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Arachidonic acid (ARA) is an important ω-6 polyunsaturated fatty acid (PUFA), and
docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and n-3 docosapentaenoic
acid (n-3 DPA) are three well-known ω-3 PUFAs. These fatty acids can be metabolized
into a number of bioactive lipids. Eicosanoids derived from ARA have drawn great
attention because of their important and complex biofunctions. Although EPA, DHA and
n-3 DPA have also shown powerful biofunctions, we have fewer studies of metabolites
derived from them than those from ARA. Recently, growing research has focused on
the bioaction of ω-3 PUFA-derived metabolites, which indicates their great potential
for treating metabolic disorders. Most of the functional studies of these bioactive lipids
focused on their anti-inflammatory effects. However, several studies elucidated their
direct effects on pancreatic β cells, hepatocytes, adipocytes, skeletal muscle cells, and
endothelial cells. These researches revealed the importance of studying the functions
of metabolites derived from ω-3 polyunsaturated fatty acids other than themselves. The
current review summarizes research into the effects of ω-3 PUFA-derived oxylipins on
metabolic disorders, including diabetes, non-alcoholic fatty liver disease, adipose tissue
dysfunction, and atherosclerosis.

Keywords: ω-3 PUFA, eicosanoids, metabolic disorders, diabetes, NAFLD, adipose tissue, atherosclerosis

Abbreviations: ALA, α-linolenic acid; ARA, arachidonic acid; AMPK, AMP-activated protein kinase; BLT, leukotriene
B4 receptor; cAMP, cyclic AMP; CCL, C-C motif chemokine ligand; COX, cyclooxygenase; CYP, cytochrome P450;
DHA, docosahexaenoic acid; DHEA, docosahexaenoyl ethanolamine; DiHDPA, dihydroxydocosapentaenoic acid; DiHETE,
dihydroxyeicosatetraenoic acid; DPA, docosapentaenoic acid; EDP, epoxydocosapentaenoic acid; EEQ, epoxyeicosatetraenoic
acid; EPA, eicosapentaenoic acid; EPEA, N-eicosapentaenoyl ethanolamine; ERV-1, Resolvin E1 Receptor; GPCR, G protein-
coupled receptors; HDoHE, hydroxydocosahexaenoic acid; HEPE, hydroxyeicosapentaenoic acid; HFD, high-fat-diet; IFN-γ,
interferon γ; IL, interleukin; LGR6, leucine-rich repeat containing G protein-coupled receptor 6; LOX, lipoxygenase;
LXA4, lipoxin A4; MaR, maresin; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; PD,
Protectins; PDX, Protectin DX; PPAR, peroxisome proliferator-activated receptor; PUFA, polyunsaturated fatty acid; RvD,
D-series resolvin; RvE, E-series resolvin; sEH, soluble epoxide hydrolase; TNF-α, tumor necrosis factor α; 7,17-DHDPA,
7,17dihydro-dipicolinic acid; 9-HOTRE, 9-hydroxy-octadecatrienoic acid; 13-(S)-HOTRE, 13-(S)-hydroxyoctadecatrienoic
acid; 13-(S)-HPOTRE, 13-(S)-hydroperoxyoctadecatrienoic acid; 13-oxo-OTA, 13-Oxo-9(Z),11(E),15(Z)-octadecatrienoic
acid; 14,15-DIHETRE,14,15-dihydroxy-5,8,11-eicosatrienoic acid.
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INTRODUCTION

Polyunsaturated fatty acids (PUFAs) refer to fatty acids with two
or more double bonds in their backbone. Arachidonic acid (ARA)
is an important ω-6 PUFA, which can be metabolized from
linoleic acid (Schmitz and Ecker, 2008). Docosahexaenoic acid
(DHA), eicosapentaenoic acid (EPA) and n-3 docosapentaenoic
acid (n-3 DPA) are three well-known ω-3 PUFAs and they
can be derived from α-linolenic acid (ALA). The estimated
conversion rate of ALA to EPA was 8–20% in human, while
that to DHA was 0.5–9%, even lesser (Stark et al., 2008).
Those PUFAs are precursors of a series of bioactive lipids
metabolized by cyclooxygenase (COX), lipoxygenase (LOX), and
cytochrome P450s (CYPs) and autoxidized non-enzymatically
(Zhang et al., 2015).

Eicosanoids derived from ARA have drawn great attention
because of their important and complex biofunctions. Many
studies have examined the functions of ARA metabolites,
including prostaglandins, thromboxanes, leukotrienes, lipoxins
hydroxyeicosatetraenoic acids, and epoxyeicosatrienoic acid.
These metabolites play vital roles in many physiological and
pathophysiological processes. The effects of dietary supplement
of ω-3 PUFAs are mediated not only by the precursor per se and
their metabolites but also by competing the enzymes with ARA
in the eicosanoid-producing process (Calder, 2020b). The effects
of ARA and ARA-derived eicosanoids are well documented by
several reviews (Sonnweber et al., 2018; Calder, 2020b). However,
although ω-3 PUFAs also showed powerful biofunctions, we have
fewer studies of their derived metabolites than those of ARA.
Thus, we focused on the ω-3 PUFA derived bioactive lipids in
the current review.

Metabolic disorders, such as obesity, diabetes, non-alcoholic
fatty liver disease (NAFLD), and cardiovascular disease greatly
threaten human health, and the prevalence of the diseases is
increasing worldwide (Lavie et al., 2009; Younossi et al., 2016,
2018; Glovaci et al., 2019). In metabolic diseases, the profile
of metabolites derived from ω-3 PUFAs is changed because
of disturbed PUFA metabolism (Wang et al., 2017; Laguna-
Fernandez et al., 2018; Garcia-Jaramillo et al., 2019). In the
current review, we summarize the growing research into the effect
of ω-3 PUFA-derived bioactive lipids on metabolic disorders,
including diabetes, NAFLD, adipose tissue dysfunction and
atherosclerosis.

