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Networks of oscillating processes are a common occurrence in living systems. This is as

true as anywhere in the energy metabolism of individual cells. Exchanges of molecules

and common regulation operate throughout the metabolic processes of glycolysis and

oxidative phosphorylation, making the consideration of each of these as a network

a natural step. Oscillations are similarly ubiquitous within these processes, and the

frequencies of these oscillations are never truly constant. These features make this

system an ideal example with which to discuss an alternative approach to modeling

living systems, which focuses on their thermodynamically open, oscillating, non-linear

and non-autonomous nature. We implement this approach in developing a model of

non-autonomous Kuramoto oscillators in two all-to-all weighted networks coupled to

one another, and themselves driven by non-autonomous oscillators. Each component

represents a metabolic process, the networks acting as the glycolytic and oxidative

phosphorylative processes, and the drivers as glucose and oxygen supply. We analyse

the effect of these features on the synchronization dynamics within the model, and

present a comparison between this model, experimental data on the glycolysis of HeLa

cells, and a comparatively mainstream model of this experiment. In the former, we

find that the introduction of oscillator networks significantly increases the proportion of

the model’s parameter space that features some form of synchronization, indicating a

greater ability of the processes to resist external perturbations, a crucial behavior in

biological settings. For the latter, we analyse the oscillations of the experiment, finding a

characteristic frequency of 0.01–0.02 Hz. We further demonstrate that an output of the

model comparable to the measurements of the experiment oscillates in a manner similar

to the measured data, achieving this with fewer parameters and greater flexibility than

the comparable model.

Keywords: networks, oscillations, metabolism, cells, non-autonomous oscillators, Kuramoto oscillators,

non-linear dynamics, synchronization

1. INTRODUCTION

Analyzing the energy metabolism of a cell can be key to understanding more about its functions,
states and health. A malfunctioning metabolism is indicative of a wide range of pathological states,
from diabetes, to Alzheimer’s, to cancer (Seyfried and Shelton, 2010; Akter et al., 2011; Bosco et al.,
2011; Kembro et al., 2018). A healthy metabolism also plays a significant role in other higher order
processes through its production of adenosine triphosphate (ATP), which, for example, allows

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2020.613183
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2020.613183&domain=pdf&date_stamp=2021-01-28
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:aneta@lancaster.ac.uk
https://doi.org/10.3389/fphys.2020.613183
https://www.frontiersin.org/articles/10.3389/fphys.2020.613183/full


Rowland Adams and Stefanovska Weighted Non-autonomous Metabolic Oscillator Networks

the generation of amembrane potential. Themembrane potential
is itself crucial for a variety of functions, including maintaining
the cell’s structural integrity and the firing mechanism of neurons
(Macknight, 1988; Kuwahata, 2004).

Cellular ATP is generated mainly through glycolysis in
the cytosol, consuming glucose, and oxidative phosphorylation
(OXPHOS) in the mitochondria, consuming oxygen (Wilson,
2017; Chaudhry and Varacallo, 2020). Like many biological
processes, experimental observations have established that these
reactions are oscillatory (Betz and Chance, 1965; Jung et al., 2000;
Kennedy et al., 2002; Richard, 2003; Tu et al., 2005; Jafri, 2006;
Olsen et al., 2009; Ganitkevich et al., 2010; Kurz et al., 2010a;
Ozalp et al., 2010; Bechtel and Abrahamsen, 2011; Porat-Shliom
et al., 2014; Thoke et al., 2015; Lancaster et al., 2016). Not only
this, but there is further evidence to suggest these oscillationsmay
be non-autonomous (O’Rourke et al., 1994; Tu and McKnight,
2006; Kurz et al., 2010b; Battle et al., 2016; Rupprecht and Prost,
2016; Amemiya et al., 2017): that their frequencies vary over
time. Modeling this behavior is a challenge for many traditional
techniques, which often rely on perturbations of a steady state to
give rise to oscillations, and the addition of noise to simulate non-
autonomous variation. We present here an alternative approach
to modeling non-autonomous oscillations in living systems, and
what we can learn from such models.

The time variation of biological oscillations is often neglected,
even where the existence of oscillations is acknowledged. Many
modeling theories assume this variation to be due to noise, arising
either from experimental methods or from the complexity of the
system’s interactions, and therefore that it can be averaged out
when considered over asymptotic time. Time sensitive analysis of
such data can show that the variation in a process’s oscillations,
induced by interactions with its surroundings and otherwise,
is often deterministic (Lucas et al., 2018, 2019). Lucas et al.
(2018) and Lucas et al. (2019) further showed that allowing
for this deterministic variation in a model’s architecture, and
analyzing it over the finite time scales within which biological
systems actually exist, can reveal dynamics that would be missed
in a solely asymptotic approach. In particular, an intermittent
synchronization, where oscillators are synchronized at some
times and not others, without any change of parameters, can only
exist when oscillations are allowed to be non-autonomous and
only found when they are analyzed with finite time techniques.

