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This review highlights recent findings about the role that endothelial glycocalyx
and caveolae play in vascular homeostasis. We describe the structure, synthesis,
and function of glycocalyx and caveolae in vascular cells under physiological and
pathophysiological conditions. Special focus will be given in glycocalyx and caveolae
that are associated with impaired production of nitric oxide (NO) and generation of
reactive oxygen species (ROS). Such alterations could contribute to the development
of cardiovascular diseases, such as atherosclerosis, and hypertension.
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INTRODUCTION

The role that endothelium plays in modulating the vascular tone includes the synthesis
and release of several vasoactive substances, especially the vasodilator nitric oxide
(NO) (Cahill and Redmond, 2016). Endothelial NO synthase (eNOS) is responsible
for the synthesis of most of the NO that is produced in endothelial cells (ECs) (Zhao
et al., 2015). eNOS is localized on domains named caveolae, which are spread over
the entire ECs surface (Shaul, 2003). The glycocalyx is a polysaccharide-rich layer,
which underlies mechano-transduction and mediates the physiological activation of
NO synthesis by shear stress (Pahakis et al., 2007). More specifically, the glycocalyx
components transform mechanical signals into biochemical signals, to activate eNOS
(Florian et al., 2003; Pahakis et al., 2007), thereby contributing to vascular homeostasis
(Alphonsus and Rodseth, 2014).

Shedding of glycocalyx and changes in the structure of caveolae decreases eNOS activity, which
reduces NO bioavailability and generates reactive oxygen species (ROS) (Kumagai et al., 2009; Potje
et al., 2019). Both consequences are associated with cardiovascular diseases such as atherosclerosis
and hypertension. Therefore, the organization and function of glycocalyx and caveolae might
be altered in atherosclerosis and hypertension, which results in release of deleterious ROS that
contribute to these pathological conditions.

This review aims to highlight recent findings about the activation of glycocalyx and caveolar
enzymes that participate in the synthesis and release of NO and ROS and alterations that
could impair the proper function of glycocalyx and caveolae in pathological conditions like
atherosclerosis and hypertension.
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STRUCTURE AND SYNTHESIS OF
ENDOTHELIAL GLYCOCALYX

As reviewed by different groups, the endothelial glycocalyx
is mainly composed of glycosaminoglycans, proteoglycans,
and glycoproteins. Heparan sulfate, chondroitin sulfate,
and hyaluronic acid chains constitute glycosaminoglycans.
Proteoglycans include core protein families such as perlecan,
syndecans-1, -2, -3, -4, and glypican-1. Lastly, glycoproteins
consist of sialic acid oligosaccharides (Uchimido et al., 2019;
Möckl, 2020).

Heparan sulfate is the predominant constituent (from 50
to 90%) of glycocalyx (Reitsma et al., 2007). The syndecan
family can contain three to eight potential heparan sulfate
or chondroitin sulfate attachment sites depending on the
specific syndecan member. These sites are located close to
the syndecan NH2-terminal ectodomain or adjacent to the
transmembrane domain near the syndecan COOH terminal.
Glypican-1 is the only proteoglycan that is expressed exclusively
in ECs. It binds specifically to the heparan sulfate chain and
is localized in lipid rafts (caveolae) through a C-terminal
glycosylphosphatidylinositol (GPI) anchor (Uchimido et al.,
2019; Möckl, 2020).

Biosynthesis of glycosaminoglycans is a complex process
that is initiated by chain polymerization and which depends on
various stepwise reactions like sulfation and epimerization. This
process happens in many cellular components including
endoplasmic reticulum and Golgi apparatus, which are
responsible for the secretory pathway (Uchimido et al., 2019;
Möckl, 2020). On the other hand, hyaluronic acid is directly
assembled in the membrane by hyaluronan synthases, and it is
secreted into the extracellular space (Agarwal et al., 2019).

VASCULAR PROTECTIVE EFFECTS OF
GLYCOCALYX

Glycocalyx functions as a vascular protector because it
participates in angiogenesis, exerts an anticoagulant effect,
prevents leukocyte adhesion, acts as a selective permeable barrier
and filter, operates as a mechano-transducer of shear stress, and
contributes to maintaining the vascular tone.

Glycocalyx, specifically heparan sulfate, regulates angiogenesis
by playing a proangiogenic role (Fuster and Wang, 2010). 6-O-
sulfation of heparan sulfate is an essential regulator of vascular
morphogenesis in zebrafish (Chen et al., 2005). In addition,
decreased heparan sulfate N-sulfation impairs recruitment of
pericytes and development of vasculature in N-deacetylase/N-
sulfotransferase (Ndst)-1 knockout mice (Abramsson et al.,
2007). Moreover, complete loss of heparan sulfate chains in
mural cells causes embryonic death in the late stages of vascular
morphogenesis and stability (Stenzel et al., 2009). In this way,
glycocalyx contributes to angiogenesis process.

Antithrombin III is the main anticoagulant molecule that can
bind to specific sites of heparan sulfate; it also inhibits coagulant
factors and inactivates factors IX and X (Shimada et al., 1991;
Quinsey et al., 2004). Likewise, tissue factor pathway inhibitor

(TFPI) can also bind to heparan sulfates and block the initial
steps of blood coagulation by inhibiting factors VIIa and Xa
(Kato, 2002). Additionally, dermathan sulfate in glycocalyx can
activate heparin cofactor II, which inhibits thrombin (Tovar
et al., 2005). Furthermore, degradation of endothelial glycocalyx
induced by hyperglycemia activates coagulation in healthy
subjects (Nieuwdorp et al., 2006b). Therefore, glycocalyx has
anticoagulant and antithrombotic effects.

