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Cerebrovascular reactivity (CVR) magnetic resonance imaging (MRI) probes cerebral

haemodynamic changes in response to a vasodilatory stimulus. CVR closely relates to the

health of the vasculature and is therefore a key parameter for studying cerebrovascular

diseases such as stroke, small vessel disease and dementias. MRI allows in vivo

measurement of CVR but several different methods have been presented in the

literature, differing in pulse sequence, hardware requirements, stimulus and image

processing technique. We systematically reviewed publications measuring CVR using

MRI up to June 2020, identifying 235 relevant papers. We summarised the acquisition

methods, experimental parameters, hardware and CVR quantification approaches used,

clinical populations investigated, and corresponding summary CVR measures. CVR was

investigated in many pathologies such as steno-occlusive diseases, dementia and small

vessel disease and is generally lower in patients than in healthy controls. Blood oxygen

level dependent (BOLD) acquisitions with fixed inspired CO2 gas or end-tidal CO2 forcing

stimulus are the most commonly used methods. General linear modelling of the MRI

signal with end-tidal CO2 as the regressor is themost frequently usedmethod to compute

CVR. Our survey of CVRmeasurement approaches and applications will help researchers

to identify good practice and provide objective information to inform the development of

future consensus recommendations.

Keywords: cerebrovascular reactivity, magnetic resonance imaging, blood oxygen-level dependent, arterial spin

labelling MRI, Hypercapnia (CO(2)) inhalation, systematic review

INTRODUCTION

Cerebrovascular reactivity (CVR) reflects the ability of the blood vessels to dilate in order to match
tissue blood supply to increased demand and can be investigated by measuring the change in
cerebral blood flow (CBF) or cerebral blood volume (CBV) that vasodilation induces. It is a valuable
tool for assessing vascular health in pathologies, including steno-occlusive diseases (Mandell et al.,
2008b), while more subtle CVR impairments have been found in Alzheimer’s disease (Chen, 2018)
and cerebral small vessel disease (Wardlaw et al., 2019). The measurement of CVR relies on three
key elements: the vasodilatory stimulus, the signal acquisition and the processing method.
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Vasodilatory Stimulus
Vasodilation occurs naturally as a mechanism of CBF
auto-regulation, but can also be triggered by exogenous stimuli
inducing extracellular and intracellular acidosis. The resulting
decrease in pH relaxes smooth muscle cells lining the arteries and
arterioles, thereby increasing their diameter. Common stimuli
include changes in arterial CO2 partial pressure (PaCO2) induced
by voluntary modulations of the breathing pattern, including
breath-holding, hyperventilation and paced breathing (Petersson
and Glenny, 2014; Urback et al., 2017; Liu et al., 2019) or by
inhalation of CO2-enriched gas (Fierstra et al., 2013; Liu et al.,
2019). As PaCO2 cannot easily be measured in vivo, end-tidal
CO2 (EtCO2), the most recent maximal exhaled CO2 partial
pressure, is often used as a surrogate and can be measured by
recording the CO2 level in the exhaled gas using a gas monitor.
Several approaches exist to manipulate PaCO2: inhalation
of gas with fixed CO2 concentration (e.g., CO2-enriched air
or carbogen), rebreathing the exhaled gas, EtCO2 targeting
manually or using a computer-controlled device (Fierstra et al.,
2013). Vasodilation can be induced without modulating the
composition of the inhaled gas or breathing pattern by injection
of acetazolamide (ACZ), a carbonic anhydrase inhibitor that
causes acidosis (Vagal et al., 2009).

Signal Acquisition
Several imaging methods can assess haemodynamic changes
induced by the vasodilatory stimulus. Positron emission
tomography (PET), single-photon emission computed
tomography (SPECT) (Ogasawara et al., 2003) and computed
tomography (CT) (Marion and Gerrit, 1991) have all been
used to measure CVR, but involve ionising radiation and have
low temporal resolution. Transcranial Doppler ultrasound is a
practical alternative, but has a limited field of view that allows
blood velocity measurements only in parts of single large vessels,
which do not necessarily reflect local changes in tissue blood
supply (Purkayastha and Farzaneh, 2012; McDonnell et al.,
2013). Magnetic resonance imaging (MRI) is a non-invasive,
non-ionising technique which allows CVR mapping using
contrasts related to CBF and/or CBV. Arterial spin-labelling
(ASL) and phase-contrast (PC) MRI measure CBF in tissue
and large vessels, respectively (Valdueza et al., 1997; Noth et al.,
2008), while vascular space occupancy (VASO) MRI measures
CBV (Donahue et al., 2009). Dynamic susceptibility contrast
(DSC)-MRI measures both CBF and CBV (Taneja et al., 2019) by
monitoring the T2 or T2

∗-weighted signal following intravenous
injection of a gadolinium-based contrast agent. Blood Oxygen
Level Dependent (BOLD) imaging, using a T2 or T2

∗-weighted
sequence, can also measure CVR due to its sensitivity to a
combination of CBF and CBV.

Processing Method
The signal change due to the vasodilatory stimulus must be
converted into a quantitative or semi-quantitative measurement
of CVR using one of several methods. Pre-vs.-post-stimulus
subtraction of the MRI signal relies on the computation of
the absolute or relative signal difference before and after the

stimulus has been applied (Donahue et al., 2013; Wu et al.,
2017). Often, the pre- and post-values are calculated by taking
the average of the MRI volumes acquired during each period
respectively, discarding volumes that are acquired during the
transition period. Linear regression is a method that investigates
the linear relationship between the dependent variable (in this
case the MRI signal or derived CBF) and independent variables
(e.g., EtCO2, to reflect the vasodilatory stimulus; time, to model
a linear signal drift) (Thrippleton et al., 2018; Liu et al.,
2019), allowing the MRI time course to be modelled using
multiple predictors simultaneously. Cross-correlation quantifies
the similarity between two signals (e.g., the MRI signal and
EtCO2) as a function of their relative time delay (Donahue et al.,
2016) and has been used as a measure of CVR. Non-linear
fitting involves modelling theMRI signal as a non-linear function
(Ziyeh et al., 2005; Germuska et al., 2019). It requires some initial
estimate of the CVR and other parameters such as CVR delay,
and can bemore challenging to implement than linear regression,
but has the advantage that any models can be used to fit the MRI
signal. Some models (e.g., calibrated fMRI models) also allow
quantitative estimation of CVR and other parameters that can be
of interest such as cerebral metabolic rate of oxygen (CMRO2).
Frequency-based analysis includes transfer function (Duffin et al.,
2015) and Fourier (Blockley et al., 2011) analyses. In both
methods, the signals of interest (e.g., the MRI signal and EtCO2)
are transformed into the frequency domain. The magnitude of
the signal at the stimulus frequency is then defined as the CVR.
Finally, the standard deviation of the MRI signal (Kannurpatti
et al., 2014; Jahanian et al., 2017) can be computed as a metric of
CBF change due to natural vasodilation and vasoconstriction.

Aims of the Review
Since many combinations of the above stimuli, imaging methods
and analysis techniques are possible, there are potentially many
different ways to measure CVR in-vivo, resulting in a high
degree of methodological diversity in the literature. Previous
reviews described common CVR-MRI experiments (Fierstra
et al., 2013; Pillai and Mikulis, 2015; Moreton et al., 2016;
Urback et al., 2017; Liu et al., 2019) or CVR data analysis (Fisher
et al., 2018). However, as far as we are aware, there are no
systematic reviews detailing the breadth of CVR-MRI acquisition
techniques, processing methods and applications that have been
presented and used in the literature.

We conducted a systematic literature review of papers
reporting the use of CVR-MRI techniques. We present an
overview of the different aspects of the CVR-MRI experiment
reported and applied in the literature, describing the most
common methods and clinical research applications. We
classified and systematically analysed reports of the MRI
techniques, vasodilatory stimuli, data processing methods and
study populations. Based on these findings we identified recent
practises, trends, technical findings and evidence from clinical
studies to inform future application and standardisation of CVR-
MRI protocols.
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MATERIALS AND METHODS

Search Strategy
We systematically reviewed the EMBASE and MEDLINE
databases from 1980, until June 2020 using Ovid. The search
strategy combined terms relating to: “Cerebrovascular reactivity,”
“MRI,” “BOLD,” “ASL,” “PC,” “hypercapnia,” “acetazolamide,” and
“CO2.” We manually added relevant articles from the authors’
libraries. The search was not constrained to English-language
literature. Full details of the search strategy are provided as
Supplementary Information.