THE METABOLIC PATHWAYS OF ALA,
EPA, DHA, AND n-3 DPA

The metabolic pathways of ALA, EPA, DHA, and n-3 DPA were
profoundly described by several reviews (Gabbs et al., 2015;
Kuda, 2017; Drouin et al., 2019) and we briefly summarized as
below:

ALA can be metabolized into hydroxy fatty acids by
the COX and LOX pathway and epoxygenated fatty acids
by the CYP pathway (Gabbs et al., 2015). In addition,
ALA is the precursor of EPA, n-3 DPA and DHA. The
rate limiting step is addition of a fourth double bond by

1-6 desaturase. Next by elongation and desaturation, EPA
is produced (Stark et al., 2008). EPA can be metabolized
into 3-series prostaglandins and thromboxanes by the COX
pathway; hydroxyeicosapentaenoic acids (HEPEs), E-series
resolvins (RvE; RvE1-E3), 5-series leukotrienes and lipoxins by
the LOX pathway; and epoxyeicosatetraenoic acids (EEQs) and
dihydroxyeicosatetraenoic acids (diHETEs) by the CYP pathway
(Zhang et al., 2015). Of note, 18-HEPE is derived from EPA
by the CYP pathways or by aspirin-acetylated COX2 and then
metabolized into RvEs by the LOX pathway (Figure 1; Gabbs
et al., 2015).

Docosahexaenoic acid can be metabolized into
hydroxydocosahexaenoic acids (HDoHEs), D-series
resolvins (RvD; RvD1-D6), maresins (MaR; maresin 1
and 2), protectins (PD; PD1 and PDX) by the LOX
pathway and epoxydocosapentaenoic acids (EDPs) and
dihydroxydocosapentaenoic acids (DiHDPAs) by the CYP
pathway (Zhang et al., 2015). 17-hydroperoxydocosahexaenoic
acid (17-H(p)DHA) is the precursor of DHA-derived specialized
pro-resolving mediators. 17S-H(p)DHA can be metabolized
from DHA by the LOX pathway and then metabolized into
17(S)-Hydroxy docosahexaenoic acid (17S-HDHA) and PD1.
17S-HDHA is further metabolized into RvDs and PDX. 17R-
H(p)DHA is produced from DHA by aspirin-acetylated COX2
and then metabolized into 17R-HDHA and AT-PD1. 17R-HDHA
can be further metabolized to AT-RvDs (Figure 1; Gabbs et al.,
2015; Kuda, 2017).

n-3 DPA can be formed from EPA by elongase and converts
to DHA by 16 or14/-desaturase (Park et al., 2015; Drouin et al.,
2019) thus it is an important intermediate in the conversion
pathway of EPA and DHA (Figure 2). In addition, it can
metabolized into PDn-3DPA (PD1n-3DPA and PD2n-3DPA),
RvDn-3DPA (RvD1n-3DPA, RvD2n-3DPA, and RvD5n-3DPA),
MaRn-3DPA (MaR1n-3DPA, MaR2n-3DPA, and MaR3n-3DPA) and
hydroxy-DPA through LOX pathway; 13-series Rvs though COX
pathway and 13-oxo derivatives by COX pathway when aspirin
is existed (Figure 2; Drouin et al., 2019).

As ARA, ω-3 PUFA can also generate oxylipins
non-enzymatically, which is mediated by uncontrolled
oxidation (Galano et al., 2015; Hajeyah et al., 2020). ALA
generates phytoprostanes, EPA generates F3-isoprostanes
and DHA generates F4-neuroprostanes and neurofurans
non-enzymatically (Galano et al., 2015).

In addition to ω-3 PUFA-derived oxylipins, conjugates of
ω-3 PUFA with ethanolamine form acylethanolamides, which
belong to fatty acid amides. Ethanolamine conjugates of
DHA and EPA termed docosahexaenoyl ethanolamine (DHEA)
and N-eicosapentaenoyl ethanolamine (EPEA), respectively
(Meijerink et al., 2013). DHEA and/or EPEA can also be further
metabolized by COX, LOX and CYP pathway (de Bus et al.,
2019). DHEA and EPEA showed anti-inflammatory effects (de
Bus et al., 2019), which indicates they may have bioactive effects
on metabolic disorders. Besides, ω-3 PUFA intake was reported
to reduced endocannabinoid levels in plasma and various tissues
(Saleh-Ghadimi et al., 2020).

In the present review, we focus on the oxylipins enzymatically
derived from ω-3 PUFA.
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FIGURE 1 | Biosynthesis of EPA/DHA-derived bioactive lipids. LT, leukotrienes; LX, lipoxins.

THE IDENTIFIED RECEPTORS OF ω-3
PUFA-DERIVED OXYLIPINS

Identifying the receptors of these lipid mediators is vital to
investigate their functions and the underlying mechanisms.
Several studies have revealed that the effects of metabolites
derived from ω-3 PUFA are mediated by G protein-
coupled receptors (GPCRs) or nuclear receptors (Table 1).
Krishnamoorthy et al. (2010) reported that RvD1 can directly
bind to two GPCRs, ALX, and GPR32. ALX was first identified
as an LXA4 receptor and GPR32 was considered an orphan
receptor. The authors further revealed that RvD1-stimulated
phagocytosis in macrophages was mediated by ALX and GPR32
(Krishnamoorthy et al., 2010). GPR18 is identified as a RvD2
receptor (Chiang et al., 2015). The protective effects of PDX
on oxidative stress in vascular endothelial cells were mediated
by GPR120, thus GPR120 may be a putative receptor of PDX
(Hwang et al., 2019). MaR1 derived from DHA specifically
binds to and activates human leucine-rich repeat containing G
protein-coupled receptor 6 (LGR6) (Chiang et al., 2019). RvE1
binds to leukotriene B4 receptor 1 (BLT-1) and ERV-1 (also
known as ChemR23) (Freire et al., 2017). 5-HEPE is an agonist
of GPR119, a GPCR that regulates insulin secretion in pancreatic
β cells (Kogure et al., 2011).

