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Fibroblast growth factor 21 (FGF21) is an atypical member of the FGF family, which 
functions as a powerful endocrine and paracrine regulator of glucose and lipid metabolism. 
In addition to liver and adipose tissue, recent studies have shown that FGF21 can also 
be produced in skeletal muscle. As the most abundant tissue in the human body, skeletal 
muscle has become increasingly recognized as a major site of metabolic activity and an 
important modulator of systemic metabolic homeostasis. The function and mechanism 
of action of muscle-derived FGF21 have recently gained attention due to the findings of 
considerably increased expression and secretion of FGF21 from skeletal muscle under 
certain pathological conditions. Recent reports regarding the ectopic expression of FGF21 
from skeletal muscle and its potential effects on the musculoskeletal system unfolds a 
new chapter in the story of FGF21. In this review, we summarize the current knowledge 
base of muscle-derived FGF21 and the possible functions of FGF21 on homeostasis of 
the musculoskeletal system with a focus on skeletal muscle and bone.
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INTRODUCTION

The fibroblast growth factor (FGF) family is a group of 22 related proteins grouped into 
six subfamilies, based on genetic and functional similarities, that have a wide variety of 
functions (Degirolamo et  al., 2016). FGF21, together with FGF19 (human ortholog of mouse 
FGF15) and FGF23, belongs to the FGF19 subfamily, which represents an atypical group of 
FGFs due to the lack of affinity for heparin sulfates that allows them to act in an endocrine 
manner to influence the enterohepatic circulation of bile, regulate glucose and lipid metabolism, 
and maintain phosphorus and calcium homeostasis (Dolegowska et  al., 2019). FGF15/19 is 
produced in the liver in response to the postprandial release of bile acids (Struik et  al., 
2019), fat-soluble vitamins A and D, and cholesterol (Schmidt et  al., 2010; Henkel et  al., 
2011) and primarily functions as a negative feedback mechanism to decrease bile acid synthesis 
(Holt et  al., 2003). In addition to controlling the enterohepatic circulation of bile acid, 
FGF15/19 also regulates systemic lipid and glucose metabolism via its action on the liver, 
adipose tissue, and central nervous system (Owen et  al., 2015; Izaguirre et  al., 2017). FGF23 
is mainly produced in osteocytes and functions as an important regulator of phosphate and 
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calcium metabolism through multiple organs, especially the 
kidney (Edmonston and Wolf, 2020). FGF21 is primarily 
produced by the liver and adipose tissue in response to various 
metabolic, oxidative, nutritional, hormonal, or environmental 
stimuli, which provides signaling to multiple tissues including 
the central nervous system (Bookout et al., 2013) and adipose 
tissue (Canto and Auwerx, 2012) to mediate carbohydrate 
and lipid metabolism (Kim and Lee, 2014; Markan et al., 2014).

Fibroblast growth factor 21 functions not only as a regulator 
of energy metabolism, but also as a stress hormone for 
maintenance of tissue homeostasis in an autocrine, paracrine, 
or endocrine fashion (Kim and Lee, 2014; Salminen et  al., 
2017a). Along these lines, FGF21 expression is induced by 
the integrated stress response (ISR) pathway, an evolutionarily 
conserved adaptive system of eukaryotic cells for the restoration 
of cellular homeostasis in response to diverse stimuli including 
aging, obesity, and nutritional stressors (Salminen et al., 2017a). 
The cellular context in addition to the character and intensity 
of the stressful precipitant dictate the outcome of the ISR 
(Pakos-Zebrucka et  al., 2016). As such, the beneficial or 
detrimental effects of FGF21 are dependent on an integration 
of variables, making this unique and controversial hormone 
functional therapeutically and as a biomarker of disease (Oost 
et al., 2020). Although complex in its function and regulation, 
the current integrative physiological role of FGF21 is as a 
key regulator in the adaptation to stress that can limit the 
progression of metabolic disease states with the goal of restoring 
homeostasis (Kim and Lee, 2014).

In addition to the hepatic and adipose production, recent 
studies have demonstrated that FGF21 can be expressed and 
secreted from other peripheral tissues, such as skeletal muscle 
(Keipert et al., 2014; Fisher and Maratos-Flier, 2016; Lehtonen 
et  al., 2016; Tezze et  al., 2019), thymus (Youm et  al., 2016), 
and pancreas (Nishimura et  al., 2000; Fisher and Maratos-
Flier, 2016). In humans, skeletal muscle is the most abundant 
tissue in the body, accounting for more than 40% of body 
weight in healthy individuals (Wang and Pessin, 2013), and 
has become increasingly recognized as a major site of 
metabolic activity and an important modulator of systemic 
metabolic homeostasis (Tezze et al., 2017). Growing evidence 
suggests that muscle-derived growth factors or cytokines, 
known as myokines (Pedersen and Febbraio, 2012), may 
be  responsible for the endocrine effects (Demontis et  al., 
2013). The function and mechanisms of action of muscle-
derived FGF21 have drawn attention due to the findings 
of considerable amounts of FGF21 expressed and secreted 
under certain pathologic conditions (Lehtonen et  al., 2016). 
Despite recent publications on muscle-derived FGF21 and 
its effect on the musculoskeletal system, significant knowledge 
gaps exist. The purpose of this review is to summarize the 
current knowledge base of muscle-derived FGF21 and the 
possible functions of FGF21 on homeostasis of the 
musculoskeletal system with a focus on skeletal muscle and 
bone. Knowledge of the ectopic expression of FGF21 from 
skeletal muscle and its potential effects on the musculoskeletal 
system has provided new avenues of investigation into the 
relevance of FGF21 to health and disease.

FGF21 AS A MYOKINE

Myokines are cytokines or peptides synthesized and released 
by muscle in response to muscular contraction or various 
stimuli (Pedersen et  al., 2007). Under basal conditions, the 
expression of FGF21 is predominantly from liver and adipose 
tissue (Nishimura et  al., 2000), however, the expression and 
secretion of FGF21 from skeletal muscle is significantly increased 
under certain conditions, such as mitochondrial dysfunction 
(Keipert et  al., 2014; Lehtonen et  al., 2016; Steele et  al., 2016; 
Khan et  al., 2017; Romanello et  al., 2019), muscular dystrophy 
(Lovadi et  al., 2017; Zhou et  al., 2018; Li et  al., 2020), and 
exercise (Ost et  al., 2016; Kruse et  al., 2017; Morville et  al., 
2018). Thus, in addition to being a hepatokine and adipokine, 
FGF21 is also well-established as a myokine (Pedersen and 
Febbraio, 2012; Itoh, 2014; Pereira et al., 2017). In this section, 
we  will discuss the current knowledge base regarding the 
identification of muscle-derived FGF21 and the mechanisms 
that drive its expression from skeletal muscle.

