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to survive winter temperature below 0°C remains unclear. In the transcriptomic
of S. insularis, we identified three profiles (profile 25, 27, and 13) whose trends
related to the cold tolerance. We detected 1,783 differentially expressed genes (in
profile 25) and identified 522 genes enriched in the AMPK signaling pathway. The
metabolome analysis identified 122 differential metabolites. We identified four co-
pathways, among which “Glycerophospholipid metabolism” was the pathway most
enriched in differentially expressed genes and differential metabolites. The AMPK
signaling and glycerophospholipid metabolism pathways play key roles in the natural
overwintering physiological process of S. insularis larvae.
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INTRODUCTION

Streltzoviella insularis (Staudinger) (Lepidoptera: Cossidae) is a woodboring insect feeding on
Fraxinus pennsylvanica, Sophora japonica, Ginkgo biloba, Broussonetia papyrifel (Gao and Qin,
1983), as well as many other species used for urban greening and plain afforestation in northern
China, even including the temperate north. We also observed that, compared with F. bungeana
DG, S. insularis caused greater harm to F. pennsylvanica Marsh. var. subintegerrima (Vahl), which
was similar to Agrilus planipennis Fairmair (Zhao et al., 2007). There is also a risk that S. insularis
could spread through the transportation of seedlings, thereby increasing urban greening costs.
Insects are poikilotherms and deploy cold tolerance as their principal survival strategy in
low-temperature environments. Insects have been reported to use supercooling to enhance cold
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tolerance, thus avoiding the freezing of body fluids at
temperatures below 0°C. Common cold-tolerant strategies
for insects include freeze tolerant, freeze avoidant, and chill
susceptible (Sinclair, 1987, 1993, 1996, 1999; Sinclair et al., 2015).
In our previous study on the cold tolerance of S. insularis larvae,
we identified freeze tolerance as the likely strategy; that is, when
their body temperature is higher than the lethal temperature
but below 0°C, body fluids freeze but keep the intracellular
fluids from freezing, so that they can survive. Also, the larvae
of S. insularis increased the ability of cold tolerance first then
reduced during overwintering and showed the strongest cold
tolerance at the lowest point of environmental temperature,
and there was no diapause (Pei et al, 2020). However, as
the temperature first decreased and then increased, why cold
tolerance of S. insularis larvae first increased then decreased
remains unclear.

When insects exhibit cold tolerance during the overwintering
period, their metabolism changes from anabolic (feeding, growth,
and storage of nutrients) in summer and early autumn to
catabolic (synthesis of antifreeze agents, consuming stored
energy) (Storey and Storey, 2012). This transition is triggered
by the lowering of external temperature in late autumn and
winter, so the metabolism changes involve multiple signaling
pathways. Simultaneously, the types and contents of metabolites
in insects during the overwintering period will also change. High
concentrations of low molecular weight sugars and alcohols, such
as glycerol and sorbitol, are often used as antifreeze agents by
insects (Storey and Storey, 1988; Somme, 1964, 1965; Feng et al,,
2016; Park et al., 2017; Burns et al., 2020). Trehalose is also
used as an important component of antifreeze agents in many
insects and helps to stabilize the lipid bilayer of the membrane,
especially during the cell volume shrinking in freeze-resistant
insects, whose content will vary significantly (Kostél et al., 2011;
Feng et al., 2016; Park et al., 2017; Burns et al., 2020). Our
previous studies have shown that the total lipid content and total
glycogen content of S. insularis larvae were closely related to
changes in cold hardiness (Pei et al., 2020). Glycerophospholipids
are the main membrane lipid constituents (Pilkis and Granner,
1992). Research on Pyrrhocoris apterus shows that it changes
the composition of glycerophospholipids in the body under low-
temperature stimulation (Tomcala et al., 2006). Studies on cold
shock of fruit fly (Drosophila melanogaster) had shown that
changes in cell membranes were more likely to occur during long
term cold stimulation (Overgaard et al., 2008; Kostal et al., 2011).

Multi-omics interactive analysis is a method that uses
high-throughput omics methods to describe biological
processes, including genomics, transcriptomics, proteomics,
and metabolomics. Through the integrative analysis of data,
a comprehensive understanding of systems biology can be
achieved. The transcriptomics and metabolomics can explain
changes in organisms from the level of gene transcription
and small molecule metabolites. The interactive analysis of
transcriptomics and metabolomics is based on the bridge of
metabolic pathways, which can explain the metabolic changes in
organisms (Cavill et al., 2016; Misra et al., 2019).