The glycocalyx layer has consistency and anti-adhesive
character, promoting resistance to penetration of circulating
leukocytes and preventing leukocyte-endothelial adhesion in
vascular smooth muscle cells (VSMCs). Besides, degradation of
the glycocalyx layer provoked by heparitinase in mouse cremaster
venules increases leukocyte adhesion in a dose-dependent
manner (Constantinescu et al., 2003). In addition, enzymatic
degradation of glycocalyx promoted increased of ICAM-1
expression, which was associated to a de-regulation in NF-κB
activity in response to flow and leukocyte adhesion (McDonald
et al., 2016). Moreover, endotoxemia stimulated in mice by
tumor necrosis factor-α (TNF-α) rapidly degrades pulmonary
microvascular glycocalyx, which contributes to neutrophil
adhesion (Schmidt et al., 2012). Consequently, the damage of
glycocalyx favors the adherence of leukocyte on the ECs.

Tumor necrosis factor-α treatment increases porosity
and permeation due to glycocalyx shedding with enhanced
intraluminal volume (Henry and Duling, 2000). Patients
with type 1 diabetes show glycocalyx damage in sublingual
capillaries, which is associated with microalbuminuria
(Nieuwdorp et al., 2006a). Furthermore, degradation of
heparan sulfate by heparanase promotes injury in porcine aortic
ECs, which was associated to apoptosis and cell death (Han et al.,
2005). Thus, glycocalyx works as a barrier and filter, besides
protecting vascular cells.

Shear stress on ECs is a frictional force (mechanical signals)
per unit area created by laminar blood flow (Pohl et al., 1986).
Heparan sulfate is important to detect the direction of shear
stress because degradation of this substance prevents shear stress-
induced directional migration of ECs and inhibits recruitment
of phosphorylated focal adhesion kinase in the flow direction
(Moon et al., 2005). Nevertheless, remodeling of glycocalyx in
response to short and long periods of shear stress has been
reported (Liu et al., 2016). Moreover, reorganization of actin
cytoskeleton and focal adhesions in response to fluid shear
stress has been shown in rat fat-pad ECs in various flow media
(Thi et al., 2004). Similarly, changes in the actin cytoskeleton
and caveolae have been demonstrated after long-term shear
stress (24 h), which also redistributes and restores heparan
sulfate, syndecan-1, and glypican-1 on the apical surface of ECs
(Zeng and Tarbell, 2014). In this way, the actin cytoskeleton
contributes to the structural stability of glycocalyx under shear
stress (Li and Wang, 2018).

Mechano-transduction is the conversion of mechanical signals
induced by shear stress into biochemical signals inside ECs
(Dabagh et al., 2017). Endothelial glycocalyx has been described
as the primary sensor activating the mechano-transduction
process, creating an immediate response to shear stress stimulus
and producing NO. Removing heparan sulfate and other
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glycocalyx components through a selective enzyme that degrades
endothelial glycocalyx constituents blocks shear-induced NO
production in ECs (Florian et al., 2003; Pahakis et al., 2007;
Yen et al., 2015; Dragovich et al., 2016). Furthermore, NO
production mediated by glycocalyx is associated with calcium
influx mediated by endothelial transient receptor potential (TRP)
channels. Under stimulation, the proteoglycans promote tension
in the lipid bilayer, which spreads through ECs due to its
interaction with cytoskeleton, and then both proteoglycans
and cytoskeleton may activate a diversity of mechanically
sensitive ion channels, such as TRP channels (Dragovich et al.,
2016). In addition, reduced NO production induced by flow
has been reported in isolated canine femoral arteries treated
with hyaluronidase, which degrades the hyaluronic acid GAG
(Mochizuki et al., 2003). These results show that intact glycocalyx,
mainly heparan sulfate chains, are needed to activate eNOS and
thus produce NO.

Glypican-1 seems to be the main heparan sulfate proteoglycan
that is associated with NO production, along with eNOS, both
resides in caveolae. First, glypican-1 knockdown blocks eNOS
activation under shear stress stimulus (Ebong et al., 2014).
Additionally, glypican-1 removal significantly suppresses eNOS
activation mediated by several steady shear stress magnitudes
(Zeng and Liu, 2016). Besides that, atomic force microscopy
(AFM) selectively applied on glypican-1 for a limited time
significantly increases NO production, whereas pulling on
syndecan-1, CD44, and hyaluronic acid does not change NO
concentration (Bartosch et al., 2017). Furthermore, disturbed
flow (DF) reduces caveolin-1 (Cav-1) expression and impairs
its co-localization with eNOS, consequently reducing eNOS
phosphorylation at Serine1177 (Harding et al., 2018). Taken
together, these results indicate that glypican-1 is a primary
mechano-sensor for shear stress-induced NO production, and
that the glypican-1-caveolae-eNOS-NO pathway is essential for
vascular tone maintenance.