Mitochondrial Disorders
Fibroblast growth factor 21 is induced in and secreted from 
skeletal muscle in mitochondrial myopathies and insults of 
various stresses in skeletal muscle. Increased levels of FGF21 in 
the skeletal muscle and serum have been demonstrated in 
mouse models of familial progressive external ophthalmoplegia, 
a progressive adult-onset mitochondrial respiratory chain 
deficiency (Badenhorst et  al., 2015), skeletal muscle-specific 
ablation of autophage-related 7 (Kim et  al., 2013a), and 
skeletal muscle specific optic atrophy 1 (OPA1, a mitochondrial 
fusion protein) deficiency (Pereira et  al., 2017; Tezze et  al., 
2017; Rodriguez-Nuevo et  al., 2018), all of which result in 
mitochondrial dysfunction. Additionally, overexpression of 
uncoupling protein 1 (UCP-1), a key regulatory molecule 
of mitochondrial function results in the ectopic expression 
of FGF21 from skeletal muscle (Keipert et al., 2014). Impaired 
mitochondrial fat oxidation has also been demonstrated to 
induce the expression of FGF21  in skeletal muscle. The 
transgenic overexpression of perilipin 5 (a lipid droplet 
protein), which can increase lipid storage in the muscle 
and in turn affect its utilization as an energy source by 
skeletal muscle, stimulates the expression of FGF21 from 
skeletal muscle (Harris et  al., 2015). Inversely, perilipin 5 
deletion increases fatty acid oxidation and decreases FGF21 
production by muscle (Montgomery et  al., 2018). Skeletal 
muscle-specific deletion of carnitine palmitoyltransferase-1b, 
which transports long-chain fatty acid into mitochondria 
for beta-oxidation, also induces FGF21 expression from 
muscle (Vandanmagsar et  al., 2016).

In humans, serum FGF21 levels are significantly increased 
in patients with primary muscle-manifesting respiratory chain 
deficiencies, particularly those caused by pathogenic mutations 
in mitochondrial DNA (Suomalainen et  al., 2011; Crooks 
et  al., 2014) with the muscle believed to be  the primary 
contributory organ to circulating levels (Crooks et  al., 2014). 
Thus, FGF21 has recently gained attention as a potential 
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biomarker of mitochondrial diseases (Tyynismaa et  al., 2010; 
Suomalainen et  al., 2011; Lehtonen et  al., 2016, 2020) and 
could represent a potential target for the treatment of 
mitochondrial myopathies and muscle mitochondria dysfunction.

Muscular Dystrophy and Muscle 
Regeneration
Elevated serum FGF21 has been demonstrated in animal models 
of Duchenne muscular dystrophy (DMD; Zhou et  al., 2018; 
Li et al., 2020) and is primarily derived from dystrophic muscle 
(Li et  al., 2020). However, the mechanisms that drive the 
expression of FGF21 from dystrophic skeletal muscle is still 
largely unknown. Mitochondrial deficiency (Timpani et  al., 
2015), autophage dysfunction (De Palma et  al., 2012), and 
endoplasmic reticulum (ER) stressors (Pauly et  al., 2017) have 
been implicated as part of the pathogenesis of DMD and have 
also been shown to increase the expression of FGF21 from 
skeletal muscle (Zhou et al., 2018; Li et al., 2020). Furthermore, 
one of the hallmarks of DMD pathology is constant muscle 
degeneration and regeneration (Rosenberg et  al., 2015). 
Interestingly, FGF21 expression has been detected in C2C12 
cells during myogenic differentiation, and myoblast determination 
protein 1 (MyoD) is implicated as a major controller of FGF21 
gene transcription (Ribas et  al., 2014). Thus, it is possible that 
higher expression of FGF21  in DMD may be  due to increased 
myogenic differentiation. Further studies are needed to verify 
if elevated FGF21 is also present in human patients, to elucidate 
the mechanism behind the increased FGF21 from dystrophic 
muscle, and to determine whether downregulation of FGF21 
is accompanied by an improved muscle function.

Exercise
Multiple studies have shown that FGF21 is associated with 
exercise, however, the literature regarding the exercise-induced 
changes in FGF21  in the serum, liver, and skeletal muscle is 
inconsistent and contradictory. With regards to the serum 
levels, studies in mice and humans have shown an exercise-
induced increase (Cuevas-Ramos et al., 2012; Kim et al., 2013b), 
decrease (Yang et  al., 2011; Taniguchi et  al., 2016; Shabkhiz 
et  al., 2020), or no change in circulating FGF21 (Andersen 
et  al., 2014; Besse-Patin et  al., 2014). Additionally, the data 
regarding the impact of liver-derived FGF21 during exercise 
are contradictory. Hansen et  al. (2015, 2016) have shown an 
induction of hepatic FGF21 synthesis in response to exercise 
through the ATF4/PPARα mediated pathway, glucagon to insulin 
ratio, and free fatty acid levels. Furthermore, acute and long-
term endurance exercise at intensities between 50 and 80% 
VO2max in humans results in elevated serum levels of FGF21 
via increased hepatic expression of FGF21 but without increased 
expression in skeletal muscle or adipose tissue (Cuevas-Ramos 
et  al., 2012). Similarly, a mouse study has shown an exercise-
induced increase in hepatic FGF21 expression (Berglund et al., 
2011). However, other studies have shown no increase in hepatic 
FGF21 after exercise (Fletcher et  al., 2016; Loyd et  al., 2016). 
It is important to note that there are significant methodological 
issues that likely account for the inconsistencies. Firstly, the 

mice and humans studied were in various metabolic states, 
including exercise-trained vs. untrained, type 2 diabetes mellitus, 
obesity, and advanced age. Secondly, exercise protocols were 
not comparable with variations in the types, intensities, and 
duration of exercise. Finally, FGF21 expression could also 
be  affected by the participant’s diet and circadian rhythm (Yu 
et  al., 2011) in addition to the interspecies variability (Staiger 
et  al., 2017; Keuper et  al., 2020). Future studies should address 
and control for these important confounding variables.