Transcriptomic and metabolomic studies on the cold
tolerance of Drosophila melanogaster have shown that

proline and glutathione metabolism play important roles
in the process of cold tolerance (MacMillan et al, 2016).
Transcriptomic and metabolomic studies have shown that
glycolysis, gluconeogenesis, and the tricarboxylic acid cycle
(TCA cycle) play important roles in the process of cold
tolerance of Corythucha ciliate (Li et al., 2017). The interactive
omics research on Phanaeus vindex showed that acclimation
to different temperature fluctuations is distinct and may be
supported by increasing transcriptional plasticity (Sheldon et al.,
2020). However, to our knowledge, the molecular mechanism
of forest borers’ cold hardiness has not been addressed using an
interactive analysis of the omics approach.

This study investigated the changes in transcription and
metabolism levels of the larvae of S. insularis throughout the
overwintering period (October 2018-March 2019), aiming to
explore the key metabolic pathways that affect their cold tolerance
under natural conditions.

MATERIALS AND METHODS

Insects Collecting

S. insularis larvae with their living wood sections were collected
from street trees (F. pennsylvanica) at south Xiangshan Road,
Shijingshan District, Beijing, China (N 39° 57, E 116° 12').
The wood sections with larvae were stored in open areas where
the temperature can be monitored, and the temperature was
recorded once a month using a thermometer (L91-1, Hangzhou
loggertech Co., Ltd, China) (Pei et al., 2020). The monthly
temperature records in Beijing are also shown in Supplementary
Figure 1. From September 2018 to March 2019, 11 larvae were
collected every 2 weeks, quickly frozen in liquid nitrogen, and
stored in a refrigerator at —80°C. Per 11-larvae sampling, three
larvae were used for transcriptome sequencing (three biological
replicates), five larvae were for metabolome determination (five
biological replicates), and three larvae were used for qRT-PCR to
clarify the reliability and universality of the transcriptome (three
biological replicates). According to the changing trend of the
supercooling point, 1 month after the 12th sampling (numbered
SI_1~12), the 13th sampling was used as the control group
(numbered SI_13). At this time, the larvae had completed their
overwintering (Pei et al., 2020).

Total RNA Extraction

Total RNA was extracted from larvae using RNeasy Plus
Mini Kit (No. 74134; Qiagen, Hilden, Germany) following the
manufacturer’s instructions. RNA purity, concentration, and
integrity were assessed using NanoDrop2000 (Thermo, Waltham,
MA, United States) and Agarose gel electrophoresis.

cDNA Library Construction and

Transcriptome Sequencing

Sequencing libraries were constructed using the Illumina
Truseq™ RNA sample prep kit following standard procedures.
cDNA libraries were sequenced on the Illumina HiSeq 4000
platform at Majorbio Bio-pharm Technology Co., Ltd. (Shanghai,
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China). The software fastx_toolkit_0.0.14' was used to perform
a quality evaluation of the original sequencing data of each
sample, base quality distribution statistics, base error rate
distribution statistics, and A/T/G/C base content distribution
statistics. To ensure the accuracy of subsequent analyses, the
SeqPrep” and Sickle’ software were used to control the quality
of the original sequencing data, to obtain high-quality clean
data. After quality control, statistics and quality evaluation
were again performed on the clean data. We used the
Trinity software* to splice the sequencing results, and the
TransRate software® to optimize and filter the obtained initial
assembly sequences. The Benchmarking Universal Single-Copy
Orthologs software (BUSCO)® utilizing single-copy orthologous
genes was applied to assess the assembly integrity of the
transcriptome. The open reading frame (ORF) coding frame
of the transcript was identified, and then HMMER3 (v
3.1b2) mapping was performed. The assembled transcriptome
sequences were annotated using six major databases (NR,
Swiss-Prot, Pfam, COG, GO, and KEGG). Annotations with
NR, Swiss-Prot, and COG were done using the Diamond
software (v 0.8.37.99) with an E-value cut-off of 107>, The
GO annotations of unigenes were obtained using Blast2GO
(v 2.5.0) software, and the KOBAS (v 2.1.1) software was
used to provide KEGG functional classifications. The data
were analyzed on the free online platform of Majorbio Cloud
Platform’.