The origins of our cellular metabolism model lie in the
work of Lancaster et al. where glycolysis and OXPHOS are
each represented by bi-directionally coupled non-autonomous
Kuramoto oscillators (Kuramoto, 1984), and each driven by
a non-autonomous oscillator depicting the supply of glucose
and oxygen, respectively (Lancaster et al., 2016). This model
was built on the theory of chronotaxicity (Suprunenko et al.,
2013), which studies the effects of non-autonomicity to stabilize
oscillators in spite of perturbations, an important ability for
biological processes.

However, like most biological processes, neither glycolysis
nor OXPHOS are a single process, but many (Kurz et al., 2017,
2018; Cortassa et al., 2018; Kembro et al., 2018; Vetter et al.,
2020). Glycolysis occurs distributed throughout the cytosol, while
OXPHOS is localized within the many mitochondria of the cell.

TABLE 1 | Summary of the principles informing our modeling approach

contrasted to those of mainstream approaches.

Mainstream principles Our principles

Open systems can be modeled as

perturbed closed systems

Open systems can only be fully

represented by open models

Oscillations result from instability of a

dynamical system

Oscillations are inherent to the dynamics

of open systems. Living systems

continuously exchange energy and matter

with the environment and each process is

characterized by self-sustained oscillations

on a certain time-scale

Non-linear systems can be

recombined from linear systems

Non-linear systems are best understood

by non-linear models

Time variation in living systems is

often due to noise, and can be

averaged out over asymptotic time

Time variation in living systems is often

deterministic, and must be modeled as

non-autonomous to reflect the full system

dynamics

These processes further communicate between themselves as
well as one another. Glycolysis was found to signal inter- and
intra-cellularly through the exchange of acetaldehyde (Richard,
2003; Madsen et al., 2005; Weber et al., 2012), while OXPHOS is
thought to interact in many possible ways, including molecular
exchange, common regulation and inter-mitochondrial nano
tunnels (Kohnhorst et al., 2017). Here, we extend the Lancaster
et al. (2016) model to consider glycolysis and OXPHOS as
all-to-all coupled networks of oscillators. These networks are
furthermore weighted such that oscillators closer to each other
around a ring are connected more strongly than those further
from one another, to reflect the nature of molecular exchange
over a range of distances.We also draw from the work of Petkoski
and Stefanovska (2012), Petkoski et al. (2013). who introduced a
method of phase coupling through mean fields of ensembles of
oscillators.

We present here a summary of the Lancaster et al. (2016)
non-autonomous oscillator model for cell energy metabolism
the details of its adaptation to weighted networks of oscillators,
informed throughout by our alternative approach to modeling
oscillating living systems.We will discuss further the analysis that
had and can be done on these models, and what they can reveal
about the biology of the cellular production of ATP and its role in
wider processes.

2. MATERIALS AND METHODS

Our modeling approach consists of four main principles, which
are summarized in Table 1. We consider the cell to be the
minimal functioning biological unit: processes within the cell
cannot be isolated and still function and more macroscopic
functions can be built from a cellular level, but the cell itself
can survive provided the appropriate molecular supply in its
environment. It is crucial however that the cell is able to expel
waste and absorb needed molecules. This makes the cell a
thermodynamically open system: matter and energy must cross
its boundaries in order for the cell to survive. One of the
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FIGURE 1 | (A) The cellular energy metabolism considered in the model, reprinted with permission from Lancaster et al. (2016). (B) An oscillator model diagram of

(A), where each circle represents an oscillator, and each line a coupling. MO denotes the mitochondrial oscillator, GO the glycolysis, G the glucose driving, and O the

oxygen.

principles of our approach is therefore to treat the cell and its
internal processes as open, constructing a model that does not
impose a constant mass on the system.While many models make
mass their subject, it is much easier to achieve the aim of an open
system by focusing the phase of the processes instead, and so in
our model we consider the phase of oscillations.

Our second principle is to treat oscillating systems as not just a
temporary perturbation from a steady state, but as fundamentally
defined by their oscillations. We therefore do not construct our
model as a non-oscillating set of processes and subsequently find
sets of parameters that induce oscillations, but set oscillations
as the foundation of the model by representing each process
with a phase oscillator. Cellular processes are also inevitably
characterized by their non-linearity (Carballido-Landeira and
Escribano, 2016), and modeling these non-linearities is essential
to understanding their dynamics. We therefore use Kuramoto
oscillations to model these interactions.

Unlike theories that assume variations in the features of
these oscillations, in particular frequency, are due solely to
noise endemic to the complexity of biological systems, we
treat much of these observable variations as deterministic. Our
modeling approach to these systems is to represent them as
non-autonomous Kuramoto phase oscillators.