Recent studies have raised the question of how significant 
the contribution of exercise-induced skeletal muscle-derived 
FGF21 is to bioactive and circulatory levels. Previous studies 
demonstrated that resistance training and higher intensity exercise 
increases FGF21 expression in skeletal muscle (Tanimura et  al., 
2016; Sabaratnam et  al., 2018), although to a lesser extent than 
the increase in hepatic expression. However, recent reports have 
challenged this notion. Parmar et  al. (2018) demonstrated no 
change in skeletal muscle-derived FGF21 between baseline and 
48 h following a single-leg maximal eccentric contraction exercise. 
Additionally, moderate-intensity continuous training has been 
recently shown to produce higher expression of FGF21 and 
β-klotho expression in the liver and muscle of the obese mice 
than high-intensity interval training (Xiong et  al., 2020). As 
mentioned, the contradictory data and inconsistencies in the 
literature can be  attributed to variation in study design and 
outcome measures. The source of FGF21 during exercise is likely 
dependent on the individual training level (i.e., athlete vs. 
untrained), intensity, type, and duration of the exercises along 
with the time points at which blood samples are collected. More 
studies are needed to understand how and to what degree 
exercise affects the expression of FGF21 from the liver and 
skeletal muscle. Overall, it is commonly recognized that the 
exercise influences the systemic, hepatic, and skeletal muscle-
derived FGF21, although the mechanism remains unknown.

Aging
Although early studies implicated FGF21 as a pro-longevity 
factor, recent research has questioned that notion. Extended 
lifespan has been observed in a transgenic mouse line, which 
expressed the FGF21 gene (Tg-FGF21) from liver under the 
control of an ApoE promoter (Inagaki et  al., 2008; Zhang 
et  al., 2012). There are also indications that hepatic 
overexpression of FGF21 can protect against age-related immune 
senescence (Youm et  al., 2016). Youm et  al. (2016) observed 
that thymic involution, a common hallmark of aging, was 
significantly delayed in Tg-FGF21 mice. FGF21 possesses 
many mechanistic properties that may impact the aging process. 
FGF21 stimulates adenosine monophosphate-activated protein 
kinase (AMPK) signaling (Chau et  al., 2010; Salminen et  al., 
2017c), an established pro-longevity pathway, both directly 
through the FGFR1/klotho complex and indirectly via induction 
of adiponectin expression (Lin et  al., 2013; Hui et  al., 2016). 
FGF21 can also facilitate crosstalk among hormonal systems 
such as the somatotropic axis and the hypothalamic-pituitary-
adrenal pathway (Salminen et al., 2017b). Additionally, FGF21 
has been proposed to regulate longevity through its ability 
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to promote interactions between energy metabolism and stress 
responses (Salminen et  al., 2017a,b).

Despite the aforementioned beneficial effects observed in 
experimental animal models, the notion that FGF21 is a 
pro-longevity factor has been challenged in the literature. Studies 
indicate that circulating levels of FGF21 are elevated in several 
metabolic diseases, such as obesity, type 2 diabetes, and fatty 
liver disease (Zhang et  al., 2008; Liu et  al., 2015). FGF21 has 
been shown to increase with age among healthy individuals 
independent of body composition, e.g., fat percent and body 
mass index (Hanks et  al., 2015). Interestingly, a recent study 
has found that circulating levels of FGF21 are associated with 
worsened health parameters and mortality in the elderly (Conte 
et  al., 2018). In these contexts, whether FGF21 is beneficial 
or detrimental is still debated. Moreover, the source organ or 
tissue of elevated circulating FGF21 during aging is still unclear.

It remains unknown what role skeletal muscle-derived FGF21 
plays in its potential health and life extension effects. Skeletal 
muscle has been emerging as an important mediator of systemic 
metabolic homeostasis (Baskin et  al., 2015) and myokines are 
likely, in part, responsible for the modulation of aging physiology 
(Demontis et  al., 2013). There is mounting evidence indicating 
that the elevated FGF21 expression from skeletal muscle under 
a variety of stresses can regulate whole-body metabolism as 
evidenced by preventing diet-induced obesity and insulin 
resistance (Kim et  al., 2013a; Jung et  al., 2015; Pereira et  al., 
2017). However, whether this ectopic expression of muscle-
derived FGF21 imparts a beneficial effect on longevity remains 
unknown. Interestingly, Tezze et  al. (2017) reported that the 
increased expression and secretion of FGF21 from skeletal 
muscle in a muscle-specific deletion of the OPA1 mouse model 
appears to be  responsible for an accelerated aging phenotype. 
In this study, increased expression of myokine FGF21 was 
correlated with a precocious systemic senescence phenotype 
and premature death, while inhibition of FGF21 greatly 
ameliorated the aging phenotype (Tezze et  al., 2017). Given 
that pro-longevity effects have mainly been observed in transgenic 
mice with hepatic FGF21 overexpression (Inagaki et  al., 2008; 
Zhang et  al., 2012; Youm et  al., 2016), this study highlights 
the possibility that the longevity effects of FGF21 may be  liver-
specific. Further studies using tissue-specific over/down the 
expression of FGF21 are needed to determine whether the 
longevity effects of FGF21 are origin tissue-specific and to 
gain mechanistic insights.

Nutrient Stress
A growing body of literature has demonstrated that nutritional 
stressors and dietary macronutrient composition resulting in 
metabolically unhealthy obesity can regulate FGF21 expression 
and signaling, serving to coordinate and restore metabolic 
homeostasis. In this section, we  highlight fasting and obesity 
as two ends of the nutritional spectrum with a focus what is 
known about the role of skeletal muscle-derived FGF21.