FORMATION OF CAVEOLAE

Lipid rafts (also known as lipid microdomains) and caveolae
are domains of the plasma membrane that share the same
composition, such as cholesterol, sphingolipids, and glycosyl-
phosphatidylinositol GPI-anchored proteins. However, the
caveolae structure is an invagination at the membrane. On
the other hand, lipids rafts are flat areas of the membrane
(Bieberich, 2018). Caveolae were first described in the 1950s
by using an electron microscope. Due to lack of experimental
approaches and technologies, the caveolar functions remained
mostly unclear until the 1990s (Anderson, 1998). Now, caveolae
are defined as 60–80-nm-wide pits in the plasma membrane
that contain oligomeric caveolin (Parton and Simons, 2007).
Caveolae are predominantly expressed in vascular ECs, but they
are also present in VSMCs (Gratton et al., 2004). Molecular
understanding of caveolar formation is advancing rapidly, and
we now know that sculpting the membrane to generate the
characteristic bulb-shaped caveolar pit involves coordinated
action of integral membrane proteins and peripheral membrane

coat proteins in a process that depends on their multiple
interactions with membrane lipids (Parton et al., 2018).

Three mammalian caveolins exist: Cav-1, Cav-2, and Cav-
3. Cav-1 and Cav-2 are generally expressed together in
different types of cells other than muscle cells, whereas Cav-
3 is predominantly expressed in muscle cells (Razani and
Lisanti, 2001). Some cells, including smooth muscle cells and
cardiomyocytes, can express Cav-1, Cav-2, and Cav-3, (Head
et al., 2006; Robenek et al., 2008). Each caveola has estimated
140–150 Cav-1 molecules (Pelkmans and Zerial, 2005). Cav-1
loss results in complete absence of caveolae (Drab et al., 2001).
Moreover, Cav-1 expression in cells without caveolae causes
caveolae to form (Vogel et al., 2019). Therefore, Cav-1 is crucial
for caveolar formation.

Identifying the family of cytoplasmic proteins that
cooperatively work with caveolins for caveolar formation
and function has expanded our understanding of caveolar
biology. Liu et al. (2008) described that Cavins are cytoplasmic
proteins with amino-terminal coiled-coil domains that play
a role as protein component of caveolae, where they form
large heteromeric complexes that are recruited by caveolins
in cells expressing caveolae (Bastiani et al., 2009). The Cavin
family includes Cavin-1 (also known as polymerase I and
transcript release factor, PTRF), Cavin-2 (SDPR, serum
deprivation response protein), Cavin-3 (also known as related
gene product that binds to c-kinase - SRBC), and Cavin-4 (also
known as muscle-restricted coiled-coil protein, MURC). Cavin
knockout mice are viable, but they present a lipodystrophic
phenotype with high triglyceride levels, glucose intolerance, and
hyperinsulinemia (Liu et al., 2008). In addition, caveolae are
completely absent in Cavin knockout mice in specific tissues
like lung epithelium, intestinal smooth muscle, skeletal muscle,
and ECs. In this way, formation of caveolae requires Cavin-1
(Liu et al., 2008). Cavin-2 and Cavin-3 have been identified
as protein kinase C (PKC) substrates and have been suggested
to target PKC for caveolae. Cavin-2 has been associated with
caveolar membrane curvature, and Cavin-3 affects formation
of caveolar endocytic carriers (Hill et al., 2008). Cavin-4, which
is predominantly expressed in cardiac and skeletal muscles,
has been related to myogenesis and muscle hypertrophy via
RHOA–RHO-associated kinase (ROCK), ERK1, and ERK2, as
well as to regulation of atrial natriuretic peptide transcription in
cardiac muscle (Ogata et al., 2008; Bastiani et al., 2009).

After trafficking to the plasma membrane, caveolin oligomers
are stabilized by the complex of Cavins (Hayer et al., 2010).
Lipids and/or membrane lipid order may also be important for
this interaction. The four members of the Cavin family bind
to phosphatidylserine, which is abundant on the cytoplasmic
face of the plasma membrane, particularly in areas that are rich
in caveolae (Fairn et al., 2011). Cav-1 peptides can generate
phosphatidylserine domains in liposomes, so membrane lipid
reorganization by caveolins might also contribute to a stable
interaction in the plasma membrane (Wanaski et al., 2003).
In this way, Cavins and caveolins preserve the stable coat
around the bulb of caveolae (Hill et al., 2008). Additionally,
a protein called Eps15 homology domain protein 2 (EHD2)
is involved in mediating caveolar stabilization in the plasma
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membrane (Stoeber et al., 2012). Moreover, the protein pacsin2
participates in membrane bending to form caveolae and to release
NO from eNOS-expressing cells (Hansen et al., 2011), thus it
reduces vascular tone ex vivo and lowers blood pressure in mice
(Bernatchez et al., 2011).

The way through which caveolae suffer endocytosis has been
a subject of controversy for many years. However, a consensus
has emerged that dynamin drives caveolar budding from the
surface. In ECs, caveolae have been proposed to bud in from the
luminal surface and to fuse with the abluminal surface, to mediate
efficient trans-endothelial transport from the blood stream to the
underlying tissues. In other cell types, caveolae fuse with early
endosomes (Rippe et al., 2002; Oh et al., 2007).

CAVEOLAE AND SIGNAL
TRANSDUCTION MOLECULES

Recently, the structures of caveolae and caveolin proteins have
been discovered to play an important role in cellular physiological
functions, particularly functions related to cholesterol transport,
endocytosis, tumor suppression, and cell signal transduction
(Lian et al., 2019).

Signal transduction is promoted by neurotransmitters,
circulating hormones, and growth factors that are critical for the
regulation of vasculature. Many such regulators act by interacting
with plasma membrane receptors and subsequently perturbation
pathways that modulate metabolic activity, growth, death, and
differentiated functions of the target cells (Insel and Patel, 2009).