Differential Expression Analysis

RSEM?® was used to compare the quality-controlled sequencing
data with the assembled transcriptome sequences through the
comparison software Bowtie. We estimated the expression
abundance of genes and transcripts based on the comparison
results. TPM (Transcripts Per Million reads) was used as an
expression indicator. The DESeq2 software based on negative
binomial distribution was used for statistical analysis of raw
counts. We screened for differentially expressed genes (DEGs)
between groups based on P_adjust less than < 0.05, and the
absolute value of logo,FC greater than 1. BH (FDR correction
with Benjamini/Hochberg) was used for multiple test correction.
DEGs between groups were analyzed by Venn to obtain the
co-expressed and specific DEGs.

KEGG enrichment analysis was performed on each group
of up- and down-regulated DEGs. We also conducted a KEGG
enrichment analysis for continuous up-related DEGs throughout
the overwintering. All DEGs were analyzed using STEM (Short
Time-series Expression Miner)’ time-series expression trend
analysis (Ernst and Bar-Joseph, 2006). SI_1 and SI_2, SI_3 and

1http:/ /hannonlab.cshl.edu/fastx_toolkit/
Zhttps://github.com/jstjohn/SeqPrep
3https://github.com/najoshi/sickle
“https://github.com/trinityrnaseq/trinityrnaseq
>http://hibberdlab.com/transrate/
Chttp://busco.ezlab.org

’www.majorbio.com
8http://deweylab.github.io/RSEM/
http://www.sb.cs.cmu.edu/stem/

SI 4,SI 5and SI_6,SI_7and SI_8,SI_ 9and SI_10and SI_11 and
SI_12 were combined into six orders. There were 30 time-series
profiles. The significance level was p < 0.01. KEGG enrichment
analysis was performed on DEGs in the Profile whose trends
followed changes in cold resistance. The data were analyzed
on the free online platform of Majorbio Cloud Platform (see
text footnote 7).

Quantitative RT-PCR (qRT-PCR) Analysis
We used qRT-PCR to verify the reliability of transcriptome
sequencing. Gene expression levels were normalized to the -
actin housekeeping gene (Yang et al., 2019). We designed specific
primers using the Primer3Plus web tool', and primers were
listed in Supplementary Table 1. qRT-PCR was conducted using
the Bio-Rad CFX96 PCR System (Hercules, CA, United States)
with SYBR Premix Ex Taq II (Takara, Dalian, China). Each
PCR reaction was conducted in a 12.5-uL reaction mixture
containing 6.25 pL of SYBR Premix Ex Taq II, 0.5 pL of each
primer, 1 pL of cDNA template, and 4.25 pL of ddH,0. The
amplification program was as follows: 95°C for 30 s; followed
by 40 cycles of 95°C for 5 s, 60°C for 30 s, and 95°C for
10 s; then 65°C to 95°C in increments of 0.5°C for 5 s to
generate the melting curves. Three biological replicates and three
technical replicates were used for analysis. The relative expression
of the genes was calculated according to the 272 2 ¢T method
(Livak and Schmittgen, 2001).

Metabolite Extraction

The LC-MS parameters were referenced to the previous method
(Yuan et al., 2012). Each larva was placed in a 1.5-ml micro-
centrifuge tube and snap-freeze the tissue sample in liquid
nitrogen (—196°C). The 80% (vol/vol) acetonitrile solution
was prepared for metabolite extraction. 40 ml of HPLC-grade
acetonitrile was added to a 50-ml polypropylene conical tube,
followed by 10 ml of LC/MS-grade water solution. Add 150 1
of 80% (vol/vol) HPLC-grade acetonitrile (cooled to —80°C) to
35 milligrams of ground whole larva in a 1.5 ml microcentrifuge
tube. Each sample was ground for 1-2 min with small pestle
on dry ice in the tube, then vortex for 1 min at 4°C and
incubate for 4 h at —80°C (Vortex-Genie2, Scientific Industries,
United States). The sample was centrifuged at 14,000 g for
10 min using a refrigerated centrifuge at 4°C. Supernatant was
transferred the to a new 1.5-ml microcentrifuge tube and stored
at —80°C. Add 400 .l of 80% (vol/vol) acetonitrile (cooled to
—80°C) to the precipitate. Vortex for 1 min at 4°C, and then
incubate for 30 min at —80°C. Centrifuge at 14,000 g for
10 min at 4°C. Transfer and combine the supernatant from
both extractions. The extraction was centrifuged again at 14,000
g for 10 min at 4°C. Transfer the supernatant to a new 1.5-
ml microcentrifuge tube. SpeedVac to a pellet using no heat
(Genevac miVac,Tegent Scientific Ltd.,England). The injection
volume on the machine was 2 pL. All samples were extracted at
LipidALL Technologies Company (Changzhou, China).