Peroxisome proliferator-activated receptors (PPARs) are
nuclear receptors that can sense fatty acid and regulate lipid and
glucose metabolism (Xu et al., 2018). The PPAR family includes
three members, PPARα, PPARβ/δ, and PPARγ. HEPEs derived
from EPA can activate PPARs (Yamada et al., 2014). 8-HEPE
and 9-HEPE show higher ligand activities for PPARs than do 5-
HEPE, 12-HEPE, 18-HEPE and EPA. Besides PPARs, MaR1 is
an endogenous ligand of retinoic acid-related orphan receptor α

(RORα) (Han et al., 2019). However, whether other ω-3 PUFA-
derived metabolites are ligands of GPCRs or nuclear receptors
is still unknown.

EFFECT OF ω-3 PUFA-DERIVED
OXYLIPINS ON DIABETES

Type 1 diabetes is described as immune-mediated destruction of
pancreatic β cells, and the characteristics of type 2 diabetes are
insulin resistance and progressive β-cell failure (Yang et al., 2018).
Diabetes is a major metabolic disorder with high prevalence
and is a risk factor for relevant public health issues such
as cardiovascular disease, retinopathy, microangiopathy, and
impaired wound healing (Yang et al., 2018).

EPA and DHA have shown beneficial effects for both type
1 and type 2 diabetes in rodents (Krishna Mohan and Das,
2001; Suresh and Das, 2003; Bi et al., 2017; Lepretti et al.,
2018) and there is increasing evidence that the metabolites of
EPA and DHA regulate these procedures. However, clinical trials
showed conflicting results of dietary supplement of EPA/DHA
on metabolic parameters in diabetic patients. A 6-month
EPA treatment decreased postprandial glucose level of newly
diagnosed impaired glucose metabolism patients (Sawada et al.,
2016). Another clinical research also revealed the beneficial
effects of ω-3 PUFA supplement on metabolic parameters
including glucose and glycosylated hemoglobin in type 2 diabetic
patients (Jacobo-Cejudo et al., 2017). However, several clinical
studies revealed neutral effects of ω-3 PUFAs on metabolic
profiles in type 2 diabetic patients (Wong et al., 2010; Poreba
et al., 2017). The disagreement of these studies may be related
with different sample sizes, baseline characteristics of patients,
different doses and purities of these fatty acid, different time
courses of the treatments and different basic medicine of these
patients. Moreover, Poreba et al. (2017) also demonstrated high-
dose ω-3 PUFAs did not increase RvD1 level in patients with
atherosclerosis and type 2 diabetes and this is an important
clue that the production of bioactive metabolites of ω-3 PUFAs
is related to their therapeutic effects (Poreba et al., 2017).
Thus, to study the effects and mechanism of ω-3 PUFA-derived
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FIGURE 2 | Biosynthesis of n-3 DPA-derived bioactive lipids. RvT1: 7,13R, 20-tri hydroxy-n-3 DPA; RvT2: 7,12,13R-tri hydroxy-n-3 DPA; RvT3:
7,8,13R-trihydroxy-n-3 DPA; RvT4: 7,13R-dihydroxy-n-3 DPA.

TABLE 1 | The receptors of ω-3 PUFA-derived bioactive lipids.

Metabolites Precursors Putative receptors

GPCR NR

RvD1 DHA ALX

GPR32

RvD2 DHA GPR18

MaR1 DHA LGR6 RORα

PDX DHA GPR120

RvE1 EPA BLT-1

ERV-1

5-HEPE EPA GPR119 PPARs

8-HEPE EPA PPARs

9-HEPE EPA PPARs

12-HEPE EPA PPARs

18-HEPE EPA PPARs

GPCR, G protein-coupled receptor; NR, nuclear receptor.

metabolites is important to develop new strategies to confront
diabetes.

Recently, the bioactive lipids derived from EPA or DHA,
including RvD1, RvD2, PDX, RvE1, and 5-HEPE, were reported
to affect insulin resistance or pancreatic β-cell function (Table 2).
Moreover, ω-3 PUFA metabolites can be involved in diabetic

complications, including impaired wound healing and diabetic
retinopathy (Table 2).

Effect of DHA-Derived Oxylipins on
Diabetes
The levels of RvD1 and 17-HDHA were decreased in adipose
tissue of genetic as well as diet-induced obese mice (Neuhofer
et al., 2013). 17-HDHA treatment was further found to improve
adipose tissue inflammation and insulin sensitivity in high-
fat-diet (HFD)-fed mice (Neuhofer et al., 2013). Also, RvD1
has beneficial effects on insulin resistance. Hellmann et al.
(2011) demonstrated that RvD1 improved glucose tolerance and
increased insulin-stimulated pAkt level in liver, adipose tissue
and skeletal muscle in db/db mice. The authors further found
that RvD1 increased the ratio of M2 and M1 adipose-tissue
macrophages (Bathina et al., 2020) and ameliorated adipose tissue
inflammation (Hellmann et al., 2011). RvD1 was also reported to
improve insulin resistance through the PI3K-Akt-mTOR axis in
brain tissue (Bathina et al., 2020). In vitro study also indicated that
RvD1 could attenuate interferon γ (IFN-γ)/lipopolysaccharide-
induced pro-inflammatory cytokine expression in macrophages
(Titos et al., 2011). Collectively, RvD1 improves insulin sensitivity
by inhibiting tissue inflammation. Moreover, RvD1 ameliorated
streptozotocin induced type1 diabetes in mice (Bathina and
Das, 2021). In addition, local RvD1 delivery can accelerate
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TABLE 2 | The functions of ω-3 PUFA-derived bioactive lipids on metabolic disorders.