2.1. Cell Energy Metabolism
The biological system as considered in this model is summarized
in Figure 1A, and represented in the model’s format in
Figure 1B. It is constituted by four key processes: glycolysis,
converting glucose, ATP and ADP into NADH, pyruvate and
ATP, OXPHOS, converting oxygen, NADH and pyruvate into
ATP, and the supplies of glucose and oxygen. The main purpose

of this mechanism is the creation of ATP, which is primarily
used to fuel ion pumps. Ion pumps actively transport ions
across the cell’s boundary against the electrochemical gradient,
without which the cell would be forced to maintain an ionic
equilibrium with its surroundings. Instead, the cell is able to
accept the ions it needs for survival, and prevent itself from
being flooded with an unhealthy quantity. Neuronal firing
also relies on the ability of ion pumps to dramatically and
rapidly change the balance of ions between the cell interior
and exterior: the process is triggered only once the cell’s
membrane potential crosses the action potential threshold,
typically requiring a change of some 100mV (Catterall et al.,
2012).

Communication between the metabolic processes is also
well-established (Richard, 2003; Madsen et al., 2005; Weber
et al., 2012; Kohnhorst et al., 2017). Glycolysis enzymes exist
all around the cytosol, each facilitating an element of the
wider glycolytic reaction. Not only do these distributed enzymes
rely on regulation and supply common to them all, but the
exchange of acetaldehyde molecules has been observed to drive
coherence between glycolytic processes. Mitochondria, housing
the OXPHOS process, exist in a more fixed state than the
glycolysis enzymes of the cytosol, but are similarly thought to
mutually organize their processes for the efficient running of the
cell. Mapping precisely the exact positions and connections of
these processes however would be challenging, if not impossible.
In our model we therefore focus on the importance of molecular
exchanges in their communication, and the diffusive nature of
these exchanges making distance a key consideration. Hence, we
have assumed all-to-all coupled networks, but weighted these
connections such that if were they considered around a ring,
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FIGURE 2 | (A) An oscillatory cycle in phase space, at a phase value of θ . (B)

A point perturbed from an oscillatory cycle, returning along isochron I to the

cycle at a point with phase ϕ. The perturbed point is therefore also assigned

the phase ϕ.

coupling strength would decrease the further apart any two given
oscillators were.

2.2. Defining the Model
Each of these four metabolic processes is represented by a
Kuramoto oscillator. Kuramoto oscillators are a type of non-
linearly interacting phase oscillators, which are a reduction
of ordinary differential equations featuring self-sustaining
oscillations from many degrees of freedom to just one: the
phase of the oscillation. The phase of an oscillator is defined as
its position along its cycle at a given time. This cycle can be
represented in phase space, as shown in Figure 2A, where the
meaning of any particular phase value can easily be seen.

Here phase has only been defined on the cycle of the oscillator
equation. However, when oscillators interact or are driven by
external forces, they will be perturbed away from this cycle. The
phase in the vicinity of the cycle must therefore also be defined,
which can be done for stable oscillators using isochrons. When a
stable oscillator is perturbed its phase will initially leave its cycle,
but will return to it over time if not further perturbed. Isochrons
connect the point to which a phase is perturbed to the point on
the cycle it will first return to after the decay of the perturbation,
assigning both the same phase value. This is demonstrated in
Figure 2B. In order to remain in this region of attraction of the
cycle, where isochrons can be used, the perturbations must be
sufficiently weak, placing constraints on the strength of couplings
between oscillators and drivers (Pikovsky et al., 2001; Strogatz,
2001).

This definition requires further extension to allow for the
phases of non-autonomous oscillators. As the frequency, also
known as the velocity of the phase, of the oscillator changes
at each moment in time the system is transformed from
one autonomous system to another. To maintain a consistent
definition of phase across these systems, we must require that
each system resides in the region of attraction of the one
proceeding it, in order to use the same reasoning as the isochrons
of perturbations. As with the weak coupling requirements of
interactions, this definition constrains the system to only small
changes in the frequency of oscillation from second to second
(Kloeden and Rasmussen, 2011).

This theory was applied to the biology of cellular ATP
production by Lancaster et al. (2016) in the following equations
for the oscillators’ phases

θ̇GO = ωGO+ǫ1 sin (θGO − θMO)−ǫ4 sin (θGO − ωGt)+ση(t)

θ̇MO = ωMO−ǫ2 sin (θMO − θGO)−ǫ3 sin (θMO − ωOt)+ση(t),
(1)

where the subscript GO represents the glycolytic oscillator,
MO the OXPHOS, G the glucose driving and O the oxygen.
ωX is the frequency of oscillator X, ǫ the relevant oscillator
coupling strength, θX the phase, t time, η(t) a noise term
and σ the scaling parameter of the noise. These are hence
two oscillators as described above, coupled to one another
and their respective metabolic drivers, with their frequency
rendered non-autonomous by the addition of a time-dependent
noise parameter.

We convert this model to now consist of networks of
oscillators, weighted such that neighbors around a ring interact
with a maximal coupling strength, and those opposite with a
minimal strength. This is shown diagrammatically in Figure 3.