Eligibility Criteria
We included all studies that investigated changes in cerebral
blood flow or cerebral blood volume using MRI due to
vasodilation or vasoconstriction in humans. We excluded
reviews, conference abstracts, editors’ notes, and case reports
(single-subject studies focussed on methodological aspects of
CVRwere included).We removed studies that did not investigate
induced vasodilation in the brain or used another imaging
modality (e.g., CT, PET) to measure CVR. Studies that measured
the change in the BOLD signal in response to a functional
task and hypercapnia but did not compute a CVR metric were
also excluded.

Data Extraction
One author (E.S.) screened the titles and abstracts of all
potentially eligible publications to exclude duplicates and assess
eligibility against the inclusion criteria before reading the full text
of the remaining articles to determine eligibility. Eligibility and
data extraction were discussed with other authors where queries
around inclusion or exclusion, or data extraction arose.

We extracted population characteristics, including pathology,
sample size, age, and gender. We recorded MRI acquisition
parameters including magnetic field strength, type of pulse
sequence and sequence parameters (e.g., TR, TE, spatial
resolution, field-of-view). We recorded the type of vasodilatory
stimulus, measurement of EtCO2 and/or end-tidal O2 (EtO2),
stimulus paradigm and, where available, information on
tolerability, number and reason for any excluded or failed scans.
Finally, we extracted information on the pre-processing steps,
delay correction/computation methods and CVR processing
methods applied, reported grey and white matter CVR values in
healthy volunteers and relevant findings.

RESULTS

Search Results
We identified 732 articles, 176 of which were removed as
duplicates (Figure 1). Of the remaining 556 papers, 317 were
excluded on review of the title and abstract due to a lack
of analysable data or insufficient detail [n = 192: conference
abstracts (n = 131), reviews (n = 34), and case reports and notes
to the editor (n = 27)], inaccessibility (n = 1), only reporting
rodent studies (n = 2), using other modalities (e.g., PET, TCD,
CT, SPECT) (n = 71) and not measuring CVR (n = 51). After
full text review an additional 14 papers were removed because

they used other imaging modalities to measure CVR (n = 6)
or did not measure CVR (n = 8). Additionally, 24 articles were
added from the authors’ libraries. We included 235 papers in the
review. Summary data extracted from each study is included in
the Supplementary Material.

Population Characteristics
The studies included 5,369 unique participants. 36 subjects were
excluded before CVR due to contraindication to MRI (n = 6) or
ACZ (n = 3), claustrophobia in the MRI scanner (n = 5), too
large to fit in the MRI scanner (n= 1), anxiety during pre-testing
of the stimulus (n = 1) and intolerance of the stimulus (n = 20).
The remaining 5,333 unique participants who had a CVR scan
comprised 2,394 patients and 2,939 healthy participants. All
studies reported a sample size, with a mean sample size of 35
(median: 19, range: 1–536). Forty-five studies had fewer than
10 subjects whereas 9 included more than 100 subjects. Twelve
papers did not report any age information, a further 18 papers
reported only the age range. The mean age, computed as the
mean of the mean or median ages, was 44.3 (1.4–92) years. The
median gender distribution was 43% females and 57% males,
excluding the 18 studies not reporting gender distribution.

The total number of scans including longitudinal scans
was 7,437. The number of scans excluded from analyses was
518/7,437 (7%), not including scans that were selected from
a database for being of good quality. Per study, the mean
percentage of datasets excluded from analysis was 6% (range: 0–
38%). Scans were excluded for one or more reasons: incomplete
dataset (28/518, 5%), subject’s discomfort (79/518, 15%), irregular
breathing (3/518, 1%), non-compliance (38/518, 7%), technical
issues (67/518, 13%), pre-processing issues (5/518, 1%), poor
data quality (40/518, 8%), motion artefacts (183/518, 35%),
outlier CVR values (13/518, 3%), non-CVR related (75/518, 14%,
e.g., post-operative stroke, resolution of stenosis, hematoma,
issue with therapeutic intervention) and no reasons reported
(2/518, 0.3%).

Information on tolerability of the CVR experiment ranged
from information regarding subject withdrawal to subjective
rating of tolerability and was reported in 51/235 (22%) studies
(1,162/5,333 unique subjects). Overall, the CVR experiment in
these 51 studies was mostly described as well-tolerated. One
article studied the tolerability of 434 CVR (294 subjects) scans
acquired with EtCO2 targeting BOLD MRI and concluded that
it was well-tolerated (Spano et al., 2013). Six studies reported
subjective tolerability: the experiment was rated as tolerable
to very tolerable with minimal discomfort on average in each
study. Twenty-three studies detailed complaints of discomfort:
11 studies reported no complaints or adverse effects whereas
12 did. These 12 studies (618 subjects) reported 120 complaints
transient to the CVR scan: respiratory symptoms due to gas
inhalation such as breathing resistance and shortness of breath (n
= 77), anxiety and/or claustrophobia (n = 16), dizziness and/or
headache (n= 10), narrowness of head coil with gas apparatus (n
= 4), tachycardia (n = 3), paraesthesia (n = 3), chest tightness
(n = 1), conjunctive erythema (n = 1), tremor (n = 1), hand
weakness (n = 1), nausea, confusion, and blurred vision (n =

1) and no details of the complaints (n = 2). No long-lasting
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FIGURE 1 | Flow diagram of the literature search.

symptoms were reported and no studies using acetazolamide
injection detailed complaints or adverse effects. In 17 studies, 79
scans were defined as untolerable by the subject due to: anxiety
(n = 21), claustrophobia (n = 16), discomfort related to gas
apparatus in the scanner (n= 9), position in the head coil (n= 2)
and no details (n= 31).

Pathologies
Cerebral steno-occlusive diseases (e.g,. Moyamoya disease,
carotid stenosis/occlusion) were themost commonly investigated
diseases (72/235 studies, 31%), followed by dementia and
cognitive impairments (9/235, 4%), normal ageing (8/235, 3%),
small vessel disease (7/235, 3%), sport-related concussions
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TABLE 1 | Pathologies in which CVR was investigated.

Pathology Number of

studies

Number of

patients/controls

Mean age of

patients/controls

Findings References

Cerebral

steno-occlusive

diseases

72 1786/541 51.4/44.9 - Lower CVR than healthy controls

(Hartkamp et al., 2017; Liu et al., 2017a;

De Vis et al., 2018; Duffin et al., 2018;

Venkatraghavan et al., 2018; Waddle

et al., 2019)

- Longer delays than healthy controls

(Hartkamp et al., 2012; Duffin et al., 2015;

Liu et al., 2017b; Waddle et al., 2019)

- Increased CVR (Han et al., 2011a; Mandell

et al., 2011; Watchmaker et al., 2019) and

smaller delays (Watchmaker et al., 2019)

after surgical intervention

Piepgras et al., 1994; Guckel et al.,

1995; Ohnishi et al., 1996; Schreiber

et al., 1998; Hamzei et al., 2003;

Shiino et al., 2003; Griffiths et al.,

2005; Ziyeh et al., 2005; Ma et al.,

2007; Haller et al., 2008; Mandell

et al., 2008b, 2011; Chang et al.,

2009, 2013; Donahue et al., 2009,

2013, 2016; Goode et al., 2009,

2016; Calviere et al., 2010; Bokkers

et al., 2011; Conklin et al., 2011; Han

et al., 2011a,b; Kim et al., 2011;

Uchihashi et al., 2011; Hartkamp

et al., 2012, 2017, 2018, 2019;

Mutch et al., 2012; Poublanc et al.,

2013, 2015; Spano et al., 2013;

Thomas B. et al., 2013; Donahue

et al., 2014; Sam et al., 2014, 2015;

Sobczyk et al., 2014, 2015, 2016;

Bouvier et al., 2015; De Vis et al.,

2015b, 2018; Duffin et al., 2015,

2017, 2018; Faraco et al., 2015;

Noguchi et al., 2015; Siero et al.,

2015a; Herrera et al., 2016; Strother

et al., 2016; van Niftrik et al., 2016;

Dlamini et al., 2017, 2018; Federau

et al., 2017; Fisher et al., 2017; Hu

et al., 2017; Ladner et al., 2017; Liu

et al., 2017a,b; Para et al., 2017; Wu

et al., 2017; Fierstra et al., 2018b;

Rosen et al., 2018; Sebok et al.,

2018; Venkatraghavan et al., 2018;

Hauser et al., 2019; Taneja et al.,

2019; Waddle et al., 2019;

Watchmaker et al., 2019; Papassin

et al., 2020

Dementia and cognitive

impairment

9 770/125 60.5/68.1 - Lower CVR than healthy controls (Cantin

et al., 2011; Yezhuvath et al., 2012)

- Longer delays than healthy controls

(Holmes et al., 2020)