Metabolites Function Diseases In vivo In vitro References

RvD1 – Insulin resistance;
– Adipose tissue Inflammation

Type 2 diabetes
√ √

Hellmann et al., 2011; Bathina
et al., 2020

– Oxidative stress
– Inflammation

Type 1 diabetes
√

Bathina and Das, 2021

+ Healing of diabetic wounds Diabetic complications
√

Bathina and Das, 2021

– Pro-angiogenic potential of
retinal photoreceptors

Diabetic complications
√

Maisto et al., 2020

– NASH NASH
√ √

Rius et al., 2014; Li et al., 2020

– Macrophage inflammation Obesity
√

Titos et al., 2011

– Advanced atherosclerosis Atherosclerosis
√

Fredman et al., 2016

17-HDHA,
RvD1 precursor

– Adipose tissue Inflammation Obesity;Type 2 diabetes
√

Neuhofer et al., 2013

– NAFLD;
– Liver inflammation

NAFLD
√

Rodriguez-Echevarria et al.,
2018

RvD2 – Adiposity;
+ Glucose tolerance

Obesity
√

Pascoal et al., 2017

Protectin DX – Insulin resistance;
+ skeletal muscle IL-6 secretion

Type 2 diabetes
√ √

White et al., 2014

– Skeletal muscle cell Insulin
resistance

Type 2 diabetes
√ √

Jung et al., 2017

– Hepatocyte insulin resistance;
– Fetuin-A and selenoprotein

Type 2 diabetes
√

Jung et al., 2019

– Adipocyte Inflammation;
– Adipocyte Insulin resistance

Insulin resistance
√

Jung et al., 2018a

– Hepatic steatosis NAFLD
√ √

Jung et al., 2018c

MaR1 – TNFα induced lipolysis Obesity
√

Laiglesia et al., 2018a

– Insulin resistance;
– Adipose tissue Inflammation;
+ Adiponectin secretion

Obesity;Type 2 diabetes
√ √

Martinez-Fernandez et al.,
2017, 2020

– Hepatic steatosis; NAFLD
√ √

Rius et al., 2017; Jung et al.,
2018b; Laiglesia et al., 2018b

+ M2 polarity of liver
macrophages

NASH
√ √

Han et al., 2019

MaR1 + RvD2 – Atherosclerosis;
– Macrophage inflammatory

Atherosclerosis
√ √

Viola et al., 2016

PD1 + Adiponectin secretion Obesity
√

Gonzalez-Periz et al., 2009

19,20-DiHDPA + Diabetic retinopathy Diabetic complications
√ √

Hu et al., 2017

19,20-EDP + Autophagy (hepatocyte);
– Insulin resistance (adipocyte)

NAFLD;Obesity
√

Lopez-Vicario et al., 2015

RvE1 – Hepatic steatosis
– Liver inflammation

NAFLD
√

Gonzalez-Periz et al., 2009

– Atherosclerosis Atherosclerosis
√

Salic et al., 2016

RvE1
(RvE1 receptor overexpression)

– Insulin resistance;
– Inflammation

Obesity;Type 2 diabetes
√

Sima et al., 2017; Pal et al.,
2020

18-HEPE/Resolvin E1
(RvE1 receptor deletion)

– Macrophage oxLDL uptake;
– Atherosclerosis

Atherosclerosis
√ √

Laguna-Fernandez et al., 2018

18-HEPE – NAFLD;
– Liver inflammation

NAFLD
√

Rodriguez-Echevarria et al.,
2018

– Endothelial activation Atherosclerosis
√

Liu et al., 2018

8-HEPE – Dyslipidemia
– Liver steatosis

NAFLD
√

Saito et al., 2020

17,18-EEQ – Insulin resistance (adipocyte) Obesity
√

Lopez-Vicario et al., 2015

– Endothelial activation Atherosclerosis
√

Liu et al., 2018

17,18-EEQ
9-HEPE
5-HEPE

– Liver steatosis;
– Adipose tissue inflammation
– Macrophage inflammation

NAFLD
√ √

Wang et al., 2017

5-HEPE + T-reg in adipose tissue Obesity
√

Onodera et al., 2017

+ Insulin secretion Diabetes
√

Kogure et al., 2011

(Continued)
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TABLE 2 | Continued

Metabolites Function Diseases In vivo In vitro References

12-HEPE + Cold adaptation;
+Glucose uptake (adipocyte and

skeletal muscle)

Diabetes
√ √

Leiria et al., 2019

RvD5n-3DPA – Leukocyte and platelet
activation

– Aortic lesions

Atherosclerosis
√ √

Colas et al., 2018

13-oxo-OTA + Glucose uptake (adipocyte) Diabetes
√

Takahashi et al., 2015

–, inhibit; +, promote; Ref., reference.

wound closure in diabetic mice by stimulating macrophage
phagocytosis to enhance clearance of apoptotic cells (Tang et al.,
2013). In vitro study demonstrated RvD1 reduced the pro-
angiogenic potential of retinal photoreceptors treated by high
glucose by increasing anti-angiogenic miRNAs and decreasing
VEGF content in exosomes (Maisto et al., 2020).