Membrane rafts and caveolae concentrate a subset of
membrane constituents, including proteins and other
components involved in transport and signal transduction
(Allen et al., 2007; Patel et al., 2008). Lipid rafts have non-
homogeneously organized signaling, which facilitates temporally
and spatially efficient cellular regulation by extracellular
hormones and growth factors. The interior of cells has gradients
of second messengers and effectors (cyclic AMP, Ca2þ, protein
kinases/phosphatases, and phosphodiesterases) that participate
in vascular signaling (Bauman et al., 2006; Echarri et al., 2007).
Membrane rafts that lack caveolins also concentrate signaling
molecules, implying that other factors (e.g., binding to lipids)
contribute to the interaction of signaling entities with rafts and
caveolins (Patel et al., 2008).

In several types of cells, including ECs and VSMCs,
mediators of Ca2+ signaling such as Ca2+-ATPase, inositol 1,4,5-
trisphosphate receptors, Ca2+ pumps, L-type Ca2+ channels,
large-conductance Ca2+-activated K+ channels, calmodulin,
and TRP channels are localized in cholesterol-rich membrane
domains (Wang et al., 2005). Moreover, in VSMCs, caveolae
are closely associated with peripheral sarcoplasmic reticulum, a
major site for Ca2+ release that has been postulated to be the
preferred site of Ca2+ entry in response to Ca2+ depletion (Shaw
et al., 2006). These observations suggest that membrane rafts and
caveolae have a role in Ca2+ signaling.

According to Durr et al. (2004), various proteins like
G-protein-coupled receptor (GPCR) and downstream signaling
enzymes such as eNOS are specifically enriched in caveolae in

ECs. Additionally, caveolae contribute to GPCR desensitization
and internalization (Chini and Parenti, 2004). For example,
the stimulation with angiotensin II (Ang II) promotes rapid
translocation of AT1 receptor (AT1R) to caveolae, then AT1R
bind to Cav-1, which delays AT1R reactivation after prolonged
stimulus with Ang II (Ishizaka et al., 1998; Czikora et al., 2015).

CONTRIBUTION OF ENOS AND CAV-1
TO NO GENERATION

Controlling eNOS activation falls under a complex regulatory
mechanism that includes tonic inhibitory interaction with
Cav-1 (Ju et al., 1997) and post-translational modifications
like myristoylation, palmitoylation, phosphorylation, and
stimulatory responses, to raise intracellular Ca2+ concentrations
(Sessa, 2004).

Endothelial NO synthase remains associated with Cav-1,
which is the major component of caveolae. eNOS requires
palmitoylation and myristoylation to be targeted to the caveolar
microdomains. The interactions between Cav-1 and eNOS
have been shown to regulate NO release negatively (Grayson
et al., 2012). In this way, Cav-1 over-expression decreases
basal NO production in a “control” cellular state. Moreover,
under agonist activation, eNOS translocates away from caveolae,
thereby removing tonic Cav-1 inhibition (Frank et al., 2003).
Feron et al. (1998) identified that, after agonist-dependent
eNOS activation, removal of tonic inhibition between eNOS
and Cav-1 coincides with de-palmitoylation concomitant with
eNOS translocation to the non-caveolar fraction, which indicates
increased NO biosynthesis. Conversely, when eNOS returns to
the membrane/caveolae, it is re-palmitoylated, and its inhibitory
interaction with Cav-1/eNOS is reasserted.

A model for activation of eNOS bound to Cav-1 considers
that, under stimulation with Ca2+-mobilizing agonists, the
inhibitory scaffold of Cav-1 is relieved via calcium-regulated
binding of calmodulin and Hsp90 to displace eNOS from
Cav-1, thus allowing efficient NO production (Sessa, 2004).
Evidence supporting the inhibition model includes enhanced
NO-dependent vascular function in blood vessels from Cav-1
knockout mice and increased NO production in ECs isolated
from Cav-1 knockout mice, an effect that is rescued by Cav-
1 reintroduction (Drab et al., 2001; Razani et al., 2001; Murata
et al., 2007). Besides, transduction of cells or blood vessels
with Cavtratin, a synthetic cell permeable Cav-1 CSD peptide,
reduces NO release and inflammation in vivo (Bucci et al., 2006).
Alanine scanning of this scaffolding region demonstrated that
the threonine residues 90 and 91 (T90, T91) and phenylalanine
92 (F92) underlie eNOS inhibition. This is supported by lack
of eNOS inhibition by the F92A–Cav-1 mutant in reconstituted
cells and a Cavtratin-derived peptide with the T90/91 and F92
substitutions (a peptide called Cavnoxin) as revealed by studies
in vitro and in vivo (Bernatchez et al., 2005).

Sowa (2012) showed that Cav-1 in caveolae but not in lipid
rafts can inhibit eNOS under basal conditions. Although Cav-
1 in caveolae keeps eNOS inactive, the specific localization
of Cav-1 in this cell organelle is necessary for its activation
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(Chen et al., 2012). In addition, Cav-1/eNOS interaction is
necessary to prevent inadequate NO production under basal
conditions and to facilitate integration of extracellular stimuli
with intracellular NO signals (Rath et al., 2009).