http://www.primer3plus.com/cgi-bin/dev/primer3plus.cgi
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Untargeted Metabolomics Instrumental
Analysis

The ACQUITY UPLC HSS T3 1.8 pm, 2.1 x 100 mm columns
(Waters, Dublin, Ireland) were adopted into the present study.
Ultra-performance Liquid Chromatography (Agilent 1290 II,
Agilent Technologies, Germany) coupled to Quadrupole-TOF
MS (5600 Triple TOF Plus, AB SCIEX, Singapore) was applied to
acquire metabolome data. The MS parameters for detection were:
ESI source voltages were + 5.5 and -4.5 kV, respectively; vaporizer
temperature, 500°C; drying gas (N2) pressure, 50 psi; nebulizer
gas (N2) pressure, 50 psi; curtain gas (N2) pressure, 35 psi; The
scan range was m/z 60-800. Information-dependent acquisition
mode was used for MS/MS analyses of the metabolites. The
collision energy was set at 35 = 15 eV. Data acquisition and
processing were performed using Analyst®TF 1.7.1 Software (AB
Sciex, Concord, ON, Canada). The internal standard includes
phenylalanine D8, tryptophan D8, isoleucine D10, asparagine
13C4, methionine D3, valine D8, proline D7, alanine D4,
glycine D2, serine D3, glutamate D5, aspartate D3, arginine
D7, glutamine D5, lysine D9, histidine D5, and taurine D2.
All samples were measured at Lipid ALL Technologies Company
(Changzhou, China).

Metabolomic Data Analysis

All detected ions were extracted using MarkerView 1.3 (AB
Sciex, Concord, ON, Canada) into Excel in the format of
two dimensional matrix, including mass to charge ratio (m/z),
retention time, and peak areas, and isotopic peaks were filtered.
PeakView 2.2 (AB Sciex, Concord, ON, Canada) was applied to
extract MS/MS data, and perform comparison with Metabolites
database (AB Sciex, Concord, ON, Canada), HMDB, METLIN,
and standard references to annotate ion ID. Self-compiled R
program LipidALL Technologies Company, Changzhou, China)
was used for statistical analysis.

The analysis of metabolome data includes the identification of
different metabolites and Metabolic Pathway Analysis (MetPA)
(Xia and Wishart, 2010). We performed a principal component
analysis on the data using R (4.0.2) (LipidALL Technologies
Company, Changzhou, China). A cluster analysis was performed,
and heat maps were drawn using R (4.0.2) (LipidALL
Technologies Company, Changzhou, China). Orthogonal partial
least squares discriminant analysis (OPLS-DA) and Mann-
Whitney-U hypothesis tests were used to screen different
metabolites using R (4.0.2) (LipidALL Technologies Company,
Changzhou, China). We drew a volcano map of the difference
between the groups using R (4.0.2) (LipidALL Technologies
Company, Changzhou, China). The model species fruit fly
(D. melanogaster) (KEGG) pathway database was used as
reference database, with the species code dme. The database
contains 81 metabolic pathways. This pathway analysis was
done using a two-part method, involving a hypergeometric test
(ORA) and relative betweenness centrality. The input metabolites
were only those with P < 0.05 in the Mann-Whitney-U test,
and the metabolites with KEGG IDs that did not match were
removed. Up-regulated and down-regulated metabolites were
judged based on fold change.

Integrated Analysis of Transcriptomics

and Metabolomics

To obtain the co-pathway, we compared the differential
metabolic pathways obtained by enrichment analysis of the
transcriptome and metabolome of each group of SI_1~12.
Pearson correlation analysis was performed on the log,FC of
DEGs enriched in co-pathway and the fold change of metabolites
enriched in co-pathway. A heat map was drawn based on
the correlation coefficient using R (4.0.0). We screened for
metabolites and differential genes with correlation coeflicients
=0.5 and =-0.5. We used Cytoscape (Cytoscape_v3.7.1) (Shannon
etal., 2003) to draw a disordered co-expression network based on
the correlation coefficients.