PDX-treated mice showed protection from lipid-induced
insulin resistance. Along with this effect, PDX inhibited lipid-
induced secretion of C-C motif chemokine ligand (CCL) 2, CCL5,
tumor necrosis factor α (TNF-α), IFN-γ, interleukin 1β (IL-1β),
IL-2, and IL-17. However, IL-6 level was significantly increased
with PDX treatment, which was from skeletal muscle and
suppressed gluconeogenic gene expression in liver (White et al.,
2014). In addition, PDX can activate AMPK independent of IL-6
(White et al., 2014). Consistent with this finding, PDX improved
HFD-induced insulin resistance in mouse skeletal muscle and
palmitate-induced insulin resistance in skeletal muscle cells
by activating AMPK and increasing PPARα expression (Jung
et al., 2017). In hepatocyte, PDX ameliorated palmitate-induced
insulin resistance by downregulating the expression of fetuin-
A and selenoprotein P (Jung et al., 2019). Fetuin-A and
selenoprotein P were hepatokines and their levels were increased
in the plasma of obesity patients (Jung et al., 2019). PDX
also improved lipopolysaccharide-induced insulin resistance in
adipocytes (Jung et al., 2018a).

MaR1 treatment ameliorated insulin resistance in db/db mice
and HFD-fed mice by suppressing inflammation and improving
insulin sensitivity in adipose tissue (Martinez-Fernandez et al.,
2017). The effects of MaR1 on insulin sensitivity were also
confirmed in human adipocytes which were mediated by
improving Akt activation (Martinez-Fernandez et al., 2020).

Soluble epoxide hydrolase (sEH) is a member of the epoxide
hydrolase family in the CYP pathway (He et al., 2016). It
hydrolyses EDPs into DiHDPAs. sEH expression and activity
was found increased in retinas of diabetic mice, and the
level of its product 19,20-DiHDPA was elevated in eyes.
However, levels of other sEH substrates and products were
comparable between control and diabetic mice. 19,20-DiHDPA
was further found to increase endothelial cell permeability
and induce the migration of pericytes into the extravascular
space (Hu et al., 2017). Of note, the expression of sEH was
increased in retinas of patients with non-proliferative diabetic
retinopathy as compared with non-diabetic individuals (Hu
et al., 2017), so sEH has potential as a therapeutic target of
diabetic retinopathy.

Effect of EPA-Derived Oxylipins on
Diabetes
BLT-1 and ERV-1 are two receptors for RvE1 (Freire et al., 2017).
In type 2 diabetic patients’ neutrophils, ERV-1 expression was
significantly upregulated and BLT-1 expression was decreased.
In addition, the serum level of RvE1 was decreased in type 2
diabetic patients versus healthy controls. RvE1 was further found
to facilitate neutrophil phagocytosis from healthy individuals,
and a higher dose was needed to achieve a similar response in
neutrophils of diabetic patients (Freire et al., 2017). These data
indicate that repressed RvE1 signaling is involved in neutrophil
phagocytosis dysfunction in type 2 diabetes. In addition,
overexpression of the RvE1 receptor ERV-1 in myeloid cells
attenuated diet-induced obesity, hepatic steatosis and glucose
intolerance in mice. A mechanism study revealed that ERV-
1 overexpression maintained peripheral blood monocyte and
adipose-tissue macrophage skewing to an M2 phenotype in mice
with an HFD (Sima et al., 2017). Besides, RvE1 was reported
to improve hyperinsulinemia and hyperglycemia in HFD fed
mice by activating ERV-1. The authors further demonstrated
genetic diversity and variability defined the therapeutic effects
of RvE1 by using the diversity outbred mice. This research
highlights the genetic variants in the RvE1 response need to
be considered when exploring the therapeutic effects of EPA
clinically (Pal et al., 2020).

Eicosapentaenoic acid could increase glucose-stimulated
insulin secretion from ob/ob mice (Neuman et al., 2017) 5-
HEPE derived from EPA could increase glucose-stimulated
insulin secretion in MIN6 cells by activating the GPR119/cAMP
pathway (Kogure et al., 2011). Thus, the effect of EPA on insulin
secretion may be mediated by its metabolites, which needs
further investigation.

Effect of ω-3 PUFA-Derived Oxylipins on
Non-alcoholic Fatty Liver Disease

Non-alcoholic fatty liver disease is defined as the accumulation of
excess fat in the liver in the absence of excessive alcohol drinking
and any secondary cause and thus a hepatic manifestation
of metabolic syndrome (Ahmed, 2015). In NAFLD, simple
steatosis can progress into non-alcoholic steatohepatitis (NASH),
estimated to be the major reason for liver transplantation in the
United States by 2020 (Diehl and Day, 2017). EPA and DHA
showed protective effects on NAFLD (Scorletti and Byrne, 2018;
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Yan et al., 2018; Jordao Candido et al., 2019). Moreover, to better
understand the underlying mechanisms, increasing studies have
focused on the functions of their derived metabolites in NAFLD.

Effect of ω-3 PUFA-Derived Oxylipins on
Hepatic Steatosis
Hepatic steatosis is considered the first hit in the current
“multiple-hit” theory proposed for the pathogenesis of NAFLD
(Ahmed, 2015). PDX, MaR1, 19,20-EDP, and 17-HDHA derived
from DHA and 17,18-EEQ, 18-HEPE, and RvE1 derived from
EPA showed potential to ameliorate hepatic steatosis (Table 2).