- Higher CVR deficit vs. healthy controls

associated with higher leukoaraiosis

(Yezhuvath et al., 2012) and hypertension

(Haight et al., 2015)

- Lower CVR in the bilateral frontal cortices

of Alzheimer’s patients compared to

patients with vascular dementia (Gao

et al., 2013)

Cantin et al., 2011; Yezhuvath et al.,

2012; Gao et al., 2013; Haight et al.,

2015; Richiardi et al., 2015; Suri et al.,

2015; Lajoie et al., 2017; McKetton

et al., 2019; Holmes et al., 2020

Normal ageing 8 NA/374 Range: [20, 90] - Lower CVR at older ages (Riecker et al.,

2003; Liu et al., 2013; De Vis et al., 2015a;

Bhogal et al., 2016; Leoni et al., 2017;

Catchlove et al., 2018; Miller et al., 2019)

- Greater WM CVR and shorter delay with

increasing age (Thomas et al., 2014)

Riecker et al., 2003; Liu et al., 2013;

Thomas et al., 2014; De Vis et al.,

2015a; Bhogal et al., 2016; Leoni

et al., 2017; Catchlove et al., 2018;

Miller et al., 2019

Small vessel disease 7 272/54 67.4/45.7 - Lower CVR with increased WMH burden

(Liem et al., 2009; Blair et al., 2020) and

compared to healthy controls (Liem et al.,

2009; Tchistiakova et al., 2015;

Thrippleton et al., 2018; Atwi et al., 2019)

Liem et al., 2009; Tchistiakova et al.,

2015; Sam et al., 2016a,b;

Thrippleton et al., 2018; Atwi et al.,

2019; Blair et al., 2020

(Continued)
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TABLE 1 | Continued

Pathology Number of

studies

Number of

patients/controls

Mean age of

patients/controls

Findings References

- Longer delays than healthy controls (Sam

et al., 2016a; Thrippleton et al., 2018; Atwi

et al., 2019)

- Reduced WM CVR associated with higher

WMH volumes, basal ganglia PVS and

higher venous pulsatility and lower

foramen magnum CSF stroke volume

(Blair et al., 2020)

- Lower baseline CVR associated with

progression of WMHs but not microbleeds

or lacunar infarcts (Liem et al., 2009)

- Lower CVR associated with increased

number of vascular risk factors such as

hypertension, diabetes,

hypercholesterolemia (Tchistiakova et al.,

2015), lower fractional anisotropy, lower

CBF and CBV and higher mean diffusivity

(Sam et al., 2016b)

- Lower CVR and longer delays in NAWM

that progressed into WMH (Sam et al.,

2016a)

Sport-related

concussions

7 113/128 18.6/21.2 - Lower CVR in the default mode network at

mid-season and 1 month post-season

compared to pre-season baseline.

Decrease in CBF occurred only 1 month

after season (Champagne et al., 2019c)

- Longitudinal reduction in CVR during

season compared to pre-season baseline

was associated with prolonged

accumulation to high magnitude

acceleration events (Svaldi et al., 2020)

- Predominant increase in CVR compared

to baseline during the recovery phase but

remains mostly altered despite clinical

recovery (Mutch et al., 2016b)

- Higher CVR in clinically recovered patients

with history of concussions than in

athletes without (Mutch et al., 2018;

Champagne et al., 2019b)

Mutch et al., 2016b, 2018;

Champagne et al., 2019b,c;

Champagne et al., 2020a; Coverdale

et al., 2020; Svaldi et al., 2020

Obstructive sleep

apnoea

5 125/55 50.6/44.5 - Greater CVR than in healthy controls

measured using ASL with BH, BOLD with

BH (Wu et al., 2020) and BOLD with

EtCO2 targeting (Ryan et al., 2018).

- ASL response to fixed CO2 enriched air

reduced in patients with OSA compared

to healthy controls, whereas BOLD

response to fixed CO2 enriched air or BH

did not show group differences (Ponsaing

et al., 2018).

Buterbaugh et al., 2015; Ponsaing

et al., 2018; Ryan et al., 2018; Thiel

et al., 2019; Wu et al., 2020

Stroke 5 135/102 58.7/51.0 - Lower CVR in impaired tissue and

compared to healthy controls (Krainik

et al., 2005; Zhao et al., 2009;

Geranmayeh et al., 2015)

- Higher CVR with increasing distance from

lesion (Taneja et al., 2019)

- Reduced CVR associated with peri-infarct

T2 hyperintensities, greater infarct volume

and worse outcomes (Zhao et al., 2009)

Krainik et al., 2005; Zhao et al., 2009;

Geranmayeh et al., 2015; Raut et al.,

2016

(Continued)
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TABLE 1 | Continued

Pathology Number of

studies

Number of

patients/controls

Mean age of

patients/controls

Findings References

- Reduced CVR in the motor areas

controlling the upper airway musculature

compared to healthy controls (Buterbaugh

et al., 2015).

- No change in CVR upon CPAP withdrawal

(Thiel et al., 2019)

Traumatic brain injury 4 90/77 32.2/31.8 - Lower CVR than healthy controls in one

study (Amyot et al., 2018)

- No difference in CVR between patients

and healthy controls in one study

(Champagne et al., 2020b)

- Lower GM CVR with more concussion

symptoms (da Costa et al., 2016)

da Costa et al., 2016; Mutch et al.,

2016a; Amyot et al., 2018;

Champagne et al., 2020b

Gliomas 4 50/12 43.9/not reported - Lower CVR on ipsilateral side for low and

high grade gliomas Hsu et al., 2004; Pillai and Zaca,

2012; Zaca et al., 2014; Fierstra

et al., 2018a

Diabetes 3 103/32 67.5/61.8 - Lower CVR in diabetic hypertensive

patients than in only hypertensive patients

(Kario et al., 2005; Tchistiakova et al.,

2014)

- Higher CVR in bilateral pre-frontal lobe in

one study (Zhou X.-H. et al., 2015)

- Increased CVR after candesartan therapy

(Kario et al., 2005)

Kario et al., 2005; Tchistiakova et al.,

2014; Zhou X.-H. et al., 2015

Pathologies investigated in two studies:

- Cardia index and coronary artery disease (Anazodo et al., 2016; Jefferson et al., 2017)

- Sickle cell disease (Leung et al., 2016a; Kosinski et al., 2017)

- Multiple sclerosis (Metzger et al., 2018; Sivakolundu et al., 2019)

- Obesity (Frosch et al., 2017; Tucker et al., 2020)

- Brain arteriovenous malformation and cerebral proliferative angiopathy (Fierstra et al., 2011a,b)

- Parkinson’s disease (Al-Bachari et al., 2014; Pelizzari et al., 2019)

Pathologies investigated in one study:

- End-stage renal disease (Zheng et al., 2016)

- Bipolar disorder (Urback et al., 2019)

- Late-life depression (Abi Zeid Daou et al., 2017)

- Late-onset epilepsy (Hanby et al., 2015)

- HIV (Callen et al., 2020)

- Aneurysmal subarachnoid haemorrhage (Da Costa et al., 2014)

- MELAS (Rodan et al., 2015)

“Mean age” was computed by taking the average across studies of the reported mean/median age of the patients. GM, grey matter; WM, white matter; WMH, white matter hyperintensity;

NAWM, normal-appearing white matter; CPAP, continuous positive airway pressure; MELAS, Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes; HIV, Human

immunodefiency viruses; CSF, cerebral spinal fluid; NA, not applicable; OSA, obstructive sleep apnoea; BH, breath-hold.

(7/235, 3%), obstructive sleep apnoea (5/235, 2%), stroke (5/235,
2%; one of which also investigated CVR in steno-occlusive
disease), traumatic brain injury (4/235, 2%), tumours (4/235,
2%), diabetes with or without hypertension (3/235, 1%), and
miscellaneous (18/235, 8%). Of the 142 articles reporting CVR
measurements in pathology (referred to in Table 1), 70 studies
assessed CVR to investigate pathophysiology, 48 studies explored
the technical feasibility of a methodology to detect CVR
impairment, 13 studies investigated the effect of a therapeutic
intervention on CVR (surgical intervention for steno-occlusive
diseases such as revascularisation, candesartan therapy for

diabetes, bariatric surgery for obese subjects, haemodialysis for
end-stage renal disease, therapeutic continuous positive airway
pressure for obstructive sleep apnoea), six studies investigated the
progression of pathologies, and five studies looked at the effect
of CVR on fMRI BOLD activation. Relative to healthy controls,
CVR was lower in patients in most of the pathologies (Krainik
et al., 2005; Donahue et al., 2009; da Costa et al., 2016; Hartkamp
et al., 2018; Thrippleton et al., 2018; McKetton et al., 2019) and
CVR delays were longer in steno-occlusive diseases, small vessel
disease and dementia (Hartkamp et al., 2012; Duffin et al., 2015;
Thrippleton et al., 2018; Atwi et al., 2019; Holmes et al., 2020).
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FIGURE 2 | Distribution of the MRI sequences used in studies with the associated year of publication of the paper. BOLD, blood-oxygen-level-dependent; ASL,

arterial spin-labelling; DE, dual-echo; PC, phase-contrast; DSC, dynamic susceptibility contrast; VASO, vascular space occupancy.

