ−1

. (15)

When the window moves along the whole time series, the
correlation function becomes infinitely aged and yields:

8ξ (τ ) =
(

T

T + τ

)µ−2

. (16)

We note that for 2 < µ < 3, the correlation function
Equation (16) becomes non-integrable as the correlation function
of Equation (7) with δ < 1, although this is due to the aging
process of a signal driven by crucial events. In both these cases,
the non-integrability generates long-time correlations that are
responsible for the scale independence revealed by the adoption
of the multiscale entropy. On applying the method of multiscale
entropy to both time series, one generated by FBM and the other
generated by crucial events, both yield scale independency as
observed in Figure 2. It is remarkable that the generator of Type
II 1/f -noise yields a scale independence even more marked than
Type I 1/f -noise.

2.3. Rényi Entropy
The Rényi entropy (Hα) is a generalization of the Shannon
entropy (Rényi, 1960) and is defined as:

H(α) =
1

1− α
log2

(

n
∑

i

pαi

)

. (17)
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where pi is the probability that a random variable with index i
takes a given value out of n values, and α is the order of the
entropy measure. H(0) is the logarithm of n. To address the
reliance of entropymethods on bins which introduces an artificial
discretisation and leads to a boundary problem, we applied a
Gaussian kernel centered on the individual RR interval and all RR
intervals are added, weighted by the Gaussian function and based
on the distance between the individual RR interval and remaining
RR intervals (Cornforth et al., 2014). A density measure can then
be calculated for the individual RR interval with index i, as the
sum of all contributions from other RR intervals with index j:

ρi =
1

σ
√
2π

n
∑

j=1

exp
−

dist2ij

2σ2 (18)

where σ is the dispersion of the function and replaces
the tolerance as suggested by Costa and Healy (2003). The
quantity distij is a distance measure, in this case Euclidean in
π dimensions:

distij =
π
∑

k=0

(xi+k − xj+k)
2 (19)

This yields a probability estimate for each sample of a given
length with the desirable property that its value lies between
0 and 1.

2.4. Diffusion Entropy
As mentioned earlier, we use the generalized DEA method,
denoted MDEA in Culbreth et al. (2019). DEA was originally
used by Allegrini et al. (2002) and applied again more recently
by Bohara et al. (2017). The signal under study, ξ (t), is the RR-
time interval, with time t being the integer number denoting the
beat 1, 2, ..... We divide the ordinate ξ into many bins of size s
and record the times at which the signal ξ (t) moves from one
stripe to one of the two nearest neighbor stripes. This is an event
which is crucial if it depends on self organized temporal criticality
(SOTC) fluctuations (Mahmoodi et al., 2017). The crossing from
one stripe to another can also be due to non-crucial fluctuations,
being either Poisson or generated by a Gaussian memory process
(Culbreth et al., 2019). We create a diffusion process x(t) with the
random walker always jumping ahead by the fixed quantity of 1
when an event, either crucial or not, occurs. This method is an
extension of the original work (Allegrini et al., 2002) discussed
in depth in the theoretical work (Culbreth et al., 2019). Culbreth
et al. (2019) prove that both forms of non-crucial events generate
the scaling δ = 0.5, whereas the crucial fluctuations generate
anomalous scaling:

δ =
1

µ− 1
. (20)

Once the diffusional trajectory x(t) is created, we convert the
single trajectory intomany diffusional trajectories using amoving
window of size l. We record the quantity1x(t) = x(l+ t)− x(t).
Considering different values of t is equivalent to creating many

Gibbs copies thatmakes it possible to use a probabilistic approach
and define the PDF p(x, l) to evaluate the Shannon entropy:

S(l) = −
∫ +∞

−∞
p(x, l)lnp(x, l). (21)

The PDF p(x, l) is expected to be characterized by the
scaling structure:

p(x, l) =
1

lδ
F
( x

lδ

)

, (22)

where F(y) is a Gaussian function if δ = 0.5 and is a Lévy function
with diverging second moment if µ < 3. Since crucial events
are defined by Equation (9) with µ < 3, the scaling detected by
DEA is larger than the scaling of non-crucial events. We note
in fact that due to Equation (20), the condition 2 < µ < 3
yields δ > 0.5. As a consequence, the broadening of p(x, l) in the
long-time limit is expected to be dominated by the crucial scaling
of Equation (20). By plugging Equation (22) into Equation (21)
we obtain

S(l) = A+ δlnl, (23)

where A is a constant.
Note that the events detected using the methods of stripes

generate both crucial and non-crucial events. The non-crucial
events include events generating Type I 1/f -noise. Usually the
probability ǫ that an event is crucial is very small. The larger
ǫ the healthier the physiological process. The evaluation of ǫ
is obtained with a procedure illustrated in the earlier work of
Bohara et al. (2017) which is based on the observation that the
higher the concentration of non-crucial events, the larger is the
time l necessary for S(l) to become a linear function of lnl. The
comments outlined hereby on the meaning of Figure 4 afford
additional information on why the events contributing to Type
I 1/f - noise may contribute to make ǫ weaker.