PDX and MaR1 suppress palmitate-induced lipid
accumulation in hepatocytes by attenuating endoplasmic
reticulum stress (Rius et al., 2017; Jung et al., 2018b,c). For
the mechanism, MaR1 activated AMPK and then induced
sarcoendoplasmic reticulum Ca2+-ATPase 2b expression,
which alleviated the palmitate-induced endoplasmic reticulum
stress (Jung et al., 2018b). Consistent with the in vitro study,
in HFD-fed mice and ob/ob mice, MaR1 alleviated hepatic
steatosis (Jung et al., 2018b; Laiglesia et al., 2018b). 18-HEPE and
17-HDHA could improve HFD-induced hepatic steatosis. Also,
18-HEPE and 17-HDHA increased adiponectin level in HFD
mouse (Rodriguez-Echevarria et al., 2018). However, whether
the beneficial effects of 18-HEPE and 17-HDHA depend on
adiponectin need further studies. 18-HEPE is the precursor of
RvE1. Moreover, intraperitoneal injection of RvE1 significantly
ameliorated the hepatic steatosis and inflammation of ob/ob
mice (Gonzalez-Periz et al., 2009). Our recent study found that
17,18-EEQ, 5-HEPE and 9-HEPE derived from EPA ameliorated
short-term HFD-induced liver steatosis by attenuating adipose
tissue inflammation. In the study, we also found the anti-
inflammatory effect of HEPEs and EEQs was more pronounced
than the same dose of EPA (1 µM), although EPA at 50 µM
showed a significant anti-inflammatory effects (Wang et al.,
2017). In addition, 8-HEPE improved dyslipidemia and liver
steatosis in low-density lipoprotein (LDL) receptor deficient
mice fed with high cholesterol diet (Saito et al., 2020).

sEH can decrease EEQ and EDP level by hydrolyzing them
into less active diols (He et al., 2016). Inhibition of sEH reinforced
the protective role of fat-1 transgenic mice in HFD-induced liver
inflammation and steatosis by increasing 17,18-EEQ and 19,20-
EDP production (Lopez-Vicario et al., 2015). For the mechanism,
19,20-EDP and 17,18-EEQ ameliorated insulin signaling in
palmitate-treated adipocytes; 19,20-EDP restored autophagy in
palmitate-treated hepatocytes (Lopez-Vicario et al., 2015).

Effect of ω-3 PUFA-Derived Derived
Oxylipins on Non-alcoholic
Steatohepatitis
Non-alcoholic steatohepatitis is characterized by liver steatosis,
inflammation, hepatocellular injury and different degrees of
fibrosis and is the progressive form of NAFLD (Schuster et al.,
2018). A recent study found RvD1 treatment mitigated lipid
accumulation, inflammation and hepatic fibrosis in MCD-diet
induced NASH mice. For the mechanism, RvD1 suppressed
oxidative stress by activating nuclear factor E2-related factor

2 and ameliorated inflammation by inhibiting NF-κB and
MAPK signaling pathways (Li et al., 2020). In addition, RvD1
had additional protective effects on calorie restrictive-improved
NASH, as evidenced by decreased macrophage infiltration with
decreased expression of M1 macrophage markers and increased
expression of M2 macrophage markers (Rius et al., 2014).
Also, Han et al. (2019) demonstrated that MaR1 derived from
DHA increased the M2 polarity of liver macrophages and then
ameliorated NASH by activating RORα. RORα, as a nuclear
receptor, in turn increased MaR1 production by transcriptional
induction of 12-lipoxygenase expression (Han et al., 2019).
These studies suggest that these specialized pro-resolving lipid
mediators derived from ω-3 PUFAs have therapeutic potential for
NASH by promoting M2 polarization of liver macrophages.

EFFECT OF ω-3 PUFA-DERIVED
OXYLIPINS ON ADIPOSE TISSUE
FUNCTION

Depending on the adipocyte, adipose tissue can be divided into
white and brown adipose tissue. Also, inducible cells within
white adipose tissue, called “beige” adipocytes, can generate
heat under cold exposure (Rosen and Spiegelman, 2014; Ye
et al., 2020). Adipose tissue functions, including adipose tissue
inflammation, lipolysis, adipogenesis, endocrine function, and
browning, are closely related to obesity-related diseases. The
studies of the effects of ω-3 PUFA derivatives on adipose tissue
function mainly focused on the immune response of adipose
tissue. Their influence on macrophage function contributing to
adipose tissue inflammation was discussed in the previous section
(Table 2). In addition, Onodera et al. (2017) demonstrated that
EPA increased the number and proportion of T regulatory cells
in epididymal adipose tissue of db/db mice. This result was
mediated by 5-HEPE, which is derived from EPA by 5-LOX
(Onodera et al., 2017).

In addition to the immune response, other adipose
tissue functions are regulated by ω-3 PUFA-derived
bioactive metabolites.

Effect of ω-3 PUFA-Derived Oxylipins on
Lipogenesis and Lipolysis
The imbalance of lipogenesis and lipolysis of adipose tissue can
increase the risk of obesity-induced disease (Lafontan, 2014).
MaR1 inhibited TNF-α-induced lipolysis in 3T3-L1 adipocytes
(Laiglesia et al., 2018a). Increased adipocyte lipolysis may
increase plasma free fatty acid level and lead to insulin resistance
and fatty liver disease (Matsuzaka and Shimano, 2011).

Nevertheless, PDX treatment inhibited lipid accumulation
in 3T3-L1 cells during differentiation (Jung et al., 2018a).
GPR120, also called free fatty acid receptor 4, is a free
fatty acid receptor. Recently, DHA is found to promote
adipogenesis by activating GPR120 in the cilia of preadipocytes.
For the mechanism, GPR120 activation induced a rapid
increase in ciliary cyclic AMP (cAMP) level, which in turn
promoted adipogenesis by activating exchange factor directly
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activated by cAMP (EPAC) (Hilgendorf et al., 2019). Because
GPR120 can be activated by PDX, this research implies
the complicated effects of ω-3 PUFA-derived bioactive lipids
on adipogenesis. In addition, more studies are needed to
demonstrate whether ω-3 derived bioactive lipids can affect
the lipid storage and release function of adipose tissue
in vivo.