MRI Technique
The number of CVR-MRI studies that were conducted at 3 T is
178/235 (74%), with the remainder acquired at: 1.5 T (47/235,
20%), 7 T (9/235, 4 %), 2 T (2/235, 1%) and a combination
of 1.5 and 3 T (3/235, 1%). Studies used one or more MRI
techniques to acquire CVR data (Figure 2): BOLD (155/235,
66%), ASL (41/235, 17%), dual-echo providing simultaneous
ASL and BOLD data (27/235, 11%), PC (12/235, 5%), DSC
(11/235, 5%), and VASO (3/235, 1%). In recent publications,
BOLD, ASL and dual-echo ASL/BOLD are the most common
MRI techniques. Summary MRI parameters for the BOLD
gradient-echo echo-planar imaging (GE-EPI), pulsed continuous
ASL (pCASL) and dual-echo ASL/BOLD GE-EPI techniques at
3 T are given in Table 2.

Three studies (n = 18) found BOLD-derived CVR values
were lower at lower magnetic field strengths (Driver et al., 2010;
Triantafyllou et al., 2011; Peng et al., 2020), two of which (n =

9) reported a linear relationship between BOLD-derived CVR
and the field strength (Driver et al., 2010; Triantafyllou et al.,
2011). In one study (n = 16), ASL-derived CVR did not differ
at different field strengths (Noth et al., 2006). One study (n =

8) reported longer post-labelling delay results in lower baseline
CBF and ASL-CVRmeasurements (Inoue et al., 2014). Use of EPI
with parallel imaging compared to spiral imaging, reduced signal

loss due to susceptibility-induced magnetic field gradients in
BOLD-CVR measurements without affecting sensitivity, which
was defined as the CVR t-statistic (n = 5) (Winter et al., 2009).
Furthermore, one study (n = 5) showed that using simultaneous
multi-slice acceleration of factor 2 and 3, can reduce scan
duration by at least a half compared to conventional EPI while
maintaining the CVR sensitivity (Ravi et al., 2016a). Compared
to single-echo ASL or BOLD EPI, a multi-echo (four echoes)
EPI acquisition followed by T2∗ fitting of the signal decay had
higher inter-scan repeatability of breath-hold CVR analysed
across voxels, CVR sensitivity and test-retest reliability analysed
using the intra-class correlation coefficient (n = 14) (Cohen and
Wang, 2019).

Vasodilatory Stimulus
To induce vasodilation, several stimuli were employed in the
literature (Figure 3A): EtCO2 targeting manually or using
a computer-controlled device such as RespirAct (Thornhill
Research, Toronto, Canada) (81/235 studies, 34%), fixed inspired
gas administration (69/235, 29%), breathing modulations
(52/235, 22%), ACZ injection with median dose of 1 g (29/235,
12%), rebreathing (10/235, 4%), resting-state haemodynamic
fluctuations (8/235, 3%) and not reported (1/235, 0.4%). Three
different fixed inspired gases were identified: CO2-enriched

Frontiers in Physiology | www.frontiersin.org 8 February 2021 | Volume 12 | Article 643468

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Sleight et al. CVR MRI: A Systematic Review

(67%), O2-enriched (i.e. hyperoxia, 10%), and CO2- and O2-
enriched air (i.e. carbogen, 23%). In some studies, these gas
compositions were alternated during the same paradigm with
or without intermittent normal air periods using the fixed
inspired gas, EtCO2 targeting methods: alternating hypercapnia
and hyperoxia (15/235, 6%), alternating CO2-enriched air and
carbogen (1/235, 0.4%). For fixed inspired CO2 paradigms, the
median percentage of inhaled CO2 was 5% (range: 2–10%).
While the combination of MRI sequence and stimulus generally
varied across studies DSC-MRI was used only with ACZ
injection. Block design paradigms were most common (212/235
studies, 90%) with a median stimulus plateau duration of 1min.
The median total experiment duration was 9min (Figure 3B).
One study did not specify the type of paradigm, and 12 further
studies did not report the duration of the CVR experiment.

Removing studies that used ACZ stimulus, 160/207 studies
measured EtCO2 (77%) of which 21 did not report the targeted or
achieved EtCO2 variation (14%), 80 studies also measured EtO2

(39%). The median EtCO2 change induced by the stimulus was
9 mmHg (range: 2.2–28 mmHg). Seventy-five studies reported
mean baseline EtCO2 at rest (47%), with a median value of 39
mmHg (range: 31.2–43.4 mmHg). 21% of the studies that used
EtCO2 targeting controlled the baseline EtCO2 (40 mmHg for
all studies) instead of using the individual EtCO2 value when
breathing normal air.

One study (n = 4) found BOLD response to EtCO2 is
60 times higher than to EtO2, but demonstrated that during
hypercapnic CVR-BOLD experiments, EtO2 should be controlled
if the change in EtCO2 is small compared to the change in EtO2

(Prisman et al., 2008). One study (n = 9) demonstrated that
carbogen should not be used with BOLD or ASL to measure
CVR due to a lack of correlation between both MRI techniques
as opposed to CVR measurements using CO2-enriched air with
BOLD or ASL (Hare et al., 2013). Another study (n = 20) found
that, for a gas challenge, an effect of at least 2 mmHg EtCO2

change is required to detect haemodynamic impairment using
BOLD at 3 T (De Vis et al., 2018). RS-BOLD was found to
give CVR results that were associated with fixed-inspired CO2

BOLD (n = 48, Liu et al., 2017a) and RespirAct BOLD (n = 13,
Golestani et al., 2016) measurements. One study (n= 8) reported
differences in response amplitude and onset time depending on
whether BH was performed before and after expiration (Leoni
et al., 2008). For BOLD-BH, one study (n = 6) demonstrated
that the fraction activation volume saturated for breath-hold
durations of 20 s and above; thus recommended using breath-
hold durations of 20 s to give sufficient sensitivity to BOLD signal
changes to detect impaired CVR (Liu et al., 2002).

CVR Data Processing Methods
Common pre-processing steps that were reported (Figure 4)
were sequence-dependent and included motion correction
(167/235 studies, 71%), spatial smoothing (107/235, 46%),
registration of functional volumes to MNI or subject space
(96/235, 41%), region-of-interest or whole brain delay correction
(93/235, 40%), drift removal/modelling (79/235, 34%), voxel-
wise delay correction (62/235, 26%), and discarding transient
MRI volumes to consider only those where steady-state signal T
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FIGURE 3 | Distribution of the (A) stimuli with the associated MRI sequence and (B) paradigm types with associated total duration of the CVR experiment. In (A), the

“breath modulation” stimulus includes breath-holding, paced breathing, and hyperventilation stimuli. ACZ, acetazolamide injection; RS, resting-state; BOLD, blood

oxygen-level dependent; ASL, arterial spin-labelling; PC, phase contrast; DSC, dynamic susceptibility contrast; VASO, vascular space occupancy.