Fasting in mice and humans induces expression of hepatic 
FGF21 via the peroxisome proliferator-activated receptor α 
(PPARα) pathway (Inagaki et  al., 2007; Galman et  al., 2008). 
This PPARα-mediated FGF21 induction also increases fatty 

acid oxidation and ketogenesis in the setting of nutritional 
ketosis, suggesting that FGF21 functions in the adaptation 
to fasting or ketosis (Badman et  al., 2007). Whereas the 
induction in FGF21 occurs within 24 h of fasting in mice 
(Badman et  al., 2007), elevations in FGF21  in humans are 
not seen in short-term fasting regimens (Galman et  al., 2008; 
Dushay et  al., 2010; Fazeli et  al., 2015b; Nygaard et  al., 2018; 
Vinales et  al., 2019) but only appear after prolonged fasting 
of at least 7 days (Galman et  al., 2008; Fazeli et  al., 2015b). 
The higher metabolic rate of mice as compared with humans 
has been proposed as an explanation for this discrepancy. 
With regards to skeletal-muscle derived FGF21, in 24-h fasted 
WT mice, the levels of FGF21 mRNA were significantly 
increased (Oost et  al., 2019). However, the contribution of 
FGF21 as a myokine to the adaptive starvation response in 
mice or humans remains unknown.

Nutrient overload and obesity are also capable of influencing 
gene expression and circulating levels of FGF21  in mice and 
humans (Zhang et  al., 2008; Fisher et  al., 2010). Studies have 
demonstrated impaired FGF21 signaling in the liver, pancreas, 
and white adipose tissue of obese mice (Fisher et  al., 2010; 
So et  al., 2013), initially suggesting that obesity is an FGF21-
resistant state. However, the concept of FGF21 resistance 
remains incompletely understood as a result of the undetermined 
overlap and differences between the physiological and 
pharmacological effects of FGF21 in addition to its mechanisms 
of action on different tissues (Hale et  al., 2012; Markan, 
2018; Martinez-Garza et al., 2019). The current understanding 
is that the liver is the primary contributory organ of circulating 
FGF21in the setting of metabolically unhealthy obesity with 
unelucidated impact of FGF21 as a myokine to the systemic 
milieu (Keuper et  al., 2020).

Signaling Pathways That Drive the 
Expression of FGF21 From Skeletal Muscle
Different from being canonically produced by the liver and 
adipose tissue in response to starvation, which is largely 
controlled by PPARα (Badman et  al., 2007; Lundasen et  al., 
2007) and PPARγ (Muise et  al., 2008; Wang et  al., 2008), 
respectively, the ectopic expression of FGF21 from skeletal 
muscle is driven by various stress-related signaling pathways 
(Figure 1). Induction of activating transcription factor 4 (ATF4) 
as a master regulator of the ISR leads to FGF21 expression 
(Kim et  al., 2013a; Keipert et  al., 2014; Harris et  al., 2015; 
Miyake et  al., 2016) and appears to be  a common link among 
the ER stress produced in mitochondrial deficiency and impaired 
autophagy mouse models. In addition, insulin stimulates the 
expression of FGF21 from skeletal muscle via the 
Phosphoinositide 3-kinase/Protein kinase B (PI3K/Akt1) signaling 
pathway (Izumiya et  al., 2008; Vandanmagsar et  al., 2016). 
The p38 mitogen-APK (MAPK)/AFT2/MyoD signaling pathway 
is involved in FGF21 expression during myogenesis (Ribas 
et  al., 2014). AMPK/Akt1 signaling mainly drives FGF21 
expression from skeletal muscle when mitochondrial fat oxidation 
is inhibited (Vandanmagsar et  al., 2016). Finally, mammalian 
target of rapamycin (mTOR) signaling pathways have also been 
reported to be  involved in the regulation of FGF21 expression 
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from skeletal muscle. Both activation of mTOR complex 1 
(mTORC1; Guridi et  al., 2015; Tsai et  al., 2015) and mTORC2 
(Vandanmagsar et  al., 2016) have been reported to induce 
FGF21 expression from muscle.

THE EFFECTS OF FGF21 ON SKELETAL 
MUSCLE

Although skeletal muscle was historically not considered to 
be  a target tissue for FGF21 due to a lack of expression of 
β-klotho (Ito et  al., 2000; Suzuki et  al., 2008), recent studies 

have confirmed the expression of FGFRs and β-klotho in 
skeletal muscle albeit at very low levels (Jeon et  al., 2016; 
Benoit et  al., 2017; Tezze et  al., 2017), which has opened a 
new area of research. In this section, we  will discuss skeletal 
muscle as a novel target of FGF21 (Figure  2).

The Expression of FGFRs and β-Klotho in 
Skeletal Muscle
Several studies have confirmed the expression of FGFRs and 
β-klotho in the skeletal muscle of both mice and humans 
(Jeon et al., 2016; Vandanmagsar et al., 2016; Benoit et al., 2017; 

FIGURE 1  |  Schematic representation of known signaling pathways involved in FGF21 expression from skeletal muscle. Under physiological conditions, the 
expression of FGF21 from skeletal muscle is responsive to insulin stimulation via PI3K-Akt1 signaling pathway (yellow). FGF21 expression from skeletal muscle in 
various mitochondrial deficiency animal models is mainly driven by the activation of integrative stress response (green). Specifically, mitochondrial deficiency causes 
ER stresses, which leads to the phosphorylation of eIF2a via activation of PERK arm. Phosphorylation of elf2a increases ATF4, which subsequently augments 
transcription of the FGF21 gene. AMPK-Akt1 signaling pathway drives the FGF21 expression from skeletal muscle when mitochondrial fat oxidation is inhibited 
(orange). The p38 MAPK/AFT2/MyoD signaling pathway is involved in FGF21 expression during myogenesis (blue). Increased FGF21 expression from 4E-BP1 
activated skeletal muscle was discovered and the 4E-BP is one of the key downstream substrates of the mTORC1 complex (red). (Dotted line represents unknown 
mechanisms) ER: Endoplasmic reticulum; PI3K: Phosphoinositide 3-kinase; Akt: Protein kinase B; eIF: eukaryotic translation initiation factor; PERK: Protein kinase R 
(PKR)-like endoplasmic reticulum kinase; ATF: Activating transcription factor; AMPK: Adenosine monophosphate activated protein kinase; MAPK: Mitogen-activated 
protein kinases; MyoD: Myoblast determination protein 1; 4E-BP: eukaryotic translation initiation factor 4E-binding protein; mTORC: mammalian target of rapamycin; 
TSC: Tuberous sclerosis complex.
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Tezze et  al., 2017) in addition to isolated myotubes in culture 
(Lee et  al., 2012; Jeon et  al., 2016). Moreover, although at a 
very low level compared to liver, β-klotho expression appears 
to be  dependent on muscle fiber type, with significantly higher 
expression in soleus muscle (mainly slow oxidative muscle fiber) 
when compared to the gastrocnemius muscle (mainly fast glycolytic 
muscle fiber; Jeon et  al., 2016).