We also consider, instead of the stochastic non-autonomicity
in Lancaster et al. (2016), a deterministic variation of the
oscillation frequencies. This gives the glycolysis and OXPHOS
phase equations as

θ̇GOni =
KGO

N

N
∑

j=1

Wij sin
(

θGOj − θGOi
)

θ̇MOni =
KMO

M

M
∑

j=1

Wij sin
(

θMOj − θMOi

)

, (2)

respectively, where θGOni is the phase of the oscillator i due to
network interactions, N is the number of glycolytic oscillators,
M the number of OXPHOS oscillators, KX the relevant network
coupling strength and Wij the weighting function between
oscillators i and j.

The oscillators are organized into all-to-all couple networks,
with a certain weight applied to each coupling. Each oscillator
is further assigned an index, to create a ring structure where
oscillator i and i + 1 are considered neighbors, as are the first
oscillator, index 1, and the final, index N. The weight of the
coupling between these oscillators is determined by their indices,
such that the larger the difference between the indices, the
smaller the weighting of their coupling. This weighting function
is defined, for i ≤ N

2 , as

Wij =



































W
∣

∣i− j
∣

∣

, for j ∈
[

1, i+ N
2 − 1

]

W
∣

∣j− N − i
∣

∣

, for j ∈
[

i+ N
2 ,N

]

,
(3)
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FIGURE 3 | The network cellular metabolism model, with each circle representing an oscillator and each line a coupling.

and for N ≥ i > N
2 as

Wij =























W
∣

∣i− j
∣

∣

, for j ∈
[

i− N
2 + 1,N

]

W
∣

∣j+ N − i
∣

∣

, for j ∈
[

1, i− N
2

]

,

(4)

whereW is a constant to be chosen.
The glucose and oxygen drivers are

θ̇GOGi = ǫG sin (θGOi − θGi)

θ̇MOOi = ǫO sin (θMOi − θOi) , (5)

where θGOGi is the phase of glycolysis oscillator i due to glucose
coupling. The inter-network interactions arise through coupling
each network to themean field of the other (Strogatz andMirollo,
1991; Petkoski and Stefanovska, 2012; Petkoski et al., 2013). This
mean field arises as the average of each individual oscillation,
characterizing their collective state. It can be defined through the
Kuramoto order parameter, rXe

i9 = 1
N

∑N
k=1 e

iθXk , where 9 is
the phase of the mean field. rX = 1 hence indicates a totally
ordered network with all oscillators at the same phase of their
cycle, while rX = 0 represents a totally disordered network. The
inter-network equations therefore are

θ̇GOMOi = FGOrMO sin (9MO − θGOi)

θ̇MOGOi = FMOrGO sin (9GO − θMOi) , (6)

where FX is the inter-network coupling strength and the average
phase of network X is 9X = 1

N

∑N
i=1 θXi.

The four governing differential phase equations are hence

θ̇Gi = ωGi(t)

θ̇Oi = ωOi(t)

θ̇GOi = ωGOi(t)+ θ̇GOni − θ̇GOGi + θ̇GOMOi

θ̇MOi = ωMOi(t)+ θ̇MOni − θ̇MOOi − θ̇MOGOi, (7)

where ωGi(t) = ωG + AG sin (ωGmt + ti), and ωO(t), ωGO(t)
and ωMO(t) have equivalent expressions for their respective
elements, is the time-varying natural frequency of each oscillator
i. In this paper we use the deterministic variation formulation
for these frequencies, but any other time varying formulation,
such as random noise, are also valid methods provided that the
variation is slow. ωG is the mean frequency around which the
non-autonomous frequency is modulated, AG is the amplitude of
modulation of the frequency,ωGm is the frequency of modulation
and ti is a perturbation of the modulation in time, taking a
random number between 0 and 1

ωGm
s. This perturbation ensures

a distribution of frequencies within each element, while assigning
the oscillators the same mean frequency and deterministic cycle
of modulation.

2.3. Analyzing Synchronization
The phenomenon of synchronization between oscillators is a
key part of understanding their dynamics. Oscillators can be
considered synchronized when the difference between their
phases remains constant. This is well-established in the context of
permanent synchronization, where the phase difference between
two oscillators does not ever change unless the parameters of the
system change or a new influence is introduced (Pikovsky et al.,
2001; Strogatz, 2001). Lucas et al. (2018) and Lucas et al. (2019)
however found a different form of synchronization, intermittent,
where a pair of oscillators can transition repeatedly between
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synchronized and unsynchronized states without the system
being changed. This phenomenon has only been observed for
non-autonomous oscillators, and only when examined over finite
time periods. When observed in an asymptotic, averaging time
scale, it can easily be mistaken for complete desynchronization.