FIGURE 4 | Bar chart showing the number of studies that apply different pre-processing steps. ROI, region of interest; WB, whole brain; HRF, haemodynamic

response function.

was reached (42/235, 18%). Only 3% of papers corrected for
sampling line delay. Slice-time correction was used in 51 of 180
BOLD/DE-BOLD studies. Eroding the edges of the regions of

interest can reduce vascular contamination of CVR due to larger
responses to CO2 in blood vessels than in tissues (Thrippleton
et al., 2018). T1 correction was recommended for CVR-ASL
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FIGURE 5 | Distribution of the (A) CVR processing and (B) delay computation methods with the associated year of publication of the paper. The category “Others” in

(B) includes deconvolution to find the HRF between the EtCO2 and the MRI signal, and GLM with two (“fast” and “slow”) regressors. STD, standard deviation of MRI

signal; HRF, haemodynamic response function; GLM, general linear model.

data involving the use of carbogen or other hyperoxic gas
because of changes in the longitudinal relaxation time during
hyperoxia (n = 24, Siero et al., 2015b). The most common
software packages used for pre-processing and/or CVR analysis
were Statistical Parametric Mapping (SPM, 89/235 studies, 38%),
in-house Matlab (The Mathworks, Natick, MA, United States)
software (90/235, 38%), FMRIB Software Library (FSL, 65/235,
28%), and Analysis of Functional NeuroImages (AFNI, 54, 23%)
(some studies usedmore than one package in combination). Only
one in-houseMatlab script (for pre-processing BOLD and EtCO2

data) reported to be publicly available (Lu et al., 2014).
Of the six classes of CVR calculation methods identified,

linear regression is the most common method overall (149/235
studies, 63%) and in recent publications. However, several
newer methods are under development including frequency-
based analysis (Duffin et al., 2015). The main reference signal
used to compute linear regression or cross-correlation is the
EtCO2 (89/235 studies, 38%). An HRF was incorporated in
the MRI signal model in 14% of the studies (32/235), with
the single or double gamma function being the most common
choice (22/235 studies, 9%). A relatively new method to find
an appropriate regressor is RIPTiDe (Regressor Interpolation
at Progressive Time Delays), which derives the reference signal
from the MRI data by iteratively applying principal component
analysis on aligned MRI time courses until convergence of the
regressor (Tong et al., 2011; Donahue et al., 2016). Twenty one
studies did not clearly describe the CVR processing method, of
which two included no information, these were excluded from
the summary of CVR processing method (Figure 5A).

Dynamic aspects of CVR (e.g., lung-to-brain delay, response
time) were computed in 128/235 studies (54%) using different
methods (Figure 5B), however some studies used different MRI
techniques and multiple associated delay processing methods.
Fourteen of the delay computation methods were not clearly
described and 8 of which could not be included in Figure 5B.
Cross-correlation- and linear regression-based methods can be

used to compute CVR delay by determining the time shift
that gives the best correlation between the BOLD signal and
a reference signal (e.g., EtCO2). The most common delay
computation methods are cross-correlation- or, equivalently,
linear regression-based approaches (84/128 studies, 66%) and
pre-defined delay, e.g., from literature, voxel examination,
(29/128, 23%). The delay between two signals can be found
using linear regression or cross-correlation by determining the
time shift giving the best correlation between these two signals.
As with CVR computation, delay computation is an evolving
area and new methods are arising including obtaining the delay
directly from the HRF between the BOLD signal and EtCO2

(Atwi et al., 2019). One study corrected the hypercapnic delay for
delay due to the vasculature (i.e., the delay it takes for the blood
and CO2 to travel from the lungs to the brain tissues) by using
the BOLD delay from a hyperoxia challenge as a surrogate of
vasculature delay and assuming no vasodilation due to hyperoxia
(Champagne et al., 2019a). This correction can distinguish
between delay due to vasculature and delay due to vasodilation.

CVR values in whole brain, grey and white matter of healthy
volunteers are summarised in Table 3. The associated processing
methods were linear regression (72/104, 69%), pre-vs.-post
stimulus value comparison (17/104 values, 16%), non-linear
signal modelling (13/104, 13%) and frequency-based analysis
(2/104, 2%). CVR in grey matter was higher than CVR in white
matter. Moreover, measuring white matter CVR using ASL is
not common, probably due to the fact that ASL suffers from low
contrast-to-noise ratio (CNR) (Liu et al., 2019).

Repeatability, Reproducibility, and
Accuracy of CVR Measurements
CVR values determined using MRI were generally found to
be similar or well-correlated with those obtained using other
imaging modalities such as PET, SPECT or TCD (Table 4: 10
studies, 193 subjects). Within- and between-day repeatability of
MRI was studied mostly in healthy participants and in some
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TABLE 3 | Mean/median CVR values at 3 T in healthy volunteers as a function of the age range (in the square brackets are the minimum and maximum values and in the

round brackets is the number of values and number of subjects used to compute the mean).

Age range Whole brain Grey matter White matter

%BOLD signal

change/mmHg

%CBF/mmHg %BOLD signal

change/mmHg

%CBF/mmHg %BOLD signal

change/mmHg

%CBF/mmHg

<30 0.19/0.18 [0.14,

0.24] (6 studies,

94 subjects)

4.5 (1 study, 16

subjects)

0.35/0.26 [0.05,

1.80] (17 studies,

294 subjects)

3.69/3.6 [1.9, 6.6]

(7 studies, 124

subjects)

0.12/0.12 [0.03,

0.29] (12 studies,

236 subjects)

1.1 (1 study, 18

subjects)

30–50 0.22/0.22 [0.11,

0.28] (15 studies,

169 subjects)

4.64 (1 study, 16

subjects)

0.26/0.26 [0.14,

0.44] (10 studies,

127 subjects)

3.60/3.28 [2.40,

5.11] (3 studies,

45 subjects)

0.12/0.13 [0.08,

0.18] (8 studies,

101 subjects)

-

>50 0.21/0.21 [0.15,

0.31] (6 studies,

120 subjects)

3.58/3.4 [2.2,

5.30] (4 studies,

279 subjects)

0.36/0.36 [0.13,

1.30] (6 studies,

124 subjects)

2.12/2.13 [2.10,

2.15] (2 studies,

21 subjects)

0.13/0.12 [0.05,

0.33] (5 studies,

117 subjects)

-

The associated processing methods were linear regression, pre-vs.-post stimulus value comparison, non-linear signal modelling and frequency-based analysis.

TABLE 4 | Comparison of CVR values measured using MRI vs. alternative imaging modalities.

References MRI technique Comparator Population Results

Ziyeh et al. (2005) BOLD; fixed inhaled

CO2

TCD; fixed inhaled

CO2

20 SOD Pearson CC for signal change in MCA territory: r = 0.71

Fierstra et al. (2018b) BOLD; EtCO2 targeting PET; ACZ 16 SOD, 10 HC - Pearson CC for CVR difference unaffected vs. affected hemisphere:

r2 = 0.47

- Pearson CC for CVR difference unaffected vs. affected

hemisphere in MCA territory: r2 = 0.61

Herrera et al. (2016) BOLD; BH TCD; BH 15 SOD, 7 HC - Cohen’s kappa coefficient for the visual classification of normal or

impaired CVR in the ipsilateral lentiform nucleus between the two

methods: Overall, κ = 0.54; Controls, κ = −0.69; Patients,

κ = 0.43

Shiino et al. (2003) BOLD; BH SPECT; ACZ 10 SOD, 17 HC - Linear correlation between mean whole brain %BOLD change

with mean whole brain change in CBF from SPECT: r = 0.70

Hauser et al. (2019) BOLD; BH PET; ACZ 20 SOD - Spearman CC for maps: r = 0.90

- Pearson CC for relative signal change in vascular territories relative

to cerebellum: r = 0.71

Heijtel et al. (2014) ASL; fixed inhaled CO2 PET; fixed inhaled

CO2

16 HC - Pearson CC for GM CBF: r2 = 0.30 for baseline, r2 = 0.12 for

hypercapnia

- GM CVR [%/mmHg]: 2.82 for ASL vs. 2.50 for PET

- Inter-modality RI: 22.9% for baseline, 30.3% for hypercapnia

Uchihashi et al. (2011) ASL; ACZ SPECT; ACZ 20 SOD - Spearman rank CC of mean relative CVR in frontal and temporal

lobes: r = 0.88

- Accuracy: mean difference in CVR of frontal and temporal

lobes: 1.3%

Ma et al. (2007) and

Kim et al. (2011)

DSC; ACZ SPECT; ACZ 17 (Kim et al., 2011)

and 12 (Ma et al.,

2007) SOD

- Wilcoxon signed rank test on percent change in mean relative CBF

in GM MCA territory (Kim et al., 2011):

- normal side: 0.76–0.18

- lesion side: 0.38–0.67

- Association between detection of CVR impairment with SPECT

and reduced DSC-CVR (Ma et al., 2007)

Grandin et al. (2005) DSC; ACZ PET; ACZ 13 HC - Inter-modality correlation (coefficient of determination) in individual

subjects: r2 between 0.70 and 0.84

- Mean difference in CBF and CBV: 8.2 ml/min/100g and 2.09

ml/100g at rest, 5.7 ml/min/100g and 2,45 ml/100g after ACZ

TCD, transcranial Doppler ultrasound; BH, breath-hold; BOLD, blood oxygen level-dependent; ACZ, acetazolamide; SPECT, single photon emission computed tomography; CC,

correlation coefficient; CV, coefficient of variation; RI, repeatability index; GM, grey matter; DSC, dynamic susceptibility contrast; MCA, middle carotid artery; ICC, intraclass CC; HC,

healthy controls; SOD, steno-occlusive disease; SD, standard deviation.

stroke and steno-occlusive patients (Table 5: 14 studies, 191
subjects). The reported coefficients of variation show that CVR
measurements are less repeatable between- than within-days

(Kassner et al., 2010; Dengel et al., 2017) and less repeatable in
white matter than in grey matter due to lower CNR in white
matter (Kassner et al., 2010; Thrippleton et al., 2018).
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TABLE 5 | Findings of repeatability of CVR estimates.