RESULTS
RNA-Seq

After quality control, 2.08 GB of clean reads was obtained
through transcriptome sequencing. The sequencing results of
39 samples showed no AT/GC separation, and the average
GC content was 44.46%. The percentage of bases with Phred
scores at the Q30 level (an error probability of 1%) of the
sequencing results were all > 94.1%. Using Trinity to assemble
the clean data, 293,093 transcripts and 195,129 unigenes were
obtained. The BUSCO score was 96.7% (36.6%). The clean
reads of each sample were mapped with the reference sequence
assembled by Trinity, and the mapping results of each sample
were obtained. The average mapping rate was 81.69%, and the
mapping rate of each sample was > 79.45%. According to the
qRT-PCR results (Figure 1 and Supplementary Table 1), the
transcriptome sequencing result was reliable and universal. The
datasets transcriptome for this study can be found in the NCBI
SRA database under accession number PRJNA681480.

Transcriptome Differential Expression
Analysis

Unigenes with significant differences in expression (with P
< 0.05) and an absolute value of up/down fold change > 1

TABLE 1 | Statistics of the number of DEGs.

Group Up-related Down-related Total
SI_1 1,806 1,454 3,260
SI_2 1,356 1,107 2,463
SI_3 2,183 3,642 5,825
Sl 4 3,057 4,685 7,742
SI_5 3,378 4,958 8,336
SI_6 3,165 3,862 7,027
SIL7 4,821 5,267 10,088
SI.8 1,776 3,880 5,656
SI_9 2,600 5,876 8,476
SI_10 4,187 5,008 9,195
SI_11 4,108 4,833 8,941
SI_12 468 1,171 1,639
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were defined as DEGs. The number of DEGs in each group
is shown in Table 1. The DEGs of each group were enriched
in the KEGG database (P < 0.05), and the two categories of
human diseases and drug development were excluded. The
enrichment of up- and down-regulated DGEs is shown in
Supplementary Table 2. Top 20 metabolic pathways with the
smallest p-value are shown in Figures 2, 3. A Venn analysis was
performed on DEGs in each group. Six DEGs were differentially
up-regulated in the 12 groups, and 39 DEGs were differentially
down-regulated in the 12 groups. KEGG enrichment analysis was

performed on the up-regulated DEGs, and 13 metabolic
pathways were enriched (Figure 4 and Supplementary
Table 2), including “Oxytocin signaling pathway” (map04921),
“AMPK signaling pathway” (map04152), “Tight junction”
(map04530), “Insulin  signaling pathway” (map04910),
“Ubiquitin mediated proteolysis” (map04120), “FoxO signaling
pathway” (map04068), “Longevity regulating pathway—multiple
species” (map04213), “RNA transport” (map03013), “Glucagon
signaling pathway” (map04922), “Longevity regulating pathway”
(map04211), “NF-kappa B signaling pathway” (map04064),
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FIGURE 2 | KEGG enrichment analysis of up-regulated DEGs. (A) DEGs of SI_1 (B) DEGs of SI_2 (C) DEGs of SI_3 (D) DEGs of SI_4 (E) DEGs of SI_5 (F) DEGs of
SI_6 (G) DEGs of SI_7 (H) DEGs of SI_8 (I) DEGs of SI_9 (J) DEGs of SI_10 (K) DEGs of SI_11 (L) DEGs of SI_12. The picture shows the top 20 differential

“Circadian rhythm” (map04710), and “Adipocytokine signaling

pathway” (map04920).

Time Series Expression Analysis of DEGs
As shown in Figure 5, the time series analysis identified nine
significantly different gene expression patterns (p < 0.01). KEGG

enrichment analysis was performed on the DEGs in the three
profiles whose expression patterns related to the changes in cold
tolerance, including Profile 25, Profile 27, and Profile 13.