Expression levels of β-klotho in muscle correlate with 
increased circulating FGF21. Lee et  al. (2012) demonstrated 
a time-dependent increase in β-klotho expression in human 
skeletal muscle myotubes (HSMMs) after exposure to exogenous 
FGF21. Significantly elevated expression of β-klotho in muscle 
was also observed in a mouse model of mitochondrial fat 
oxidation impaired with higher induction of FGF21 
(Vandanmagsar et  al., 2016). Similarly, both FGF21 and 
β-klotho are induced in atrophic muscle after acute deletion 
of the mitochondrial fusion gene Opa1 (Tezze et  al., 2017). 
Accordingly, the specific inhibition of FGF21 in skeletal muscle 
is associated with downregulation of β-klotho (Tezze et  al., 
2017). Taken together, accumulating evidence demonstrates 
the coordinated regulation of FGF21 and β-klotho in skeletal 
muscle, which suggests their involvement in muscle homeostasis 
(Oost et  al., 2019), although the significance remains unclear.

Does FGF21 Affect Muscle Mass?
Few studies on FGF21 transgenic overexpression or supraphysiologic 
FGF21 administration in normal animal models have reported 
muscle phenotypes (Inagaki et al., 2008; Zhang et al., 2012; Youm 
et  al., 2016), partially due to the early notion that skeletal muscle 
is an unlikely target tissue for FGF21 (Ito et  al., 2000; Suzuki 
et al., 2008). Moreover, studies have explicitly reported the absence 
of noticeable signaling responses (FRS2 and ERK1/2 
phosphorylation; Fisher et  al., 2011) and effects on muscle mass 
or functionality of adult WT mice after exogenous administration 
of FGF21 (Benoit et  al., 2017).

However, studies based on diseased animal models have 
suggested that skeletal muscle derived-FGF21 may be  involved 
in the pathogenesis of muscle atrophy. Reduced muscle mass 
was found in UCP-1 transgenic mice (Keipert et  al., 2014), 
carnitine palmitoyltransferase-1b specific knock-out (KO) in 
skeletal muscle (Cpt1bm−/−) mice (Vandanmagsar et al., 2016), 
and global and skeletal muscle conditional Opa-1−/− mice 
(Tezze et  al., 2017), all of which have demonstrated elevated 
expression of FGF21 from skeletal muscle, as described above. 
Although marginal, inhibition of the elevated FGF21 expression 
from skeletal muscle in Opa-1−/− mice, via skeletal muscle-
specific FGF21 KO, demonstrated beneficial effects on muscle 

FIGURE 2  |  Direct and indirect effects of FGF21 on skeletal muscle and bone. By regulating fiber type distribution and fiber size, skeletal muscle mass might 
be impacted by FGF21. Under certain pathological conditions, FGF21 is a causative factor of muscle atrophy. The direct effects of FGF21 on skeletal muscle are 
enhancing glucose uptake and insulin sensitization. FGF21’s action on muscle glucose metabolism might also be indirectly mediated by adiponectin secreted from 
adipose tissue. By stimulation of adipogenesis in BMSCs by FGF21, bone formation is decreased. FGF21 may stimulate bone absorption directly by increasing 
osteoclastogenesis and indirectly via induction of IGFBP-1. In addition, by blunting the GH/IGF-1 signaling pathway in liver, bone growth is indirectly inhibited by 
FGF21. BMSCs: bone marrow-derived mesenchymal stem cells; GH/IGF-1: growth hormone/insulin-like growth factor-1; IGFBP-1: IGF-1 binding protein 1.
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mass (Tezze et  al., 2017), which suggests that FGF21 might 
be  a causative factor or mediator in the muscle atrophy 
observed in this mitochondrial deficiency animal model. 
Additionally, skeletal muscle-conditional FGF21 KO mice were 
significantly protected from muscle loss and weakness induced 
by fasting (Oost et  al., 2019). Moreover, in vivo FGF21 
overexpression from skeletal muscle via direct virus injections 
induces elevated mitophagy and results in muscle loss (Oost 
et al., 2019). Taken together, it is plausible that muscle-derived 
FGF21 plays a permissive role or mediates muscle loss in 
specific pathological conditions that can cause muscle atrophy. 
However, whether the increased expression of skeletal muscle-
derived FGF21 is a causative factor of muscle atrophy or an 
adaptive mechanism is still unclear. Moreover, whether the 
effects of FGF21 on muscle atrophy is via binding FGFRs 
and β-klotho and the downstream signaling mechanisms are 
still unknown. To answer those questions, additional models 
of knock-down or KO of β-klotho expression in skeletal 
muscle are needed (Jensen-Cody et  al., 2020).

FGF21 in Skeletal Muscle Energy 
Metabolism
Fibroblast growth factor 21 is a well-established regulator of 
carbohydrate and lipid metabolism, which mediates the adaptive 
starvation response primarily via its action on white and 
brown adipose tissue and liver (Fisher and Maratos-Flier, 
2016; Staiger et al., 2017; Dolegowska et al., 2019). The action 
of FGF21 on adipocytes results in increased insulin sensitivity, 
glucose uptake, fatty acid storage, and oxidative capacity (Chau 
et  al., 2010; Staiger et  al., 2017; BonDurant and Potthoff, 
2018), while its action on liver results in induction of hepatic 
fatty acid oxidation, ketogenesis, and gluconeogenesis, as well 
as the suppression of de novo lipogenesis (Fisher and Maratos-
Flier, 2016; Staiger et  al., 2017). The results of FGF21-class 
molecule pharmacotherapy in mice, non-human primates, and 
humans have been critically reviewed (Sonoda et  al., 2017; 
BonDurant and Potthoff, 2018) and include decreased body 
weight, blood glucose levels, insulin, triglycerides, total 
cholesterol, and total free fatty acids. Given that skeletal 
muscle is responsible for 70–80% of insulin-stimulated glucose 
uptake and a major determinant of glucose and lipid metabolism 
(Hommelberg et  al., 2011; Lee et  al., 2012; Bandet et  al., 
2019), understanding skeletal muscle as a potential target of 
FGF21 and the role of FGF21 in substrate metabolism remain 
important, unsolved questions.