OXIDATIVE STRESS IN
CARDIOVASCULAR DISEASES

Reactive oxygen species are a group of heterogeneous molecules
that are characterized by highly reactive oxygen atoms, short
half-life, and strong capacity to engage in oxidation reactions
(Vara and Pula, 2014). They are essential for homeostasis of
the cardiovascular system and play a role in signaling pathways
in different cells. An imbalance in antioxidant and oxidant
systems promotes ROS overproduction, which culminates in
oxidative stress, a well-known and important hallmark of
cardiovascular diseases (Panth et al., 2016). When ROS levels
overtake the cellular defenses, protein, lipids, and DNA can
undergo oxidation, which can lead to cellular damage, tissue
injury, and inflammation (Sena et al., 2018). ROS are produced
by distinct enzymatic sources like xantine oxidase, NADPH-
oxidase (NOX), cyclooxygenase (COX), lipoxygenase (LOX),
monomeric eNOS (uncoupled eNOS), myeloperoxidase, and
also by the respiratory chain in mitochondria (Vara and Pula,
2014; Sena et al., 2018). The chemical species anion superoxide
(O2
−), peroxynitrite (ONOO−), hydrogen peroxide (H2O2), and

hydroxyl radical (•OH) underlie deleterious effects of oxidative
stress. However, ROS present not only deleterious, but also
physiological effects on vascular tone in VSMCs and on ECs
motility, proliferation, and permeability (Vara and Pula, 2014).
For example, O2

− induces protein kinase-dependent contraction
in VSMCs under high pressure (Ungvari et al., 2003), whereas
H2O2 upregulates vascular endothelial growth factor receptor 2
(González-Pacheco et al., 2006).

Each oxidant chemical species can be removed from
the cellular environment by different enzymes that make
up the antioxidant system, including superoxide dismutase
(SOD), catalase (CAT), glutathione peroxidase, thioredoxin,
peroxiredoxin, and glutathione transferase. SOD dismutates O2

−

in H2O2, which is broken down into O2 and H2O by CAT
and glutathione peroxidase (Birben et al., 2012). The radical
species can also activate the nuclear factor erythroid 2-like 2
(Nrf-2), a transcription factor that is involved in the dynamic
regulation of the antioxidant system, thereby activating the
expression of promoters containing the antioxidant response
element (Satta et al., 2017).

In the vascular system, both ECs and VSMCs can be either
producers or targets of ROS. H2O2 is produced by NOX4
in ECs (Burtenshaw et al., 2019) and it can elicit different
responses in VSMCs depending on its concentration (Gil-Longo
and González-Vázquez, 2005). Importantly, H2O2 seems to be
increased in aortas from hypertensive rats under stimulus (Silva
et al., 2013). O2

− can be produced by NOX isoforms expressed
in the membrane and in the intracellular compartment of ECs (Li
and Shah, 2002) and by mitochondria, which are considered the
major source of O2

− in ECs (Li et al., 2016). In cardiovascular

diseases, O2
− significantly contributes to endothelial dysfunction

because it rapidly reacts with NO, to produce the highly oxidizing
ONOO− (Radi, 2018), thus decreasing NO bioavailability. In
addition, ROS can induce conversion of ECs to myofibroblasts,
losing its endothelial properties (Montorfano et al., 2014).

Endothelial dysfunction is characterized by reduced
endothelial response to different stimulus that release NO
and other chemical mediators related to vasodilation or
higher levels of endothelial chemical mediators associated with
vasoconstriction (Vanhoutte et al., 2017). Therefore, exacerbated
oxidative stress in ECs modifies the response of endothelial NO,
and ROS produced by ECs can induce response in VSMCs.

In VSMCs, ROS production is mediated especially by
NOX1 and NOX4 and produces O2

− and H2O2, respectively
(Burtenshaw et al., 2019). Increased ROS in VSMCs is a
common feature of different models of hypertension such as
AngII-infused model (Rajagopalan et al., 1996; Zhou et al.,
2020), spontaneously hypertensive rats (SHR) (Graton et al.,
2019), renovascular hypertension (2K-1C) (Castro et al., 2012;
Oliveira-Paula et al., 2016), and Doca-Salt rats (Amaral et al.,
2015). Physiologically, contraction mediated by activation of α-1
adrenoceptors can partially depend on O2

− (Tsai and Jiang,
2010). The hypercontractile profile of VSMCs of hypertensive
rats seems to depend on ROS production (Camargo et al.,
2018). Additionally, ROS produced by VSMCs can reduce NO
bioavailability.

OXIDATIVE STRESS IN CAVEOLAE AND
CAVEOLIN

Cav-1 seems to be involved in the process involving ROS as
target or controlling ROS production. Oxidative stress mediated
by H2O2 degrades Cav-1 in skeletal muscle cells (Mougeolle et al.,
2015). H2O2 is increased in aorta of renal hypertensive rats (Silva
et al., 2013), and the total number of caveolae is reduced in aorta
of hypertensive rats (Rodrigues et al., 2010; Potje et al., 2019).
Thus, H2O2 overproduction can be important to reduce Cav-1
levels and to disrupt the function of caveolae in hypertension.