For living systems, synchronization between oscillators
represents a state of stability and cooperative working between
oscillators. Synchronized oscillators are, to an extent, able
to resist perturbation away from this state and coordinate
their oscillations for a variety of ends, including temporally
compartmentalizing conflicting processes (Tu et al., 2005; Lloyd
et al., 2018). As in, for example, Lancaster et al. (2016), certain
combinations of synchronization can be considered as the
“healthy” state of a cell, and the parameters at which they do
and do not exist can therefore inform us about the mechanisms
of pathological transitions. We will apply these methods of
synchronization analysis to our cellular metabolism model.

2.4. Numerical Simulations
We conducted analysis of the model to determine the impacts
on the dynamics made by the additions of weighted networks
and deterministic non-autonomicity to the Lancaster et al.
(2016) model. These simulations involved numerical integration
of the differential phase equations, defined in Equation (7).
This was conducted using the inbuilt Matlab ode15s algorithm,
which is a partially implicit numerical integration scheme
using a variable integration step and evaluates errors through
interpolated backwards differences (Shampine and Reichelt,
1997). The equations were integrated for a period of 10,000 s at
a sampling frequency of 0.1 s. The first 5,000 s were discarded,
assuming they were dominated by transient dynamics, and then
the final 5,000 s analyzed to determine what, if any, modes of
synchronization were present.

This analysis involved calculating the phase coherence, as
defined in Bandrivskyy et al. (2004) and Sheppard et al. (2012),
between the glycolysis and OXPHOS oscillators and their glucose
and oxygen drivers, respectively, and between the network
oscillators and the mean field driving of the other network. The
phase difference between these components was also calculated,
as was the Kuramoto order parameter of each network.

For autonomous systems, time series are defined as coherent
at a phase coherence value of or close to 1. However in
non-autonomous systems, series may be coherent yet exhibit
a time-averaged phase coherence of significantly less than 1
due to their modulation in time away from their coherent
mean. Additionally, slight numerical simulation errors and
noise can make it impossible to attain a numerical phase
coherence of precisely 1. Through observations of numerical
simulations, we have therefore defined coherence greater than
0.9 and phase difference within a bounded 2π region for
the entire 5,000 s as indicative of permanently synchronized
oscillators. If the coherence value was greater than 0.9
but the phase difference unbounded, we instead categorized
the oscillators as intermittently synchronized. Networks were
considered synchronized when their time-averaged Kuramoto
order parameter exceeded 0.5, the threshold at which a network
is more ordered than disordered. This was considered permanent

if the parameter varied by less than 0.2 over the entire 5,000
s, and intermittently if it varied by more than this. Similarly
to phase coherence, the Kuramoto order parameter of non-
autonomous oscillations will naturally vary in time due to
frequency modulation, even in highly ordered networks, and so
simulations indicated that only variations of greater than 0.2 are
due solely to intermittency or disorder.

2.5. Experimental Comparison
We have also analyzed data collected by Amemiya et al. (2017) on
glycolytic oscillations of starved HeLa cells. In this experiment,
the optical NADH fluorescence of numerous cells was measured
over time after glucose was added to their environment. We
calculated the group phase coherence, as defined by Sheppard
et al. (2016), of groups of cells around the culture. This coherence
was further tested against 19 WIAAFT surrogates, as defined
in Lancaster et al. (2018), such that any non-zero coherence is
considered significant. We analyzed both groups near to one
another and far from one another, to identify any significant
differences between the two. These groups were constructed
using hierarchical agglomerative clustering with the “complete”
linkage method, which considers the furthest Euclidean distance
between groups of cells when defining the clusters. The culture
was 1400µm by 1200µm in area, and near groups were defined
as having 300–400µm between their average positions, while the
average positions of far groups were 900–1, 200µm apart.

Simulations of this experiment were also conducted, using
some of the results of the group coherence analysis and the
general numerical simulations. This was done by numerically
integrating a realization of the system at a certain parameter set
using a four step Runge-Kutta algorithm. The results of this and
all the above methods are presented in the following section.

3. RESULTS

There are six possible modes of synchronization within our
cellular metabolism model: glycolysis to glucose, glycolysis
network, glycolysis to OXPHOS, OXPHOS network, and
OXPHOS to oxygen. While it would not be possible for
glycolysis to be synchronized to OXPHOS, but OXPHOS to not
synchronize to glycolysis in an individual oscillator model, it is
possible for a network to become synchronized to a mean field
driving, without the network from which that mean field arises
becoming synchronized to the network it is driving.

We examined whether each of these synchronizations
occurred, and whether they were permanent or intermittent,
at 2,500 different combinations of the parameters FGO and
FMO, as defined in Equation (2). This is similar to the analysis
conducted in Lancaster et al. (2016), and hence provides some
understanding of the impact of each of the changes we have made
in this model.

The parameters for which these simulations were conducted
are given in Table 2. Most of these parameters, ǫG, ǫO, FGO, FMO,
ωG, ωGO, ωMO, ωO, are identical to those used in Lancaster et al.
(2016) to allow a direct comparison, revealing the effects of the
changes from that model. KGO and KMO did not exist in the
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TABLE 2 | Parameters of the non-autonomous weighted network simulations.