Effect of ω-3 PUFA-Derived Oxylipins on
Endocrine Function of Adipose Tissue
Adipose tissue, as an endocrine tissue, can affect other tissue
functions by secreting cytokines. MaR1, 18-HEPE, 17-HDHA,
RvD1, and PD1 could increase adiponectin level (Gonzalez-
Periz et al., 2009; Hellmann et al., 2011; Rius et al., 2014;
Martinez-Fernandez et al., 2017; Rodriguez-Echevarria et al.,
2018). Adiponectin is an adipose-derived cytokine, one of the
most abundant proteins in circulation (Wang et al., 2010).
Because adiponectin is beneficial for diabetes, inflammation, and
atherosclerosis (Achari and Jain, 2017), these bioactive lipids may
affect metabolic disorders indirectly by promoting adiponectin
secretion, which needs to be further explored.

Effect of ω-3 PUFA-Derived Oxylipins on
Brown and Beige Adipose Tissue
Brown and beige adipocytes, as heat-producing cells, are
considered to counteract metabolic diseases, including obesity
and type 2 diabetes. Leiria et al. (2019) found that the 12-LOX
biosynthetic pathway was activated in brown adipose tissue under
cold exposure, which promoted the generation and release of
12-HEPE. Then, 12-HEPE exerted a glucose-shuttling effect on
tissues to support thermogenesis (Leiria et al., 2019).

GPR120 is highly expressed in brown adipose tissue and
significantly upregulated in beige adipose tissue induced by cold
exposure. It was further found to mediate ω-3 PUFA-induced
thermogenic gene expression in beige adipocytes by upregulating
fibroblast growth factor 21 expression (Quesada-Lopez et al.,
2016). However, the role of ω-3 PUFA metabolites in white
adipose tissue browning remains unknown. GPR120 can be
activated by PDX, but whether these ω-3 PUFA-derived bioactive
lipids could regulate this process is worth studying.

Besides the direct effects on adipose tissue, ω-3 PUFA
metabolites are reported to indirectly regulate adipose tissue
function. GPR18, the receptor for RvD2, is widely expressed in
hypothalamus and was decreased in level by HFD feeding in
mice. In addition, the production of hypothalamic RvD2 was
decreased in HFD-fed mice. When obese mice were treated
with intra-cerebroventricular injection of RvD2, visceral fat
was reduced, and hypothalamic leptin resistance was reversed
(Pascoal et al., 2017).

EFFECT OF ω-3 PUFA-DERIVED
OXYLIPINS ON ATHEROSCLEROSIS

Atherosclerosis causes ischemic heart disease, strokes, and
peripheral vascular disease (Kobiyama and Ley, 2018). Metabolic

syndrome is responsible for the initial disease and disease
progression (Varghese et al., 2018). Endothelial-cell dysfunction
is the initial step of atherosclerosis. Plaque is chronically built
up with the assistance of macrophages differentiated from
monocytes, smooth muscle cells and multiple chemokines and
growth factors (Gimbrone and Garcia-Cardena, 2016). The
metabolites derived from EPA or DHA, including RvE1, RvD2,
MaR1, 18-HEPE, and 17,18-EEQ, have shown positive effects on
anti-atherosclerosis (Table 2).

Systematic plasma lipidomic research has identified 18-
HEPE as a central molecule derived from EPA. 18-HEPE is
an RvE1 precursor, and knockout of the RvE1 receptor ERV-1
enhanced atherosclerosis and promoted changes in plaque
composition in ApoE–/– mice. The mechanism study showed
that ERV-1/ChemR23–/– macrophages enhanced oxidized
low-density lipoprotein uptake and decreased phagocytosis
(Laguna-Fernandez et al., 2018). RvE1 can ameliorate
atherosclerosis (Salic et al., 2016). In addition, 18-HEPE and
17,18-EEQ ameliorated endothelial-cell activation and monocyte
adhesion by inhibiting the TNFα-induced NF-κB pathway
(Liu et al., 2018).

In the ApoE–/– mouse aorta, RvD2 and MaR1 levels are
correlated negatively with vulnerability plaque index, which is
decreased by HFD treatment. In addition, RvD2 and MaR1
administration suppressed atheroprogression. The protective
effects of RvD2 and MaR1 on atherosclerosis were mediated
by preventing the macrophage inflammatory response (Viola
et al., 2016). RvD1 was decreased in vulnerable regions as
compared with stable regions in human carotid atherosclerotic
plaques. Additionally, its level was decreased in advanced versus
early atherosclerotic lesion in western diet-fed mice deficient in
low-density-lipoprotein receptor (Fredman et al., 2016). These
studies suggest that several metabolites of EPA and DHA
are beneficial for atherosclerosis. However, more in vivo and
mechanistic studies are needed to better understand their effects
on atherosclerosis.