References MRI technique Repeatability Population Results

Thrippleton et al. (2018) BOLD; fixed

inhaled CO2

Within-day repeatability 15 HC - Inter-session CV of GMCVR: 7.9–15.4% for a 3min and

11.7–70.2% for a 1min challenge

- Inter-session CV of WM CVR: 16.1–24.4% for a 3min

and 27.5–141.0% for a 1min challenge

Sobczyk et al. (2016),

Leung et al. (2016b)

and Dengel et al. (2017)

BOLD; EtCO2

targeting

Within- (Leung et al., 2016b;

Dengel et al., 2017) and

between-day repeatability

(Leung et al., 2016b; Sobczyk

et al., 2016; Dengel et al., 2017)

and within-day consecutive

intra-scan repeatability (Dengel

et al., 2017)

15 (Sobczyk et al., 2016),11

(Dengel et al., 2017), and 10

(Leung et al., 2016b) HC

- Within-day intra-scan ICC of GM CVR (Dengel et al.,

2017): 0.84

- Within-day intra-scan CV of GM CVR (Dengel et al.,

2017): 5.70%

- Within-day inter-scan ICC CVR in GM: 0.78 (Dengel

et al., 2017), 0.86 (Leung et al., 2016b); WM: 0.90

(Leung et al., 2016b)

- Within-day inter-scan CV of GM CVR (Dengel et al.,

2017): 6.62%

- Between-day ICC CVR in GM: 0.69 (Dengel et al.,

2017), 0.78 (Leung et al., 2016b); WM: 0.72 (Leung

et al., 2016b)

- Between-day CV CVR in GM: 7.87% (Dengel et al.,

2017), 7.3% (Sobczyk et al., 2016); WM: 10.3%

(Sobczyk et al., 2016)

Bright and Murphy

(2013), Dlamini et al.

(2018), and Peng et al.

(2020)

BOLD; BH Within-day (Dlamini et al., 2018;

Peng et al., 2020), between-day

(Peng et al., 2020),

inter-regressors (Bright and

Murphy, 2013) and intra-subject

(Bright and Murphy, 2013)

repeatability

20 SOD (Dlamini et al., 2018).

9 (Peng et al., 2020), 12

(Bright and Murphy, 2013) HC

- Within-day ICC of whole brain CVR: 0.7 (Dlamini et al.,

2018), >0.4 (Peng et al., 2020)

- Within-day CV of positive GM CVR: 9.1% (Dlamini et al.,

2018), <33% (Peng et al., 2020)

- Within-day CV of negative GM CVR (Dlamini et al.,

2018): 22.5%

- Inter-regressor ICC of GM CVR (Bright and Murphy,

2013): <0.4 for ramp regressor and 0.82 for EtCO2

regressor

- Intra-subject ICC of GM CVR (Bright and Murphy,

2013): 1.03% for EtCO2 regressor

Sousa et al. (2014) BOLD; paced

deep breathing

Test-retest and inter-subject

repeatability

9 HC - Inter-subject CV of GM CVR: 20%

- Intra-subject CV of GM CVR: 8%

- Intra-subject ICC of GM CVR: 1.04

Kassner et al. (2010) BOLD; EtCO2

forcing

Within, between-day and

inter-subject repeatability

19 HC - ICC of GM CVR: 0.92 within-day, 0.81 between-day

- ICC of WM CVR: 0.88 within-day, 0.66 between-day

- CV of GM CVR: 4.2% within-day, 6.8% between-day,

20% inter-subject

- CV of WM CVR: 6.3% within-day, 9.9% between-day,

21.8% inter-subject

Liu et al. (2017a) and

Taneja et al. (2019)

Resting-state

BOLD

Within-day (Liu et al., 2017a)

and between-day (Taneja et al.,

2019) repeatability

6 stroke (Taneja et al., 2019),

10 HC (Liu et al., 2017a)

- Within-day ICC (Liu et al., 2017a): 0.91

- Between-day correlation of lesion CVR (Taneja et al.,

2019): r2 = 0.91

- Between-day correlation of contralateral-to-lesion CVR

(Taneja et al., 2019): r2 = 0.79

Heijtel et al. (2014) ASL; fixed inhaled

CO2

Within- and between-day

repeatability

16 HC - Within-day RI: 18.2%; Between-day RI: 25.1% for

baseline CBF, 24.8% for hypercapnia CBF

- CV of inter-subject variability: 12.9% for baseline CBF,

15.6% for hypercapnia CBF

Merola et al. (2018) Dual-echo

ASL/BOLD; fixed

inhaled CO2

Within- and between-day

repeatability

26 HC - Correlation with coefficient of determination of GM CVR

variability: 0.57 for within-day inter-scan, 0.41 for within-

day inter-session, 0.02 for between-day

- CV of inter-subject variability of GM CVR: 17.5% for

within-day, 25% for between-day

- CV of intra-subject variability for GM CVR: 9.5% for

within-day inter-scan, 12.5% for within-day

inter-session, 17.5% between-day

Grandin et al. (2005) DSC; ACZ Inter-scan repeatability 13 HC - Repeatability using the SD of themean difference in CBF

between scans: 22.4%

- Repeatability using the SD of the mean difference in

CBV between scans: 18.2%

BH, breath-hold; BOLD, blood oxygen level-dependent; ACZ, acetazolamide; CC, correlation coefficient; CV, coefficient of variation; GM, grey matter; DSC, dynamic susceptibility

contrast; ICC, intraclass CC; HC, healthy controls; SOD, steno-occlusive disease; SD, standard deviation; RI, repeatability index.
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CVR-MRI measurements were also compared between MRI
techniques. CVR-BOLD and CVR-ASL were well-correlated
using fixed CO2 concentration (n = 127) (Hare et al., 2013;
Donahue et al., 2014; Zhou Y. et al., 2015) and computer-
controlled EtCO2 using RespirAct (n = 13) (Zande et al.,
2005). One study found no correlation between CVR-BOLD and
CVR-ASL using carbogen (n = 9) (Hare et al., 2013). Using
acetazolamide CVR-DSC correlated well with CVR-BOLD (n =

16) (Wu et al., 2017), but there was a lack of agreement between
CVR-DSC and PC-MRI (n= 8) (Spilt et al., 2002).

The Relationship Between BOLD
Response and PaCO2
The healthy BOLD signal response to CO2 was found to be
sigmoidal in two studies (n = 18) (Tancredi and Hoge, 2013;
Bhogal et al., 2014). The sigmoid model of the BOLD response
to CO2 was used in a further three studies (n = 65) (Bhogal
et al., 2015, 2016; De Vis et al., 2018). In four studies, vasodilatory
resistance to CO2 was modelled using the BOLD response
(Sobczyk et al., 2014; Duffin et al., 2017, 2018; McKetton et al.,
2019). The relationship between resistance and CO2 was assumed
sigmoidal due to the limited ability of the blood vessels to
constrict and dilate (n = 141). One study (n = 32) suggested
that steal phenomenon associated with some pathologies could
alter the sigmoid relationship between CO2 and vasodilatory
resistance (Sobczyk et al., 2014).

Potential Confounders of CVR Analysis
When analysing CVR measurements, baseline MRI signal or
EtCO2 values (Bhogal et al., 2016) can lead to misinterpretation
of CVR data (Mandell et al., 2008a; Blockley et al., 2011). Higher
baseline EtCO2 was associated with lower CVR (n= 291) (Halani
et al., 2015; van Niftrik et al., 2018; Hou et al., 2019). Baseline
CBF and CBV were lower with age (n = 81) (Petrella et al., 1998;
Leung et al., 2016a; Leoni et al., 2017), by contrast one study
suggested age-related differences in baseline CBFmay result from
differences in baseline EtCO2 (n= 46) (De Vis et al., 2015a).