We classified 1,783 DEGs into Profile 25. KEGG
enrichment analysis was performed on these DEGs, and
15 differential metabolic pathways were enriched (P< 0.5;
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FIGURE 3 | KEGG enrichment analysis of down-regulated DEGs. (A) DEGs of SI_1 (B) DEGs of SI_2 (C) DEGs of SI_3 (D) DEGs of SI_4 (E) DEGs of SI_5 (F) DEGs
of SI_6 (G) DEGs of SI_7 (H) DEGs of SI_8 (I) DEGs of SI_9 (J) DEGs of SI_10 (K) DEGs of SI_11 (L) DEGs of SI_12. The picture shows the top 20 differential

Supplementary Table 3). These pathways were the “P53 signaling
pathway” (map04115), “Insulin signaling pathway” (map04910),
“mTOR signaling pathway” (map04150), “Regulation of lipolysis
(map04923), “Longevity regulating pathway”
(map04211), “PI3K-Akt signaling pathway” (map04151), “D-
Glutamine and D-glutamate metabolism” (map00471), “Caffeine
“Glycerophospholipid metabolism”

in adipocytes”

metabolism” (map00232),

(map00564), “Aldosterone-regulated sodium reabsorption”
(map04960), “Longevity regulating pathway-worm” (map04212),
“ECM-receptor interaction” (map04512), “FoxO signaling
pathway” (map04068), “AMPK signaling pathway” (map04152),
and “NF-kappa B signaling pathway” (map04064).

We classified 1,110 DEGs into Profile 27. KEGG enrichment
analysis was performed on these DEGs, and ten differential
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FIGURE 5 | STEM timing analysis of DEGs. Combine SI_1 and SI_2, SI_3 and SI_4, SI_5, and SI_6, SI_7 and SI_8, SI_9, and SI_10, SI_11, and SI_12 into 6 orders.
The number of time series profiles is 30. The significance level is p < 0.01.

metabolic pathways were enriched (P < 0.5; Supplementary “Phenylalanine, Tyrosine and tryptophan biosynthesis”

Table 4). These pathways were the “Pentose and glucuronate
interconversions” (map00040), “FoxO signaling pathway”
(map04068), “Galactose metabolism” (map00052), “Fructose and

mannose metabolism” (map00051), “Longevity regulating
pathway—multiple  species”  (map04213),  “Lysosome”
(map04142), “Glycerolipid metabolism” (map00561),

(map00400), “alpha-Linolenic acid metabolism” (map00592),
“Sphingolipid metabolism” (map00600), and “Neuroactive
ligand-receptor interaction” (map04080). We classified 1,120
DEGs into Profile 13. KEGG enrichment analysis was performed
on these DEGs, but no differential metabolic pathway was
enriched (P < 0.5).
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Differential Metabolite Identification and
Differential Metabolic Pathway

Enrichment Analysis
The metabolome included 122 metabolites belonging to 28
classes, including amino acids, acylcarnitines, and carbohydrates
(Figure 6). Among these, amino acids were the class with
the most metabolites (n = 38). The glycerophosphocholines
(GPCs) content was the highest among the metabolites
(Supplementary Figure 2).

The differential metabolites of each group and enriched
metabolic pathways according to MetPA are shown in Figure 7

and Supplementary Table 5. “Pyrimidine metabolism”
(map00240), “Valine, leucine, and isoleucine degradation”
(map00280), “Valine, leucine, and isoleucine biosynthesis”
(map00292), “Glycine, serine, and threonine metabolism”
(map00260), “Aminoacyl-tRNA biosynthesis” (map00970),

and “Glycerophospholipid metabolism” (map00564) were the
pathways with significant differences in the enrichment of
metabolic pathways in each group.

Interaction Analysis of Metabolomics
and Transcriptomics

We compared the pathway enrichment results of the
metabolomics and transcriptomics of each group (SI_1~12)
to identify significant differences (P < 0.05). There were four
co-pathway enrichment results of the two omics approaches:
“Valine, leucine, and isoleucine degradation”; “Valine, leucine,
and isoleucine biosynthesis”; “Glycine, serine, and threonine
metabolism”; and “Glycerophospholipid metabolism.” There
were 80 DEGs and nine differential metabolites enriched in the
glycerophospholipids metabolism pathway, which was the largest
number of the four co-pathways.