The direct effect of FGF21 on skeletal muscle myotubes in 
enhancing glucose uptake has been demonstrated in several 
in vitro studies. Mashili et  al. (2011) provided evidence that 
FGF21, though at a supraphysiologic dosage of 1 ug/ml, had 
a direct effect on enhancing skeletal muscle glucose uptake 
in cultured HSMMs via increasing mRNA/protein expression 
of glucose transporter-1 (GLUT1) but not expression or cell 
surface translocation of GLUT4. Others have found that FGF21 
(100 or 200 ng/ml) administration increases glucose uptake in 
palmitate-induced insulin resistant HSMMs (Lee et  al., 2012). 
GLUT1 and GLUT4 loss-of-function data suggest that FGF21 

increases glucose uptake in HSMMs via not only GLUT1 but 
also GLUT4 (Lee et al., 2012). Additionally, studies have reported 
that in myotubes isolated from a carnitine palmitoyltransferase-1b 
skeletal muscle conditional KO mouse, FGF21 acts in a paracrine 
manner to increase basal glucose uptake via GLUT1 
(Vandanmagsar et  al., 2016). Thus, it appears that FGF21 acts 
on skeletal muscle to increase glucose uptake via GLUT1 (and 
possibly GLUT4), at least in supraphysiologic concentrations. 
The importance of FGF21 on skeletal muscle glucose uptake 
under physiological conditions is still unknown.

Studies have shown that FGF21 pre-exposure increases 
insulin-stimulated glucose uptake in isolated mouse soleus and 
extensor digitorum longus (EDL) muscles, which suggests an 
insulin-sensitizing effect (Mashili et  al., 2011). Others 
demonstrated that FGF21 treatment restored palmitate-inhibited 
insulin signaling in HSMMs to improve the insulin sensitivity 
via phosphorylation of insulin receptor substrate 1 (IRS-1) 
and Akt (Lee et  al., 2012). Furthermore, FGF21 can improve 
downstream insulin signaling in mouse skeletal muscle tissue 
via repression mTORC1, leading to subsequent repression of 
IRS1 phosphorylation at Ser636/639 (Vandanmagsar et  al., 
2016). Thus, it appears that insulin sensitization represents the 
primary mechanism underlying the glycemic action of FGF21.

Although several studies have demonstrated that FGF21 can 
regulate primary myotube glucose uptake in vitro, there is a 
dearth of research regarding the in vivo bioactivity of FGF21 
on skeletal muscle glucose metabolism. FGF21 was found to 
have no impact on basal glucose uptake in isolated mouse 
EDL and soleus muscles (Mashili et al., 2011). In leptin-deficient 
(ob/ob) mice, a bolus injection of FGF21 increased GLUT1 
mRNA in white adipose tissue, but not in skeletal muscle, 
liver, kidney, or brain (Kharitonenkov et  al., 2005). Further 
in vivo studies are needed to validate the importance of 
circulating FGF21 on skeletal muscle glucose metabolism both 
in physiologic and pathologic conditions. In addition to its 
importance in the regulation of glucose metabolism, skeletal 
muscle also regulates lipid and ketone body metabolism (Lipina 
and Hundal, 2017; Sherrier and Li, 2019). However, the effects 
of FGF21 on lipid and ketone body metabolism in skeletal 
muscles are still largely unknown.

The molecular mechanism(s) of FGF21 on glucose and lipid 
metabolism in skeletal muscle remain unknown. Whether the 
effect of FGF21 is mediated via FGFRs/β-klotho, and which 
FGFR(s) play a major role has not been examined. Most studies 
have used whole muscle lysate for detection of β-klotho 
expression. Thus far, no convincing spatial histological studies 
have demonstrated the expression of β-klotho at a cellular 
level in skeletal muscle, which contains multiple cell types in 
addition to myofibers. Moreover, studies in mice lacking β-klotho 
have revealed the possibility of the existence of klotho-
independent FGF21 signaling pathways whereas yet undefined 
co-factors are implicated (Tomiyama et al., 2010). Interestingly, 
a recent study reported that the metabolic effects on glucose 
homeostasis and insulin sensitivity of FGF21 were partially 
abrogated in adiponectin KO mice (Lin et  al., 2013). This is 
exciting as adipocytes are a well-known target of FGF21 and 
intramuscular adipose tissue (IMAT) has emerged as an important 
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player in insulin-resistant associated diseases; high levels of 
IMAT are associated with insulin resistance and loss of muscle 
strength (Muoio and Newgard, 2008; Muoio, 2010; Coen and 
Goodpaster, 2012; Addison et  al., 2014). It is reasonable to 
speculate that this muscle/fat crosstalk via FGF21/adiponectin 
may play an important role in regulating the energy homeostasis 
in skeletal muscle. Furthermore, these data highlight the 
possibility that FGF21’s action on muscle metabolism might 
also be  indirectly mediated by other factors.

Skeletal muscle is comprised of different fiber types, the 
composition and distribution of which is established during 
embryonic development but later can be  modulated by neural 
and hormonal factors in addition to exercise (Schiaffino and 
Reggiani, 2011; Yan et  al., 2011). Mature skeletal muscle is 
heterogeneous and composed of slow and fast-twitch fiber 
types, based on expression of distinct myosin heavy chain 
isoforms and different metabolic capabilities (Baskin et  al., 
2015; Talbot and Maves, 2016). Oost et  al. (2019) did not 
find any difference in terms of fiber type distribution, fiber 
size, or muscle force in skeletal muscle-specific FGF21 KO 
mice, which suggests that skeletal muscle-derived FGF21 does 
not contribute to embryonic myogenesis and muscle fiber 
determination under normal conditions. However, studies have 
demonstrated that myoblasts express considerable amounts of 
FGF21 during myogenic differentiation (Ribas et  al., 2014; Liu 
et  al., 2017). Myoblast-derived FGF21 facilitates the switching 
of the muscle fiber type from anaerobic to aerobic myofibers 
via stimulation of the FGF21-sirtuin type 1 (SIRT1)-AMPK-
PPAR g coactivator 1a (PGC1α) axis in vitro on C2C12 cells 
and in vivo on skeletal muscle-specific FGF21 transgenic mice 
(Liu et  al., 2017). It is therefore of interest to know if muscle-
derived FGF21 plays a role in muscle fiber type switching 
under pathological conditions that are accompanied by elevated 
FGF21 expression from skeletal muscle, and whether the resulting 
muscle fiber type is an adaptive or causative response to the 
primary pathology.