3. RESULTS

3.1. Detecting CAN Progression Using
MDEA
3.1.1. Crucial Scaling
Using MDEA, Figure 3 illustrates how the scaling parameters
δ and µ change with the progression of disease. With disease
progression, from the normal to the early and eventually to the
definite condition, the scaling δ moves from the healthy super-
diffusion scaling toward the scaling δ = 0.5 which corresponds
to the normal diffusion of physical systems. In correspondence
to this transition from super-diffusion toward a condition close
to ordinary diffusion, the IPL index µ moves from values close
to µ = 2, to the border between temporary non-stationarity to
perennial non-stationarity, at µ = 3, the border between crucial
events and Poisson events.

3.1.2. Concentration of Non-crucial Events
The condition µ = 2 is the ideal healthy condition (Allegrini
et al., 2002). However, the heartbeat process hosts not only crucial
events. The non-crucial events can be either the ordinary Poisson
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FIGURE 3 | DEA scaling (δ) and complexity index (µ) (obtained from Equation

20) of the HRV time series of participants in different stages of CAN. The mean

(x) and standard deviation (σ ) for δ are 0.650,0.027 (normal), 0.596,0.022

(early), and 0.543,0.014 (definite), respectively. Participants in the normal

condition have greater complexity (smaller µ, larger δ) compared to those in

the definite condition (larger µ, smaller δ).

events or events generated by Type I 1/f -noise. It is important to
stress the existence of this kind of non-crucial events because an
important result of this paper is that the definite CAN patients are
still characterized by 1/f -noise. The non-crucial events generated
by type I 1/f -noise contribute to increase the concentration on
non-crucial events, given by 1 − ǫ. When ǫ = 0, all the events
are non-crucial and are a combination of ordinary Poisson events
and type I 1/f -noise events. When ǫ = 1, all events are crucial.
Of course, ǫ = 0 and ǫ = 1 are two ideal conditions and when
ǫ < 1, we do not have yet a way of establishing how many of
the non-crucial events are type I 1/f -noise events and how many
of them are Poisson events. We use multiscale entropy to show
that the heartbeat process under observation is not white noise
but 1/f -noise. The fact that increasing values of ǫ are beneficial is
proved by Figure 4, which shows that definite CAN patients are
characterized by small values of ǫ, while the normal CAN patients
seem to move toward the condition of larger values of ǫ.

To understand the significance of the conclusion of this paper
that only Type I 1/f -noise is left in the definite CAN condition
of the processed RR data, we stress that in the original work
on crucial events (Allegrini et al., 2002) the non-crucial events
were assumed to be Poisson events. In a sequel (Tuladhar et al.,
2017) to that early work, it was established that ǫ represents
the concentration of all non-crucial events including the Type
I 1/f -noise (FBM). In fact, Tuladhar et al. (2017) noticed that
the RR-trajectory crossings of adjacent stripes signify events
characterized by exponential waiting-time PDFs not only in
the Poisson case, but more generally by Gaussian processes,
including FBM diffusion. This result is based on a theorem
presented in Sinn and Keller (2011). We also notice, observing
Figure 8 of Tuladhar et al. (2018), that Kundalini Yoga has the
effect of increasing µ while also increasing ǫ. Both effects imply
that the spectrum becomes whiter, leading us to conclude that
we may interpret the practice of Kundalini Yoga as a difficult

FIGURE 4 | DEA scaling (δ) / complexity index (µ) (obtained from Equation 20)

vs. Correlation rate (ǫ) of the HRV time series of participants in different stages

of CAN.

task sharing this with the increasing severity of autonomic
neuropathy (CAN) the property of whitening the spectrum.

3.1.3. Global Perspective
Finally, we can discuss using Figure 4 the global perspective
emerging from the results obtained from patients with varying
severity of CAN. The division into three groups is to some
extent arbitrary. However, we see that the definite patients tend
to have small values of ǫ and the scaling δ are closer to the
border with ordinary diffusion, i.e., δ = 0.5. There is only
one early patient with δ value in the normal region and only
one other early patient in the definite region. It is clear that
the results recorded in Figure 4 provide strong support for the
hypothesis that crucial events are an important signature of
healthy physiological function. Moreover, either an excess of
non-crucial events (smaller ǫ) or a transition from the healthy
condition of µ close to the value of 2 to values close to µ = 3 and
beyond is an important signature of disease progression.