Parameter Value(s)

ǫG 0.025

ǫO 0.025

KGO 0.025

KMO 0.025

FGO [0, 0.3]

FMO [0, 0.3]

ωG
2π
200 Hz

ωGO
2π
200 Hz

ωMO
2π
100 Hz

ωO
2π
100 Hz

ωGm
2π
2000 Hz

ωGOm
2π
2000 Hz

ωMOm
2π
1000 Hz

ωOm
2π
1000 Hz

AG
2π
600 Hz

AGO
2π
600 Hz

AMO
2π
300 Hz

AO
2π
300 Hz

N 100

M 100

W 1

Lancaster et al. model, and they have been set to be equal to
the other non-varied coupling parameters. The frequencies and
amplitudes of modulation were determined by their ratio to the
mean frequencies, as studied by Lucas et al. (2019).W may be set
to 1 as the relevance of the weighted coupling is in the relative
weighings between different oscillator pairs. N and M cannot
be determined purely biologically: the glycolysis oscillators
represent a collection of often-distributed glycolytic enzymes
that are not realistically quantifiable, while the number of a
mitochondria in a cell type can vary significantly (Wilson, 2017;
Chaudhry and Varacallo, 2020). Instead, the network sizes are
chosen such that there a sufficiently many oscillators to validate
the mean field approximation (Strogatz and Mirollo, 1991), and
not so many as to make computational simulation infeasible.

We present first the analysis of the individual oscillator model
of Lancaster et al. (2016) in Figure 4A, for parameters ǫ2 and ǫ1
as defined in Equation (1).

Introducing each new element of our model in turn
to examine this same parameter space, we first include
our deterministic variation of the frequency and analyse
for intermittent synchronization, as well as permanent, but
otherwise maintain the Lancaster et al. (2016) model. The results
are in Figure 4B, and the main regimes described in Table 3.
This results in the splitting of the red region in the Lancaster
et al. (2016) analysis into three regimes, two new: permanent
synchronization between glycolysis and glucose only, and oxygen
and OXPHOS only. The dark blue region, where only glycolysis
and OXPHOS are synchronized, is also made significantly larger,

and there are spots of intermittently synchronized regimes that
appear only briefly throughout the parameter space.

The next step is to introduce unweighted networks of
glycolysis and OXPHOS oscillators. The result is in Figure 4C.
This introduces a new regime, where only the networks are
internally synchronized, and converts the dark green regime,
where there is no synchronization, into the even further increased
dark blue regime. Once again, intermittent regimes are spotted
briefly throughout the parameter space.

The final step in constructing our full model, is to weight
the glycolysis and OXPHOS networks according to Equations
(3) and (4). Figure 4D shows the results of this final simulation.
This splits the new regime observed in the previous simulation
into the purple, green and cyan regimes: the purple representing
the same permanent synchronization within each network, the
green a new intermittent synchronization of the OXPHOS
network, and the cyan a new intermittent synchronization of
the glycolysis network. The weighting reduces the size of the
dark blue region, giving more space to the blue and light blue,
and as in the previous simulations produces small regimes of
intermittent synchronization.

3.1. Experimental Comparison
In Amemiya et al. (2019) constructed a model of cellular
glycolysis to explain the glycolytic oscillations they had observed
in HeLa cells. This model adopted an approach more similar to
the mainstream discussed in the previous section. We therefore
offer a comparison between this model and the one we have
presented here, to help illuminate further the differences between
our approach and ones more characteristic of the cellular
modeling mainstream, applied in the context of this experiment.

The Amemiya et al. (2019) model constructs glycolysis
as two main processes: the phosphofructokinase 1 (PFK)
reaction and the pyruvate kinase (PK) reaction. The former
is modeled as the first step, converting glucose and ATP into
intermediaries, while the second is the last reaction, converting
these intermediaries into ATP and pools of NADH and other
products. The model focuses on the masses of the metabolites
required for these reactions, from their entry into the cell to
their consumption in the metabolic process. This technique
consists of seven autonomous linear differential equations and
twenty two parameters to model the glycolysis metabolic branch
only, which contrasts to the four non-autonomous non-linear
oscillator equations of Equation (7) and the thirteen parameters
of Table 2 to model both the glycolysis and OXPHOS branches.

In addition to a measure of coherence within a network,
the order parameter may also be considered the amplitude of
the network’s mean field. We can therefore consider it both
an indication of the amplitude of our system, and the degree
to which the glycolysis and OXPHOS networks are operating
effectively. We introduce a modified Kuramoto order parameter
s, where

sei9GOMO =
1

(N +M)





N
∑

i=1

eiθGOi +

M
∑

j=1

eiθMOj



 ,
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FIGURE 4 | Analysis of the synchronization regimes at different parameter values, at parameter steps of 0.006 between each simulation, (A) for the modified

Lancaster et al. (2016) model. (B) for the Lancaster et al. individual oscillator model with added deterministic non-autonomous frequencies and intermittent

synchronization analysis. (C) for the unweighted network model. (D) for the weighted network model. Regimes are defined in Table 3.