Cav-1 is related to the AngII (AT1) receptor because the
AT1-R·caveolin complex requires an intact caveolin scaffolding
domain, but not co-localization in the caveolae (Wyse et al.,
2003). Exposure to the agonist Ang II changes the Cav-1 levels in
VSMCs (Ishizaka et al., 1998). Interestingly, Cav-1 loss increases
NOX activity and ROS production in VSMCs (Zuo et al., 2005;
Chen et al., 2014). In contrast, Cav-1 deletion can prevent
remodeling induced by Ang II (Forrester et al., 2017). As stated
before, Nrf-2 is an important element that controls the levels of
antioxidant enzymes. ROS can activate Nrf-2 migration to the
nucleus, thereby raising the expression of antioxidant enzymes
and leading to detoxification of the cells (Satta et al., 2017).
Curiously, Cav-1 seems to repress this migration given that
Cav-1 knockout mice constantly present high Nrf-2 levels in
nucleus (Volonte et al., 2013). Changes in Nrf-2 levels can
alter the physiology of normal cells due to upstream and
downstream of molecules that are associated with a defective Nrf2
signaling system (Satta et al., 2017). Thus, most of the common
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FIGURE 1 | Schematic representation of caveola and glycocalyx proteins in endothelial cells (ECs) under non-pathological and pathological conditions. In
non-pathological conditions, the glycocalyx proteins are intact and the coupled eNOS (dimeric form) is inactivated linked to Cav-1 protein. The eNOS is activated by
shear stress mediated by Glypican-1 mechano-transduction as well as increase in calcium levels. The NO bioavailability can protect the cardiovascular system, and
ROS produced by different sources stimulates the antioxidant system that also protects the cells of oxidative damage. In pathological conditions, the rise in ROS
production mediated by pro-oxidant molecules as Ang II overtakes the antioxidant defenses. The ROS can degrade Cav-1, the eNOS is uncoupled (monomeric) that
can be source of ROS, and NO bioavailability is reduced. ROS also stimulates the sheddases activity clivating the heparan sulfate from glypican and syndecan losing
its ability to induce eNOS activation mediated by shear stress. Those frames with low NO levels can potentiate the cardiovascular risks.

features of hypertensive vessels, e.g., endothelial dysfunction and
hypercontractile VSMCs, can result from ROS actions, Cav-1
levels, and caveolar functions.

EFFECT OF ROS ON ENDOTHELIAL
GLYCOCALYX DEGRADATION

Specific enzymes, named sheddases, as well as metalloproteinases
(MMPs), heparanase, and hyaluronidase degrade glycocalyx.
Sheddases are activated by pro-inflammatory cytokines such
as TNFα (Ramnath et al., 2014), interleukin-1beta (Haywood-
Watson et al., 2011), interleukin-6, and interleukin-8 and also by
shear stress, hypoxia, and ROS (Lipowsky and Lescanic, 2013).
In this review, we focus only on how ROS affect endothelial
glycocalyx given that ROS cleave and destabilize the glycocalyx
structure (Sieve et al., 2018).

MMPs modify the constituents of glycocalyx, thus disrupting
glycocalyx in pathological conditions (Lipowsky, 2011). MMPs
can cleave the protein core of syndecan, promoting shedding of
the syndecan family and consequent thrombosis, destabilization
of vascular walls, endothelial dysfunction, and inflammation
(Fitzgerald et al., 2000; Chen et al., 2017). In, addition, MMP-2

was associated to direct chondroitin sulfate cleavage (Hsu et al.,
2006), while MMP-7 was responsible for cleavage of perlecan
and heparan sulfate proteoglycans (Grindel et al., 2014) and
MMP-9 mediated disruption of syndecan-4 (Ramnath et al.,
2014). ROS also decrease the levels of the tissue inhibitors of
metalloproteinases (TIMPs), thereby increasing the activity of
MMPs (Siwik and Colucci, 2004). The inhibition of MMPs was
able to restore the shedding of syndecan-4 in early diabetic
disease (Ramnath et al., 2020).

Heparanase is an endoglycosidase that cleaves the side
chains of heparan sulfate present in the syndecan and glypican
families through hydrolysis, to disrupt glycocalyx (Garsen et al.,
2014). Degradation of heparan sulfate reduces extracellular
SOD (ecSOD), which remains attached to the heparan sulfate
portion. ecSOD protects vascular cells from oxidative stress and
its overexpression can attenuate heparanase expression, which
suggests a prophylactic effect to prevent glycocalyx degradation
(Kumagai et al., 2009).

Hyaluronidase degrades hyaluronic acid into fragments
via hydrolysis of the disaccharides at hexosaminidic β (1–4)
linkages (Wang et al., 2020). In addition, hyaluronic acid
degradation products can produce ROS, which triggers several
vascular disease processes (Soltés et al., 2006). Moreover,
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other ROS derived from O2
− and nitrogen monoxide (·NO),

including H2O2, ONOO−, and hypochlorous acid, depolymerize
hyaluronic acid (Uchiyama et al., 1990).

ALTERATIONS IN CAVEOLAR FUNCTION
AND GLYCOCALYX IN
ATHEROSCLEROSIS AND
HYPERTENSION

Atherosclerosis and hypertension are multifactorial diseases.
Atherosclerosis and its consequences represent the major cause
of cardiovascular mortality. This disease is characterized by
endothelial dysfunction, increased platelet adhesion, leukocyte
recruitment, and accumulation of lipoproteins that evade
phagocytosis (Eckardt et al., 2019). Endothelial dysfunction in
the areas where atherosclerosis develops occurs through entry of
lipoproteins, which is followed by lesions, leading to production
of proinflammatory cytokines, migration of monocytes, and
accumulation of macrophages (Gimbrone and Garcia-Cardeña,
2016). In turn, hypertension is a multifactorial disease that is
associated with endothelial dysfunction, exacerbated oxidative
stress, and inflammation in blood vessels (Dharmashankar and
Widlansky, 2010). ECs play a pivotal role in vessel balance
and pathophysiological conditions because they are exposed to
inflammatory mediators that can impair or even destroy the
endothelial layer and its components.