3.2. Detecting CAN Progression With
Multiscale and Rényi Entropy
In this section, we illustrate the benefits of adopting Multiscale
Entropy and Rényi Entropy to divide the patients into the
normal, early and definite CAN categories, in accordance with
Cornforth et al. (2014). The comparison also serves to highlight
the additional benefits of the crucial events combined with
MDEA in providing a robust pathophysiological model.

3.2.1. Multiscale Entropy
The result depicted in Figure 5 is consistent with the
interpretation that multiscale entropy cannot distinguish
1/f -noise generated by crucial events from 1/f -noise generated
by FBM processes. The level of 1/f -noise for definite individuals
seems to be higher than for normal individuals. We applied
multiscale entropy to surrogate sequences- FBM sequences and
crucial event sequences and we found that the level in the first
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FIGURE 5 | The average entropy measure (SE ) vs. scale factor of HRV time

series of participants in different stages of CAN using multiscale entropy

analysis with filter 0.02. For detailed description of MSE and filter settings see

Jelinek et al. (2019).

FIGURE 6 | The Rényi entropy [H(α)] (with filter 0.02) is calculated for the HRV

time series of all participants and the average H(α) is plotted for the different

stages of CAN. α negatives have the effect of establishing a separation

between the three different stages of CAN. For detailed description of Rényi

entropy and filter settings see Cornforth et al. (2014).

case is higher than in the second. On the basis of this qualitative
observation we are inclined to believe the progress of CAN has
the effect of turning the 1/f -noise generated by crucial events
into FBM 1/f -noise. Consequently, as the disease progresses the
crucial events are lost even though the spectral content of the
time series remains unchanged.

3.2.2. Rényi Entropy
Note that, according to the authors of Cornforth et al. (2014), the
Renyi entropy of Equation (17) with its dependence on α may

make it possible to emphasize the importance of events with very
small probability. This property of the Rényi entropy allows us
to confirm that moving from the normal to the definite CAN
condition has the effect of turning the diffusion process generated
by the fluctuations of the RR process into a Gaussian process.
The PDF p(x, t) in the normal condition is not Gaussian, but
it has slow Lévy tails. Thus, the regions of small probabilities
are related to Gaussian tails for the definite category and Lévy
tails for the normal category. The weight of the Gaussian tails
is much less intense than the weight of the Lévy tails. Thus, the
adoption of negative values for α helps illustrate that the definite
CAN category has Rényi entropy values significantly larger than
the normal and the early CAN categories as well as shown in
Figure 6.

The work of Cornforth et al. (2015) shows that in the region
of negative α, large values of the Rényi entropy signal that the
RR fluctuations become much sharper. This seems to be an
indication of a transition from the 1/f -noise generated by crucial
events, with large variability, to FBM 1/f -noise.

4. CONCLUSION

This paper shows that the progression of disease severity makes
the crucial event parameter µ move from the border with the
condition of perennial non-stationary behavior to the border
with Poisson physics, µ = 3. However, this refers to Type II 1/f -
noise, with β = 3− µ (Costa and Healy, 2003). This means that
Type II 1/f-noise, which is the ideal 1/f noise when µ = 2 turns
into white noise, β = 0 at µ = 3.

The processing of RR data obtained with MSE shows that
heartbeats remain a source of both types of 1/f -noise (Type I and
II). Figure 5 affords a clear indication of this important property,
although the MSE processed data does not afford as clear a way
of establishing the difference between the normal and definite
CAN conditions as the DEA analysis depicted in Figures 3, 4.
Figure 4 shows that the Type I 1/f -noise contribution to the 1/f
spectrum tends to become more important in the definite CAN
case, assuming we interpret ǫ as an indicator of Type I 1/f - noise
as well as of ordinary Poisson processes.

The fact that in the definite CAN case the 1/f spectrum
is due to FBM is made evident using Rényi entropy, which
indicates that the heart rate variability is strongly reduced.
We stress that the progress of autonomic neuropathy does
not have the effect of whitening the fluctuations as it did
in the important work of Guy et al. (2003). The latter work
established, with more accurate experimental and theoretical
analysis than did the work of Correll (2008), the whitening
effects of increasing the difficulty of tasks. The present paper
establishes that cardiac dynamics may host both Type I
and Type II 1/f noise, thereby affording a possible way of
explaining the contradiction noticed by the authors of Guy
et al. (2003) that in some cases difficult tasks have the effect
of increasing rather than decreasing the intensity of the 1/f -
noise spectrum.

We emphasize that the result of this paper concerning RR
time series hosting both Types I and II 1/f -noise warrants
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further investigation. Moreover, we anticipate that identifying
the role played by the loss of crucial events in the onset of
various pathologies will significantly contribute to the progress
of psychological science and clinical medicine.
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	3.2.2. Rényi Entropy


	4. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Acknowledgments
	References