Negative CVR clusters correspond to MRI responses anti-
correlated to the stimulus. In some cases this might simply reflect
long CVR delays if they are not appropriately modelled. Negative
CVR could also reflect the steal phenomenon, where tissues with
high CVR “steal” blood flow from other regions due to flow
redistribution (Shiino et al., 2003;Mandell et al., 2008a; Han et al.,
2011a,b; Sobczyk et al., 2014; Poublanc et al., 2015; Fisher et al.,
2017; Para et al., 2017; McKetton et al., 2018; Venkatraghavan
et al., 2018; Hartkamp et al., 2019). However, they usually appear
in the deep white matter (Mandell et al., 2008a), near and in the
ventricles (Blockley et al., 2011). Therefore, others have suggested
that they may result from low CNR in the white matter tissues
leading to spurious CVR values (Blockley et al., 2011), or from
reduction in cerebrospinal fluid (CSF) partial volume due to
vasodilation (Thomas B. P. et al., 2013; Bright et al., 2014; Ravi
et al., 2016b). The latter effect can be diminished by shortening
TE (Ravi et al., 2016b).

CVR Definition and Units
CVR was defined differently across studies and was reported
in several units: relative change in BOLD signal divided by
absolute change in EtCO2 with %/mmHg units (110/235,
47%), relative change in CBF divided by absolute change in
EtCO2 with %/mmHg units (36/235, 15%), relative change in
BOLD signal with % units (50/235, 21%), relative change in
BOLD signal divided by relative change in total haemoglobin
concentration ([Hb]) with %/[Hb] units (1/235, 0.4%), relative
change in BOLD signal divided by breath-by-breath O2-CO2

exchange ratio with % units (1/235, 0.4%), relative change in
BOLD signal divided by relative change in EtCO2 with %
units (1/235, 0.4%), relative change in BOLD signal during
one period of breath-hold with %/s units (1/235, 0.4%),
relative change in CBF with units % (27/235, 11%), relative
change in CBF during one period of breath-hold with %/s
units (1/235, 0.4%), absolute change in CBF with ml.100
g−1.min−1 units (5/235, 2%), absolute change in CBF divided
by the change in EtCO2 with ml.100 g−1.min−1mmHg−1 units
(2/235, 1%), absolute change in CBF divided by mean arterial
pressure divided by change in EtCO2 with ml/min/mmHg2

(1/235, 0.4%), mean arterial pressure divided by change in
CBF with mmHg.ml−1.min.100 g units (1/235, 0.4%), relative
change in CBV with % units (n = 13), absolute change in
CBV with ml.100 g−1 units (1/235, 0.4%), absolute change
in BOLD signal divided by change in EtCO2 a.u./mmHg
(2/235, 1%), relative change in T2∗ with % units (1/235,
0.4%), absolute change in T2∗ divided by change in EtCO2

with ms/mmHg units (1/235, 0.4%), absolute change in R2∗

divided by change in EtCO2 with s−1/mmHg (1/235, 0.4%).
A further nine CVR definitions had no units because CVR
was defined as the correlation coefficient between two time
courses (7/235, 3%) and two were defined as the absolute
change in BOLD signal divided by the standard deviation of
the baseline BOLD signal (1/235, 0.4%) or by the absolute
change in mean cerebellum BOLD signal (1/235, 0.4%).
One article described different resistance sigmoid parameters
associated with CVR such as resting reserve or amplitude,
i.e., extend of vascular resistance from resting EtCO2 state
to maximum vasodilation and extend of vascular resistance
from maximum vasoconstriction to maximum vasodilation,
respectively. Both resting reserve and amplitude are resistance
parameters in mmHg/nL/s.

DISCUSSION

We identified 235 papers using MRI to measure CVR
including 5,333 subjects, which covered several different
acquisition and analysis methods. Stimuli, paradigm and
duration, sequences used for acquisition and processing
methods varied considerably. We found several papers,
which investigated specific aspects of the CVR-MRI
experiment such as processing methods or reproducibility
of CVR measurement, but sample sizes were often low,
and validation studies remain limited. Reporting was
also inconsistent.
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Reporting Standards
Most papers included sufficient detail on the acquisition of CVR
data (222/235, 94%). Only 22% of studies (51/235) reported
CVR tolerability, less than half of which (23/235, 10%) reported
presence or absence of discomfort complaints which may affect
suitability for some patient populations. Processing (214/235,
91%) including delay computation methods (114/128, 89%) were
well-reported, though only 54% (128/235) accounted for delay.

Clinical Populations
CVR was measured in several pathologies including
steno-occlusive diseases, stroke, small vessel disease, brain
injuries, and dementia. Patients generally had lower CVR
compared to healthy participants (Krainik et al., 2005; Donahue
et al., 2009; da Costa et al., 2016; Hartkamp et al., 2018;
Thrippleton et al., 2018; McKetton et al., 2019), though in
obstructive sleep apnoea findings were mixed. Delays were
longer in steno-occlusive, small vessel disease and dementia
patients than in healthy controls, but were not reported in
other pathologies. CVR metrics have been associated with
cerebrovascular dysfunction, disease severity, and response
to interventions (including revascularisation surgery for
steno-occlusive diseases). CVR is therefore a promising
biomarker of haemodynamic impairment and changes with
broad applicability.

Acquisition
Most CVR studies used a 3 T scanner (178/235, 74%) and
2D GE-EPI BOLD sequence (118/235, 50%) for acquisition.
While several different sequences can measure CVR, all
have limitations. BOLD signal results from a complex
interaction between CBF, CBV, haemoglobin concentration,
oxygen extraction fraction, cerebral metabolic rate of oxygen
consumption and arterial O2 partial pressure (Liu et al., 2019).
Changes in any of these parameters can alter the BOLD signal;
however, there is evidence that CBV and CBF change together
during hypercapnia (Chen and Pike, 2010; Hoge, 2012) and
that CVR-BOLD is well-correlated with CVR-ASL (Mandell
et al., 2008b; Hare et al., 2013; Zhou Y. et al., 2015). Cerebral
metabolic rate of oxygen consumption might change during
hypercapnia; however it is thought that these changes are small
for low levels of CO2 stimulus (Hoge, 2012). ASL allows direct
measurement of CBF and is also widely used (41/235, 17%),
but suffers from low CNR (Liu et al., 2019); differences in
labelling duration and efficiency, and bolus arrival time can also
potentially affect CVR estimation. Calibrated fMRI (9/235, 4%)
using dual-echo BOLD/ASL allows simultaneous quantification
of CVR and cerebral metabolism parameters (e.g., rate of oxygen
consumption and oxygen extraction fraction) (Germuska et al.,
2016, 2019; Merola et al., 2017, 2018). However, calibrated fMRI
models depend on the initialisation values of model parameters,
model assumptions such as the oxygen metabolism not being
altered during hypercapnia and hyperoxia stimuli (Germuska
and Wise, 2019), and are more complex to implement. PC-
MRI (12/235, 5%) measures CVR at the large-vessel level and
generally provides limited spatial coverage; although 4D phase-
contrast flow imaging (Miller et al., 2019; Morgan et al., 2020)

is developing rapidly, the long scan duration currently limits
applicability for measuring CVR in patients. Several different
paradigms were used, which varied in duration and number
of repetitions. EtCO2 targeting (81/235, 34%) and fixed CO2-
inhalation (69/235, 29%) are the most widely used vasodilatory
stimuli with a block paradigm (212/235, 90%) with a median
paradigm duration of 9min. Fixed CO2-inhalation is easier to
set up than EtCO2 targeting but the change in EtCO2 associated
with a specific inspired CO2 concentration may vary between
subjects. EtCO2 targeting allows precise control over the EtCO2

and paradigm but requires expensive, specialist equipment. 75%
of respiratory challenge studies (160/207) measured ETCO2.
However, in patients with lung diseases, using EtCO2 is not a
direct surrogate for PaCO2 (Petersson and Glenny, 2014).

Processing Methods
CVR was mainly computed using linear regression (149/235,
63%). Few studies described why a particular processing method
or regressor was used, and comparisons between different
methods are lacking (Bright et al., 2017). 40% of the studies
(93/235) calculated a whole brain or single region-of-interest
delay that was applied to all voxels. While this method may be
relatively robust against noise, delay is known to vary between
and within tissue types (Thrippleton et al., 2018; Atwi et al.,
2019). However, only 26% of studies (62/235) accounted for
voxel-wise delays. An HRF between the stimulus and MRI signal
was used in only 14% of the studies (32/235). This might be
because the CVR HRF is unknown and may vary between
stimuli, paradigms and pathologies (Poublanc et al., 2015; Sam
et al., 2016a). Assuming a non-delta-function HRF allowed delay
and steady-state CVR to be investigated in parallel (Poublanc
et al., 2015; Donahue et al., 2016), but can be more complex to
implement and computationally demanding.