TABLE 3 | Synchronization regimes for each simulated model.

Model Color GO-G GO GO-MO MO-GO MO MO-O

Non-network models Red Permanent N/A No No N/A Permanent

Yellow Permanent N/A No No N/A No

Blue Permanent N/A Permanent Permanent N/A No

Orange No N/A No No N/A Permanent

Dark green No N/A No No N/A No

Dark blue No N/A Permanent Permanent N/A No

Light blue No N/A Permanent Permanent N/A Permanent

Network models Red Permanent Permanent No No Permanent Permanent

Orange No Permanent No No Permanent Permanent

Light blue No Permanent Permanent Permanent Permanent Permanent

Yellow Permanent Permanent No No Permanent No

Blue Permanent Permanent Permanent Permanent Permanent No

Purple No Permanent No No Permanent No

Green No Permanent No No Intermittent No

Cyan No Intermittent No No Permanent No

Dark blue No Permanent Permanent Permanent Permanent No

which takes into account both networks. This parameter can
be compared to the time series of NADH fluorescence from a
single cell in the Amemiya et al. (2017) experiment, as NADH
production in the cellular metabolic system is maximized when
glycolysis and OXPHOS are able to act coherently. We provide

this comparison in Figure 6, and this can be further compared
to an equivalent output of the model in Figure 2 of Amemiya
et al. (2019). The Amemiya et al. (2019) model considers just
glycolysis, and is built on 7 autonomous differential equations
tracking the change in quantities of a range ofmetabolites, relying

Frontiers in Physiology | www.frontiersin.org 8 January 2021 | Volume 11 | Article 613183

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Rowland Adams and Stefanovska Weighted Non-autonomous Metabolic Oscillator Networks

FIGURE 5 | Surrogate tested coherence between groups of cells examined in

Amemiya et al. (2017), calculated with the coherence algorithm presented in

Sheppard et al. (2016). Red coloring indicates groups of cells far from one

another, 900–1, 200µm distance between their average positions, and blue

close to one another, 300–400µm distance between their average positions.

The dimensions of the culture were 1, 400 by 1, 200µm. The solid colored

lines are the median coherence of each pair of groups, and the shaded regions

the range from the minimum to maximum coherence. The cell groups were

constructed using hierarchical agglomerative clustering with the “complete”

linkage method.

on 22 parameters In contrast, the model we have presented
here accounts for both glycolysis and OXPHOS through two
types of non-autonomous differential phase equations, using
21 parameters.

The parameters used in this simulation are given in Table 4,
where A = 9.511 × 10−7 and B = 1.931 × 10−3 are the
coefficients of the quadratic and linear terms, respectively, of
the curve in Figure 6B, as found by quadratic curve fitting. The
modulation frequency of the glycolysis oscillations was extracted
from group coherence analysis of the Amemiya et al. data,
which found that for both cell groups close to and far from
one another there was significantly coherent oscillations in the
range 0.01–0.02 Hz. This analysis is presented in Figure 5. The
other frequencies were selected to maintain the same ratio with
the extracted glycolysis modulation as discussed in Lancaster
et al. (2016). The coupling parameters were chosen to reflect the
dynamics shown in the experimental time series and identified
in Figure 4: the simulation begins with FGO = FMO = 0.6, and
all other parameters at 0.025 to re-create the dark blue regime of
synchrony between the networks found in Figure 4D, resulting
in the initial amplitude spike as glucose is first introduced
to the environment. Over the next 355.9s these couplings
decrease according to the gradient of Figure 6B and ǫGO
equivalently increases, as the damage the cells sustained during
their starvation period inhibits their processes and reducing
metabolite supplies leaves the system less stable to fluctuations
in these quantities. This results in a trending decrease in the
networks’ amplitude and the emergence of oscillations. After
382.9 s the supply of glucose is almost entirely exhausted, flat-
lining ǫGO at 0.7 and causing the oscillations to begin to degrade
intomore noise-like behavior. For the final 517s of the simulation
FGO and FMO have reached 0 as the cells begin to die, their

TABLE 4 | Parameters of the HeLa experiment simulation.

Parameter Value(s)

0–355.9 s 356–382.9 s 383–800 s

ǫG −At2 + Bt+ 0.025 0.7 0.7

ǫO 0.025 0.025 0.025

KGO 0.025 0.025 0.025

KMO 0.025 0.025 0.025

FGO At2 − Bt+ 0.6 At2 − Bt+ 0.6 0

FMO At2 − Bt+ 0.6 At2 − Bt+ 0.6 0

ωG
3π
10 Hz

3π
10 Hz

3π
10 Hz

ωGO
3π
10 Hz

3π
10 Hz

3π
10 Hz

ωMO
3π
5 Hz 3π

5 Hz 3π
5 Hz

ωO
3π
5 Hz 3π

5 Hz 3π
5 Hz

ωGm
3π
100Hz

3π
100Hz

3π
100Hz

ωGOm
3π
100Hz

3π
100Hz

3π
100Hz

ωMOm
3π
50 Hz

3π
50 Hz

3π
50 Hz

ωOm
3π
50 Hz

3π
50 Hz

3π
50 Hz

AG
3π
30 Hz

3π
30 Hz

3π
30 Hz

AGO
3π
30 Hz

3π
30 Hz

3π
30 Hz

AMO
3π
15 Hz

3π
15 Hz

3π
15 Hz

AO
3π
15 Hz

3π
15 Hz

3π
15 Hz

N 100 100 100

M 100 100 100

W 1 1 1

oscillations continue to diminish, and their NADH production
dries up.