Mitochondria are critical for cellular energy generation 
and biosynthetic pathways and regulation of their function 
is paramount for muscle physiology and metabolism (Hood 
et  al., 2019). Multiple studies have demonstrated enhanced 
mitochondrial biogenesis and oxidative functions in both liver 
and adipose tissue under the treatment of FGF21. Specifically, 
FGF21 regulates mitochondrial oxidative function in adipocytes 
via the AMPK-SIRT1-PGC1α pathway (Chau et  al., 2010). 
In liver, pathways involved in activation of PGC1α were also 
observed in FGF21 transgenic mice and WT mice treated 
with FGF21 (Potthoff et al., 2009; Fisher et al., 2011). However, 
if a similar signaling pathway is also present in skeletal muscle 
remains unknown. Since FGF21 is induced in and secreted 
from skeletal muscle in mitochondrial myopathies and various 
mitochondrial stressors, it might also act as an adaptive 
mediator of the muscle mitochondrial stress via activation 
of pathways that control mitochondrial function (Oost et  al., 
2019, 2020; Klaus and Ost, 2020). It would be  of interest to 
determine whether FGF21 also regulates mitochondrial 
biogenesis and function in muscle via activation of AMPK, 
SIRT1, and PGC1α.

THE EFFECTS OF FGF21 ON BONE

Whether FGF21 has a positive or detrimental effect on bone 
in mice and humans remains unclear. Studies have shown 
that FGF21-Tg mice and mice administrated recombinant 
FGF21 have reduced bone mass (Wei et  al., 2012; Zhang 
et  al., 2012). Increased serum FGF21 has also been reported 
to negatively affect bone mineral density (BMD) during 
lactation in C57BL/6 mice (Bornstein et  al., 2014). Moreover, 
in a mouse model of DMD, which shows elevated circulating 
skeletal muscle-derived FGF21 (Zhou et  al., 2018), blockage 
of FGF21’s action using a neutralization antibody, resulted 
in significantly increased bone mass and improved quality 
of bone tissues (Li et  al., 2020). However, conflicting data 
exists as others have reported no bone loss observed in FGF21 
KO mice nor in recombinant FGF21 treated mice (Li et  al., 
2017). Additionally, no significant bone loss was detected in 
AAV8-hAAT-FGF-21 genetically engineered high fat diet-
induced obese mice (Jimenez et  al., 2018).

Inconsistencies are also found in human studies. Plasma 
FGF21 concentrations have been shown to negatively correlate 
with femoral neck BMD in a Han Chinese adult population 
(Hao et  al., 2018) and in healthy aged adults (Lee et  al., 
2020). Serum FGF21 levels were found to be  associated with 
worsened radial trabecular bone microarchitecture and 
decreased radial bone strength in women with anorexia nervosa 
(Fazeli et al., 2015a). Elevated FGF21 levels are also associated 
with poor bone health in HIV-1 infected patients (Gallego-
Escuredo et al., 2017). Obese humans and non-human primates 
administered a long-acting FGF21 analog demonstrated 
increased plasma biomarkers of bone resorption and decreased 
bone formation, which indicates bone loss (Talukdar et  al., 
2016; Kim et  al., 2017). On the other hand, others have 
reported no clear correlation of serum FGF21 with BMD 
and fragility fractures (Choi et  al., 2018; Hu et  al., 2018). 
Furthermore, an independent positive association between 
plasma FGF21 levels and BMD in 40 healthy young women 
has also been reported (Lee et  al., 2013). The inconsistency 
may be  due to the heterogeneous populations and disease 
states; the effects of FGF21 on bone health are likely duration 
and context-dependent. Future studies should consider the 
influence of underlying diseases.

Although the exact mechanism of how FGF21 regulates 
bone homeostasis is still not clear, several direct and indirect 
mechanisms have been proposed (Figure  2). The expression 
of FGFRs/β-klotho in bone tissue has not been fully established, 
however, a recent study on dystrophic mice demonstrated that 
β-klotho and FGFR expression is significantly induced in 
mature osteoclasts (Li et  al., 2020). These data indicate that 
bone is a direct target of FGF21 and FGF21 may affect 
osteoclastogenesis in DMD. In addition to the direct effects, 
accumulating evidence also suggests indirect effects of FGF21 
on bone. Studies have shown direct stimulation of adipogenesis 
in bone marrow-derived mesenchymal stem cells by FGF21 
(Wei et al., 2012; Li et al., 2020). FGF21 has close connections 
with the somatotropic axis, which plays an important role in 
protein synthesis and bone homeostasis (Milman et  al., 2016). 
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Transgenic mice overexpressing FGF21 showed evidence of 
growth hormone (GH) resistance in the liver, which significantly 
reduced the level of serum insulin-like growth factor-1 (IGF-1; 
Inagaki et al., 2008; Kubicky et al., 2012). FGF21 blunts hepatic 
GH signaling via inhibition of STAT5 signaling, increased 
expression of IGF-1 binding protein 1 (IGFBP-1), and 
increased expression of suppressor of cytokine signaling 2 
(SOCS2; Inagaki et  al., 2008). In addition, FGF21 inhibits 
GH’s action on proliferation and differentiation of 
chondrocytes directly at the growth plate (Wu et  al., 2012, 
2013). Moreover, Wei et  al. (2012) reported that FGF21 
promotes IGFBP-1 release from liver, which consequently 
enhanced osteoclastogenesis and provoked bone resorption. 
Interestingly, elevated IGFBP-1 was not observed in DMD 
animal models (Li et  al., 2020) and in aged populations 
(Lee et al., 2020), both of which demonstrate elevated serum 
FGF21 and pathologic bone changes.