Validation
CVR measurements and detection of CVR impairment using
MRI and other imaging modalities [e.g., BOLD-CVR to TCD-
CVR (Ziyeh et al., 2005), BOLD-CVR to SPECT-CVR (Shiino
et al., 2003), DSC-CVR to PET-CVR (Grandin et al., 2005)]
were well-correlated, validating the CVR-MRI experiment.
Furthermore, biological validation such as results from studies
comparing CVR in patients with steno-occlusive diseases and
healthy controls, also supports use of CVR as a biomarker
(Ziyeh et al., 2005; Bokkers et al., 2011; Uchihashi et al., 2011;
Thomas B. et al., 2013; De Vis et al., 2015b). Preclinical CVR
imaging is also a fast-growing field which has been applied
in preclinical models of stroke, cancer and Alzheimer’s disease
(Wells et al., 2015; Lake et al., 2016; Gonçalves et al., 2017).
Preclinical CVR studies predominantly follow similar approaches
to human studies but involve additional considerations such
as the effect of anaesthetic agents on resting CBF (Stringer
et al., 2021). Isolated vessel preparations (Seitz et al., 2004;
Joutel et al., 2010), laser speckle imaging (Lynch et al., 2020),
and multiphoton microscopy (Joo et al., 2017; Kisler et al.,
2017) can also assess CVR preclinically and may help improve
understanding of how impaired vasoreactivity develops and
further direct validation of CVR-MRI as a clinical biomarker of
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cerebrovascular health (Stringer et al., 2021). CVRmeasurements
using MRI techniques showed lower repeatability between-days
than within-days (Dengel et al., 2017; Merola et al., 2018).
CVR measurements were also less repeatable in white matter
than in grey matter due to a lower CNR (Kassner et al., 2010;
Thrippleton et al., 2018). Studies with higher sample sizes and
investigating reproducibility in different pathologies would be
helpful to further validate the CVR-MRI experiment.

Definition and Interpretation of CVR
The definition and units of CVR vary across studies depending
on choice of sequence, stimulus, paradigm and analysis methods.
However, CVR is most commonly reported as the relative change
in BOLD signal (110/235, 47%) or CBF (36/235, 15%) per unit
change in EtCO2 as %/mmHg.

Several aspects influence CVR values beyond the vasodilatory
capacity of vessels, which must be considered in interpreting
the results. The CVR steal phenomenon has been proposed as
a systemic mechanism governing the cerebrovascular system
by prioritising blood supply to specific regions and potentially
leading to local deficits elsewhere. Low or negative CVR values
may also result from low CNR or blood vessel dilation near
the ventricles shrinking the CSF space and artificially decreasing
the BOLD signal due to differences in CSF and blood signal
intensities (Thomas B. P. et al., 2013; Bright et al., 2014; Ravi et al.,
2016b). Excluding voxels that contain CSF or using a shorter
TE (e.g., 21ms for a TR of 1,500ms at 3T) can reduce negative
artefacts in CVR data (Ravi et al., 2016b). Other physiological
factors can affect the MR signal, including resting CBF and
oxygen extraction fraction. Finally, as blood vessels have a limited
vasodilation capacity, the linearity of the MRI response to the
vasodilatory stimulus has a restricted range. Indeed, the shape
of the MRI response to the stimulus and baseline parameters
including resting CBF and EtCO2 can influence CVR values
(Bhogal et al., 2014, 2016; van Niftrik et al., 2018; Hou et al.,
2019). Despite some gaps in current knowledge, CVR has a
proven validity and utility in several diseases as described above.

Definition and Interpretation of CVR Delay
Delay in the MRI response to a stimulus can lead to inaccurate
CVR values if it is not accounted for, and could give further
information on vascular health. Voxel-wise or ROI delay should
be favoured as opposed to whole brain delay to better account for
differences in tissue response and distance from blood vessels.
Artificially high or low delay values can be obtained when the
noise level is high, i.e., low CNR. Definitions of delay were
inconsistent in distinguishing between lung-to-brain delay and
duration of the vasodilation process (Thomas et al., 2014). For
example, one study computed the lung-to-brain delay, assuming
instantaneous MRI response, as the shift in the EtCO2 that gives
the lowest residual when regressed against the MRI time course:
the delay in grey and white matter were approximately 15 and
35 s, respectively (Thomas et al., 2014). Another study computed
the response time using amono-exponential fit of theMRI signal:
they found response time constants between a few seconds in grey
matter up to 100 s in white matter (Poublanc et al., 2015).

Implications for Future Research
Harmonisation of the CVR-MRI Experiment

Variability in the implementation of CVR experiments, including
the choice of sequence and MRI parameters, such as TR and TE
for BOLD MRI and post-labelling delay for ASL MRI (Inoue
et al., 2014), causes heterogeneity in the CVR values, making
it challenging to interpret findings across studies and conduct
meta-analyses. CVRmeasurements are highly dependent onMRI
sequence (e.g., BOLD, ASL, PC, and DSC), since each measures
a different quantity as an estimate or surrogate of CBF, which are
not directly comparable (Zhou Y. et al., 2015).

Harmonisation of acquisition and processing methods
would allow more uniform definitions of CVR, delay and
HRF, enhancing inter-study comparability, although specific
techniques may be better suited to some pathologies and patient
groups. Such efforts may also find consensus on the optimal
paradigm duration to ensure that CO2 reaches the region of
interest and the MRI response reaches the steady state. As many
groups have developed in-house software to process CVR data,
making these publicly available, as a step towards development of
validated, community-driven open-source software, would also
promote reproducibility and harmonisation.

While little consensus currently exists, our review reveals
evidence of convergence in some aspects of the CVR-MRI
experiment: the use of BOLD at 3T with a block paradigm for the
acquisition and definition of CVR as the relative change in BOLD
signal per unit change in mmHg (%/mmHg). Early attempts
to establish a framework for reaching consensus have recently
been initiated (Bright et al., 2017). Further work is needed to
reach consensus regarding signal processing and CO2 delivery
methods. CVR is also highly dependent on the image analysis
methods used, including the erosion of regions of interest to
avoid signal contamination from neighbouring tissues, or region
of interest vs. voxel-wise analysis.

Considerations for Future Studies

Detailed reporting of methods and results is essential for
interpretation and inter-study comparison of CVR data. Future
publications should give sufficient detail to allow processing
to be reproduced and, where possible, authors should release
their software in version controlled open-source repositories.
Results should preferably be reported in relative signal units to
allow inter-study comparisons. Accurate recording and reporting
of tolerability and reasons for excluding CVR scans is also
important to facilitate clinical translation.

Non-linearity due to the limited vasodilation capacity of the
blood vessels, is a consideration when interpreting CVR values.
In this case, CVR reflects both the maximum response as well
as the sensitivity to CO2. Research is needed to identify the
aspects of the CVR response (e.g., maximum response, MRI
response vs. EtCO2 slope) that are most sensitive and specific in
key pathologies. Accounting for voxel-wise lung-to-brain delay
would allow direct comparison of the BOLD signal and EtCO2

and should improve the accuracy of CVR values. Drift in the
MRI signal can be significant and should be controlled for during
signal processing (Liu et al., 2019).
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Finally, there are age-related changes in CVR values: CVR
is lower with increasing age in grey and white matter (Thomas
et al., 2014; Leung et al., 2016c; Leoni et al., 2017). Statistical
analyses should account for such key covariates, which requires
larger sample sizes or matched study design. CVR is also
associated with vascular risk factors including hypertension,
diabetes, hypercholesterolemia and smoking (Haight et al.,
2015; Tchistiakova et al., 2015; Sam et al., 2016b; Blair et al.,
2020).

Strengths and Weaknesses
This review included foreign language papers (5/236), though
one such paper was inaccessible. Most but not all of the required
information was obtained during the data extraction. This might
have added a bias to the results of this review: for example,
description of the CVR processing and delay computation
methods were not clear in 9% and 11% of the studies, respectively.
Furthermore, the sample size of many studies was low (mean
sample size: 35, 45/235 studies ≤10 participants), particularly
in studies investigating repeatability and reproducibility of CVR
values (mean: 16). This review was also restricted to human
studies; therefore it does not provide a detailed description
of preclinical CVR methods, although the main processing
techniques are similar.

CONCLUSION

To our knowledge, this is the first systematic review to
summarise and describe the diverse acquisition and analysis
techniques used to measure CVR using MRI, and their
applications in health and disease. While CVR-MRI is a
relatively new and evolving technique we identified applications
in several clinical populations including steno-occlusive
and small vessel disease, highlighting the value of CVR
measurements in medical research. However, acquisition
techniques, analysis methods and definitions of CVR all
varied substantially. Future work should target consensus
recommendations to facilitate more reliable and harmonised
CVR measurement for use in clinical research and trials of
new therapies.
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