EFFECT OF n-3 DPA AND ITS
DERIVATIVES ON METABOLIC
DISORDERS

n-3 DPA, an important ω-3 PUFA, is also a precursor of
various docosanoids. Besides, it is an important intermediate
in the conversion pathway of EPA and DHA (Figure 2;
Drouin et al., 2019). n-3 DPA supplement significantly improved
homeostasis model assessment of insulin resistance (HOMA-
IR) in HFD fed mice, while DHA and EPA showed a minor
effect (Guo et al., 2018). In human, n-3 DPA and its pro-
resolving mediators have beneficial effects on cardiometabolic
disease (Li et al., 2018). Moreover, It has been proved to
be more potent than EPA in inducing the differentiation
process in preadipocytes, and inhibits the pro-inflammatory
signaling pathways (Murali et al., 2014). Although, it showed
more beneficial effects on those metabolic disorders mentioned
above than EPA and DHA, the functions of its metabolites
are poorly studied.
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n-3 DPA can be metabolized into PDn-3DPA, RvDn-3DPA,
MaRn-3DPA, hydroxylated derivatives from n-3 DPA, 13-serie
Rvs etc. Several functional studies about n-3 DPA derivatives
indicates their anti-inflammation function. A recent study found
significant decreases in plasma RvDn-3DPA concentrations in
CVD patients and RvDn-3DPA reduce leukocyte and platelet
activation in peripheral blood from healthy volunteers as well
as CVD patients. In addition, RvD5n-3DPA reduced aortic lesions
in western diet-fed ApoE–/– mice (Colas et al., 2018). PDn-3DPA
also found to play an important role in regulating macrophage
resolution responses (Pistorius et al., 2018). PD1n-3DPA and
RvD5n-3DPA were reported to decrease leukocyte–endothelial
interaction and attenuate intestinal inflammation (Gobbetti et al.,
2017). Although these n-3 DPA derivatives are identified as
novel specialized proresolving lipid mediators, their effects on
metabolic disorders, such as diabetes, NAFLD, obesity and
atherosclerosis are still largely unknown.

EFFECT OF ALA AND ITS DERIVATIVES
ON METABOLIC DISORDERS

In addition to partially converted into EPA, n-3 DPA and
DHA (with low conversion rate to DHA in human) (de
Lorgeril and Salen, 2004; Stark et al., 2008, 2016), the effects
of oxylipins derived from ALA by LOX and CYP have also
gained attention. Recently, a clinical research showed that
9-hydroxy-octadecatrienoic acid (9-HOTRE) combined with
7,17dihydro-dipicolinic acid (7,17-DHDPA), 14,15-dihydroxy-
5,8,11-eicosatrienoic acid (14,15-DIHETRE) and free adrenic
acid is a biomarker to predict improvement in hepatic collagen
content in NASH patients (Caussy et al., 2020). Besides,
in obese rats, 9-HOTRE showed a negative correlation with
mean glomerular volume (Caligiuri et al., 2013). 13-Oxo-
9(Z),11(E),15(Z)-octadecatrienoic acid (13-oxo-OTA), a product
from ALA catalyzed by LOX, was reported to promote glucose
uptake in 3T3-L1 cells by activating PPARγ (Takahashi et al.,
2015). Moreover, 13-(S)-hydroperoxyoctadecatrienoic acid [13-
(S)-HPOTRE] and 13-(S)-hydroxyoctadecatrienoic acid [13-
(S)-HOTRE] showed anti-inflammatory effects by inactivating
NLRP3 inflammasome complex in macrophages, which indicates
that they may play protective roles in metabolic disorders (Kumar
et al., 2016). However, the studies about the effects of ALA
derivatives on metabolic are limited, especially the in vivo study.

CONCLUSION

Although we have fewer studies of the biofunctions of ω-3 PUFA-
derived bioactive lipids than ARA metabolites, the former have
been increasingly emphasized recently, especially for metabolic
disorders (Table 2). Most of the functional studies focused
on their anti-inflammatory effects. These metabolites can be
more effective against inflammation than the precursors per se.
Because PUFAs are vulnerable to lipid peroxidation, ω-3 PUFA
supplement can lead to increased lipid peroxidation products,

which may limits their clinical applications (Zaloga, 2021).
It is important to increase their anti-inflammatory efficiency
and decrease the dosage. Therefore, studying the function ω-
3 PUFA metabolites may help us to find novel lipid mediators
to treat metabolic disorders better than dietary supplement of
EPA and DHA. Moreover, the anti-inflammatory efficiency of
these metabolites should be further compared to provide more
information for the future clinical applications.

In addition, several studies revealed the direct effects of ω-
3 PUFA-derived oxylipins on pancreatic β cells, hepatocytes,
adipocytes, skeletal muscle cells and endothelial cells. These
bioactive lipids may have potential effects other than anti-
inflammatory effects, which needs more exploration. Metabolites
derived from ω-3 PUFAs are numerous, with attention to RvEs,
RvDs, and PDs. Other metabolites such as EEQs, EDPs, HEPEs,
and n-3 DPA derivatives need more mechanistic studies. In
addition, the explorations of the biofunctions of ω-3 PUFA-
derived bioactive metabolites, including their effects on cellular
function, tissue micro-environment and interactions among
metabolic tissues, are important for understanding their roles
in energy metabolic disorders and related diseases. We also
need more studies to identify their receptors and elucidate the
downstream signaling pathway, which may provide potential
therapeutic strategies for metabolic disorders.

In animal studies, the age, sex, and background of animals
are well controlled. However, plasma and tissue levels of EPA
and DHA and their metabolites in human can be altered by
age, sex and disease status (Calder, 2020a), which indicates the
complexity of clinical application of EPA and DHA. The genetic
variants in the specialized pro-resolving mediator response also
need to be considered when exploring the therapeutic effects
of EPA and DHA clinically. Thus, the individualized treatment
regimens of clinical applications of ω-3 PUFAs may achieve
better effects on metabolic disorders. Moreover, according to
a recent clinical trial, high-dose ω-3 PUFA supplement failed
to increased RvD1 levels in diabetic patients, indicating the
importance to study the disturbance of ω-3 PUFA metabolism
in some disease status.
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