While the curve presented in Figure 6A depends on the initial
phases of each oscillator, which are randomized, and therefore
will not be identical from simulation to simulation, its oscillator
features and overall trend are indicative of the parameters in
Table 4. And while this simulation is not an identical reflection of
the experiment in every feature, it is an indication of the capacity
of our model to reproduce the oscillating nature of biological
processes, and the ease with which it can be adapted to a plethora
of different cells and circumstances.

4. DISCUSSION

The conversion of established metabolic models, such as that of
Lancaster et al. (2016), to consider networks of processes offers
both greater biological realism and a resulting transformation
of the dynamics we expect to see from such models. The
step from Figures 4B,C for example overhauls the parameter
space, introducing entirely new regimes and destroying once-
firm fixtures of the non-network model. It is clear from
all of these results that networks result in an even greater
area of the parameter space featuring synchronization, with
the only regime of total desynchronization disappearing once
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FIGURE 6 | (A) Simulation of the HeLa experiment using a modified order parameter. (B) The time series of NADH fluorescence in a single cell in the Amemiya et al.

(2017) experiment.

networks are introduced, and the networks themselves never
being desynchronized. This aligns well with the imperative of
such biological processes to remain robust against significant
external perturbations, and the expectation that these parameter
values do not represent catastrophic departure from the healthy
state of the system.More significant perturbations of the coupling
parameters, to both higher values and the entire elimination
of more coupling modes, are likely required to completely
desynchronize the networks, which would represent even further
departures from the healthy parameter states of the cell.

In healthy human cells, ATP is produced primarily through

OXPHOS, with support from glycolysis. In our model, this may
be represented by synchronization between the networks, and
between the OXPHOS network and its oxygen driving (Lancaster

et al., 2016). Internal synchronization of both networks is also

required to characterize a healthy condition: disregulation within
the metabolic processes is a key indicator of a malfunctioning

cell. This state is represented in the bottom right of each graph
in Figure 4, but is significantly diminished in area with the

addition of deterministic frequency modulation from Figure
Figures 4A,B. A cancerous state, may be indicated by an opposite
state: a mode switch to the dominance of glycolysis, known as

the Warburg effect, is reflected by synchronization between the

networks and between glycolysis and glucose, but not OXPHOS
and oxygen (Lancaster et al., 2016). Due to the decreased
relevance of OXPHOS to the metabolic process in cancer, it

may be represented by either ordered or disordered OXPHOS

networks. This regime is found in the top left of each of Figure 4,
similarly decreasing in area between Figures 4A,B as with the

bottom right regime.
Network models also offer greater potential for oscillator

systems: while reducing oscillating differential equations to just

their phase provides a much simpler system that still contains the
key dynamics, only at the mesoscopic level of networks of many

oscillators can the system amplitude be rebuilt. Further work on
this model could therefore provide not just an order parameter
of the network indicative of its activity, but an amplitude of
its production.

The turn to deterministic non-autonomous frequencies
and finite time synchronization analysis similarly promises
a significant change to the dynamics of metabolic models.
Intermittent synchronization allows greater nuance between the
states of “healthy” and “pathological,” more reflective of the
complexity of living systems, yet further ways for the processes
to stabilize in spite of significant perturbation and ever more
complex and effective ways for them to compartmentalize.
However, with the introduction of this non-autonomicity comes
greater challenges for numerical simulations: the numerical
integration of non-linear oscillating differential equations is an
already delicate task, and the addition of another dimension of
time sensitivity requires alternative methods.

Further work with more sensitive numerical integration
algorithms and more sophisticated methods for identifying
intermittent synchronization would be likely to find a far greater
role of the phenomenon in the model’s parameter spaces, and
further clarify exactly which dynamic we can expect to find at
each parameter combination. The integration scheme used in
this work has resulted in multiple “islands” of synchronization
regimes, which are unrelated to the regimes at all neighboring
parameter values, and yet are reproduced under the same
simulation conditions. Non-autonomous oscillations pose a
particular challenge to numerical integration schemes due to
their two highly distinct frequency modes. Schemes designed to
adapt to this situation may be able to provide greater clarity
on our model, with which we may be able to further identify
parameters leading to pathological states and more complex
dynamics within the model.
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