Although the clinical data are still controversial and further 
studies are needed to address the molecular mechanisms of 
FGF-21’s action on bone, the current literature suggests adverse 
effects of FGF21 on bones, which needs to be carefully addressed 
in future human studies.

DISCREPANCIES BETWEEN MICE AND 
HUMANS

An abundance of data has been generated in mice and revealed 
several mechanistic findings with regards to FGF21 expression, 
regulation, and function. However, as literature regarding FGF21 
analysis in humans has expanded, differences between mice 
and humans have been identified and recently reviewed (Staiger 
et  al., 2017; Keuper et  al., 2020). The discrepancies include 
circulating FGF21 levels, tissue-specific expression and regulation, 
and its role in glucose and lipid metabolism in addition to 
metabolic diseases.

Serum levels of FGF21 not only vary significantly between 
mice and humans but within the species themselves. In 
mice, serum FGF21 concentrations in chow-fed mice range 
from 0.1 to 3,000 ng/ml (Badman et  al., 2007; Fisher et  al., 
2010; Dutchak et  al., 2012; Murata et  al., 2013; Tezze et  al., 
2017; Jimenez et  al., 2018). Further complicating data 
interpretation, variations in mouse serum FGF21 are 
dependent on the strain tested, animal age, phase of the 
circadian cycle, and the assay used to quantify serum levels 
(Tezze et  al., 2019). Wide variability also exists in healthy 
humans with published serum concentrations of FGF21 
ranging from 21 to 7,100 pg/ml (Galman et  al., 2008; 
Zhang et  al., 2008; Li et  al., 2009; Dushay et  al., 2010; 
Kralisch et  al., 2013; Fazeli et  al., 2015b).

While FGF21 gene expression in murine models occurs 
in the liver, pancreas, adipose tissue, skeletal muscle, and 
other tissues in the basal state (Nishimura et  al., 2000; Itoh, 
2014; Petryszak et  al., 2016), our current understanding is 
that the liver expresses and releases into the circulation the 
majority of FGF21  in healthy humans (Dushay et  al., 2010; 
Petryszak et al., 2016; Keuper et al., 2020). However, it should 

be  noted that most in vivo human data are correlational in 
nature, lacking mechanistic insights.

With regards to the regulation of FGF21  in mice and humans, 
protein restriction, fructose ingestion, exercise, and circadian clock 
machinery all induce hepatic expression and elevated circulating 
levels of FGF21  in both species (Staiger et  al., 2017). Similarities 
also exist with the stimulation of FGF21 from skeletal muscle 
during conditions of muscle-specific mitochondrial disease, certain 
types of exercise, and hyperinsulinemia in mice and humans 
(Hojman et  al., 2009; Crooks et  al., 2014; Emanuelli et  al., 2014; 
Tanimura et al., 2016; Staiger et al., 2017). As previously discussed, 
inter-species discrepancies exist with regards to the impact of 
nutritional stressors on circulating and muscle-derived FGF21. 
Nutrient deprivation/fasting and consumption of ketogenic diets 
result in a rapid rise of FGF21 serum levels in mice (Badman 
et al., 2007), however, elevations of FGF21 are only seen in humans 
after prolonged fasting period of at least 7 days (Galman et  al., 
2008; Fazeli et al., 2015b). Moreover, differences also exist between 
species in response to hormone inducers. In mouse models, studies 
have shown an increase in hepatic-derived serum FGF21 levels 
in response to GH administration (Chen et al., 2011) and thyroid 
hormone (Adams et al., 2010; Domouzoglou et al., 2014), however, 
no acute effect on serum FGF21 was seen in humans in response 
to GH or thyroid hormone administration (Lundberg et al., 2013; 
Bonde et  al., 2014).

Although caution should be taken when translating murine 
study results to humans, mouse models of FGF21 expression 
serve an invaluable role in elucidating the complex interplay 
of this hormone in human physiology and disease.

CONCLUSION AND FUTURE 
PERSPECTIVES

Our understanding of the role of FGF21 in biological systems 
has advanced enormously over the last two decades. Although 
the main function of FGF21 as a starvation-induced hormone 
secreted from the liver has been known and broadly understood 
for some time, the ectopic expression and secretion of FGF21 
from skeletal muscle and its potential role in a range of 
mitochondrial and muscular disorders is increasingly 
recognized. There is compelling evidence to indicate novel 
effects of FGF21 on skeletal muscle and bone, however, many 
outstanding questions remain. (1) Although many studies 
have observed and reported the phenotypic changes in skeletal 
muscle and bone in the presence of elevated FGF21, compared 
to our understanding of the function of FGF21 on liver 
and adipose tissue, the mechanism(s) of its action on skeletal 
muscle and bone is still largely unknown. More work is 
required to elucidate the cellular and molecular mechanisms 
of muscle-derived FGF21 and to understand its regulation 
and function at the whole-body level. (2) Clinical validation 
of FGF21 as a biomarker of disease and potential therapeutic 
target in mitochondrial myopathies and DMD is still needed. 
(3) With the unraveling of the cross-interactions with other 
signaling pathways, such as AMPK-SIRT1 (Chau et al., 2010), 
GH (Inagaki et al., 2008; Wu et al., 2012), and glucocorticoids 
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(Patel et  al., 2015), the effects of muscle-derived FGF21 
might be pathological context-dependent. Our understanding 
of the pathologic role and even the pharmacologic effects 
of FGF21 need to be  more disease/condition specific. (4) 
Additionally, although some mechanisms have been proposed, 
the exact cellular and molecular mechanisms of FGF21 
secretion from skeletal muscle under different pathological 
conditions and the target cells within the musculoskeletal 
system, specifically skeletal muscle and bone, are still largely 
unknown. A promising approach towards understanding the 
mechanism of FGF21 includes continued development of 
tissue-specific FGF21 and/or β-klotho receptor/KO animal 
models. Furthermore, tissue-specific receptor and/or KO 
animal models based on specific disease conditions will also 
be  needed to understand the role of FGF21 under a specific 
pathological context.
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