Caveolae and Cav-1 seem to play a part in atherosclerosis
development. Numerous atherogenic proteins colocalize
with caveolae in ECs, and caveolae are involved with
transcytosis of low-density lipoprotein (LDL) particles
(Frank et al., 2004; Sowa, 2012). Additionally, Cav-1
protein seems to have an atherosclerotic role. First, Cav-1
overexpression in ECs can increase atherosclerosis progression
in apolipoprotein E-deficient mice (Fernández-Hernando
et al., 2010). Moreover, the absence of Cav-1 promotes
atheroprotection in vessels of Cav-1 knockout mice (Zhang
et al., 2020). As proposed by Zhang et al. (2020), activation
of endothelial autophagy by Cav-1 deficiency protects against
atherosclerosis progression. In brief, autophagy is described as
an evolutionarily conserved subcellular process that mediates
degradation of proteins and damaged organelles via lysosomes
(Mizushima and Komatsu, 2011).

As reported by Milovanova et al. (2008), apart from
modulating NO production by eNOS, Cav-1 can modulate
ROS production by NOX. In pulmonary hypertension, Cav-1
is a negative regulator of ROS derived from NO since lack
of Cav-1 expression in pulmonary hypertension increases
NOX activity and enhances ROS production (Chen et al.,
2014). Furthermore, Cav-1 deletion prevents transactivation
of hypertensive vascular remodeling and contributes to
increased mitochondrial ROS levels in a model of AngII-
induced hypertension (Forrester et al., 2017). On the other
hand, lipid rafts and caveolae structural disruption with
cholesterol disassembly drugs, increased ROS production in
a different way than NOX. Recently, we have shown that

caveolar structural disruption with methyl-β-cyclodextrin
uncouples eNOS and raises ROS levels in Wistar normotensive
rats and SHR aortas and mesenteric arteries (Potje et al.,
2019). Besides that, the number of caveolae is reduced in renal
hypertensive (2K-1C) and SHR rats as compared to normotensive
rats, which impairs acetylcholine-induced endothelium-
dependent relaxation and NO production (Rodrigues et al.,
2010; Potje et al., 2019). The smaller number of caveolae
could account for impaired NO donor-induced relaxation
in 2K-1C rat aortas as compared to normotensive rat aortas
(Rodrigues et al., 2007).

The literature contains controversial data about the role
that Cav-1 has in the determination of arterial pressure.
Whereas several authors do not report increased arterial pressure
in Cav-1 knockout mice as compared to control wild-type
(WT) mice, other authors describe lower arterial pressure
in Cav-1 knockout mice than in WT mice (for a review,
see Rahman and Sward, 2009). Cav-1 knockout mice present
increased circulating NO levels and vasodilation, but the arterial
pressure values measured by telemetry in awake mice and
WT mice are similar (Desjardins et al., 2008). As proposed
by Insel and Patel (2007), chronic Cav-1 deficiency could
be compensated by other vascular mechanisms, to maintain
the arterial pressure. Also, eNOS could be uncoupled in
hypertensive vessels.

In physiological conditions, arterial ECs submitted to
uniform flow (UF) release NO constantly (Noris et al., 1995).
As described by Eckardt et al. (2019), the pathogenesis of
atherosclerosis is associated with alterations in vascular
glycocalyx. Glycocalyx degradation stimulates lipid flux,
increasing lipid deposition in the arterial walls. This is
associated with reduced eNOS expression, which decreases
NO production and impairs vasodilation (Mitra et al.,
2017). In addition, in most cases of atherosclerosis, plaques
appear in the carotid bifurcation and aortic arch, which are
regions with DF (Gimbrone and Garcia-Cardeña, 2013),
thereby suggesting a relationship between hemodynamics and
atherosclerosis progression. Cav-1 expression is reduced in
DF as compared to UF, which indicates that Cav-1 regulation
depends on the flow (Harding et al., 2018). Furthermore, as
described by Harding et al. (2018), expression of active eNOS
phosphorylated at Ser1177 is 50% lower in DF aortic arch than in
UF abdominal aorta.

In this way, caveolae, Cav-1, and glycocalyx play an important
role in vascular homeostasis, contributing to adequate NO
production. However, atherosclerosis and hypertension impair
NO bioavailability due to lower eNOS expression, eNOS
inactivation, changes in Cav-1 expression or NOX4 activity, and
eNOS uncoupling, leading to deleterious ROS overproduction.

DISCUSSION

In this review, we discuss recent findings about the physiological
role of glycocalyx and caveolae, to maintenance of vascular tone,
as well as alterations in these structures that are associated with
the development of atherosclerosis and hypertension.
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Even the glycocalyx has been reported as the primary
sensor to mechano-transduction, a study demonstrated that
caveolae show a unique molecular topography (Schnitzer et al.,
1995) and may act as either mechano-sensors or transducers
(Uittenbogaard et al., 2000; Gratton et al., 2004). Therefore, it
could exist a relationship between glycocalyx and caveolae that
is sensitive to feel mechanical forces and start the mechano-
transduction process, and to promote an effective control
of vascular tone.

During the first 30 min of exposition to shear stress, aortic
and vein ECs (BAEC, bovine aortic EC; HUVEC, human
umbilical vein EC) presented an accumulation of heparan
sulfate and glypican-1 in the cell junctions. In contrast, there
were no movement from chondroitin sulfate, syndecan-1, and
Cav-1, indicating that these components and particularly the
caveolae structure are anchored sufficiently to resist against
initial exposure to shear stress (Zeng et al., 2013). On
the other hand, the chronic shear stress (6 h) stimulated
by changes in flow intensity in perfused lung microvessels
was able to increase fivefold Cav-1 expression and sixfold
caveolae density at the luminal surface compared with no-
flow control, which contributed to enhanced mechano-sensivity
in cultured ECs (Rizzo et al., 2003). Moreover, the glypican-
1 inhibition, but not syndecan-1, blocked eNOS activation
induced by shear stress in mammalian epithelial cells (Ebong
et al., 2014). These studies clarify the activation of glypican-
1-caveolae-eNOS-NO pathway under mechanical stimulus. In
this way, there is a relationship between glycocalyx and
caveolae, where they are exchanging information all the
time, and both are susceptible to reorganization underlie
different stimulus to regulate vascular tone and promote
vascular homeostasis.

Furthermore, the relationship between glycocalyx and
caveolae is not only observed during shear stress and
mechano-transduction. Catestatin is a peptide derived
from glycoprotein chromogranin A, which is expressed
in neuroendocrine and cardiac cells. Catestatin acts
in several organs/systems, including the cardiovascular
system. The catestatin was applied to BAECs, where it co-
localizes with heparan sulfate proteoglycans, promoting
endocytosis of caveolae and inducing Cav-1 internalization,
followed by eNOS phosphorylation at Serine1179 (Fornero
et al., 2014). Therefore, the glycocalyx and caveolae
collaborate with each other during the catestatin-dependent
eNOS-activation.

Glycocalyx contributes to maintaining vascular homeostasis,
and it protects the EC surface. Thus, its disruption and
shedding contribute to the development of cardiovascular
diseases. Therefore, preventing its degradation is important.
In a review, Becker et al. (2010) brought together the
pharmacological options to avoid glycocalyx shedding and
perturbation, which included hydrocortisone application, use
of antithrombin III, and infusion of human plasma albumin,
which seems to be the effective treatment. Apart from that, rat
fat pad ECs supplemented with heparan sulfate or sphingosine
1-phosphate regenerate glycocalyx (Mensah et al., 2017).
Another agent, sulodexide, which is a mixture of heparan

sulfate and dermatan sulfate (Coccheri and Mannello, 2013),
also reconstitutes glycocalyx in patients (Broekhuizen et al.,
2010). Nuclear magnetic resonance analysis demonstrated that
Krüppel-like Factor 2 (KLF2) inhibits endothelial glycolysis and
contributes to hexosamine and glucuronic acid biosynthesis
(Wang et al., 2020). In addition, inflammatory cytokines like
TNF-α, interleukin-1β, interleukin-6, and interleukin-8, as well
as ROS can activate heparanase, MMPs, and hyaluronidase,
which are enzymes that cleave chains of glycocalyx constituents
(Uchimido et al., 2019). Hence, antioxidant drugs and direct
inhibition of cytokines may be another option to prevent
glycocalyx degradation.

In the last 20 years, many studies have evidenced the
relevance of caveolins by using Cav-1 knockout mice with
cardiovascular abnormalities (Li et al., 2005; Lian et al., 2019).
As suggested by Forrester et al. (2017), Cav-1 may be the
therapeutic target to treat hypertension and atherosclerosis.
However, the role of Cav-1 is controversial in the literature.
It has dual action: Cav-1 impairs vascular functions in specific
cases and at the same time, it seems to be essential to maintain
vascular homeostasis. Hypertension induced by AngII in Cav-
1 knockout mice does not develop vascular remodeling, which
means that Cav-1 deletion attenuates vascular hypertrophy
and perivascular fibrosis (Forrester et al., 2017). On the other
hand, on the basis of the mouse hypoxia model, reduced
Cav-1 expression increases ROS production, and macrophages
isolated from Cav-1 knockout mice and Cav-1 knockdown
siRNA in human lung fibroblasts enhances ROS production.
The absence of Cav-1 negatively regulates NOX-mediated ROS
production (Chen et al., 2014). Additionally, Cav1-deficient
mice exhibit pulmonary hypertension, impairment of left
ventricular diastolic function, increased pulmonary vascular
remodeling, and right ventricle hypertrophy and decreased
contractility (Zhao et al., 2002). Furthermore, the lack of Cav-
1 improves NO-dependent vascular function and produces
higher levels of NO (Drab et al., 2001; Razani et al., 2001;
Murata et al., 2007), which suggests that Cav-1 impairs vascular
function and contributes to the development of cardiovascular
diseases. Notwithstanding, various studies have shown that
the presence of Cav-1 is mandatory for eNOS activation
(Chen et al., 2012).

Navarro et al. (2014) suggested gene or cell therapy as
antisense and siRNA approaches to target Cav-1 directly
or to modulate caveolar and lipid levels as an alternative
intervention either to increase or to decrease Cav-1 expression.
Moreover, activation of some GPCRs would allow to
control or to re-program Cav-1 expression levels to explore
therapeutic outcomes in cardiovascular diseases. Besides, the
pathway glypican-1/caveolin-1/eNOS/NO should be better
explored for better understanding of this path and possible
therapeutic treatments.

CONCLUSION

The structure and function of both glycocalyx and caveolae
are essential for maintenance of vascular homeostasis. Under
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pathological conditions, that are associated with ROS synthesis
and release, the glycocalyx and caveolae structure and function
could change, leading to impairment of their physiological
function, which are the hallmark of cardiovascular diseases (see
Figure 1).
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