Pearson correlation analysis was performed on differential
metabolites (fold change) and DEGs (Log,FC) enriched in
each metabolic pathway and a heat map was drawn (Figure 8).
We used differential metabolites and DEGs whose correlation
coefficient R > 0.5 in all metabolic pathways to draw a disordered
interaction network diagram (Figure 9). We selected 26 genes
where there may be an interaction with at least three metabolites:
TRINITY_DN34492_c3_gl, TRINITY_DN46674_c3_g3,
TRINITY_DN45833_c3_gl, TRINITY_DN44604_c3_gl,
TRINITY_DN43015_c1_g3, TRINITY_DN42144_c0_gl,
TRINITY_DN39248_c1_g4, TRINITY_DN38812_c0_g2,
TRINITY_DN38210_c3_gl, TRINITY_DN36957_c1_g2,
TRINITY_DN36118_c2_g2, TRINITY_DN32919_c2_g2,
TRINITY_DN32560_c3_gl, TRINITY_DN56418_c0_gl,
TRINITY_DN48061_c3_gl, TRINITY_DN47750_c4_gl,
TRINITY_DN47711_c3_g2, TRINITY_DN45555_c1_gl,
TRINITY_DN45255_c2_gl, TRINITY_DN42138_c3_g2,
TRINITY_DN41559_c1_gl, TRINITY_DN39893_c1_gl,
TRINITY_DN37704_c0_g1, TRINITY_DN35362_c2_g3,
TRINITY_DN33968_c5_gl, and TRINITY_DN32042_c4 gl.
We also screened out seven metabolites that might interact
with at least 20 DEGs, including L-Isoleucine, L-Leucine,
Acetylcholine (AcChol), sn-Glycero-3-phosphocholine, LysoPC
(16:0), LysoPC (18:0) and 3-Methyl-2-oxobutanoic acid.

The results of the omics interaction analysis showed that
the KEGG pathway “glycerophospholipid metabolism” might
be a key pathway in the overwintering period of S. insularis.
According to the metabolome results, the changing trend of
glycerophosphocholine throughout the overwintering period
was first a significant increase, followed by a decrease
(Figure 10), which was the same as the changing trend
of the cold tolerance of S. insularis larvae. The changing
trend of choline during the wintering period also increased
first and then decreased (Figure 10). Glycerol 3-phosphate
(G3P) fluctuated upward in the early overwintering period,
but gradually decreased in the middle and post overwintering
period (Figure 10). At the same time, we noticed differences
in the content of LysoPC (15:0), LysoPC (16:0), LysoPC (18:0),
LysoPC [18:2 (9Z,12Z)], and LysoPC [20:4 (5Z,8Z,11Z,14Z)]
(Figure 10). Moreover, our metabolomics results had significant
changes in the content of LPEs and sn-LPCs which were
not enriched in “Glycerophospholipid metabolism” pathway
(Supplementary Figure 3). The concentrations of sn2-LysoPC
(16:0) and sn2-LysoPC [18:2 (9Z,12Z)] were significantly
higher before overwintering. The concentrations of LysoPE
(0:0/16:0) and LysoPE (20:4) increased significantly when
the temperature was the lowest during the overwintering.
Sn2-LysoPC [18:2(9Z,12Z)]’s concentrations were higher than
other GPCs and GPEs.

Transcriptome results showed the DEG annotated to
the  glycerophosphocholine  phosphodiesterase =~ GPCPD1
in the  “glycerophospholipid = metabolism”  pathway:
TRINITY_DN45152_c3_g2, which tended to first increase
and then decrease while rise again at SI_6 to SI_10 with
another peak and then fall. TRINITY_DN47750_c4_gl
was annotated as responsible for the expression of the
acetylcholinesterase, which catalyzes the synthesis of Choline
(Chol) from AcChol. This DEG was highly expressed when
the cold tolerance of the S. insularis larvae peaked. We found
that TRINITY_DN45336_c0_g3 was annotated on glycerol-3-
phosphate dehydrogenase (NAD +), and its expression in SI_1
~ SI_6 had a tendency to increase first and then decrease. We
also found some DEGs such as: TRINITY_DN37760_c2_gl,
TRINITY_DN38210_c3_gl, TRINITY_DN38432_c2_gl,
TRINITY_DN42144_c0_gl, TRINITY_DN45336_c0_g3, and
TRINITY_DN42371_c3_gl, which have been annotated in
“glycerophospholipid metabolism” pathway.

DISCUSSION

Metabolic Pathways Are Associated With
Continuous Up-Regulated DEGs, Which
Might Maintain the Survival, Growth, and
Development of S. insularis Larvae

During the Overwintering Period

The low-temperature conditions in winter threaten the survival
of S. insularis larvae. Therefore, during this period, the priorities
become maintaining the most basic physiological activities. The
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enrichment analysis results of continuously up-regulated DEGs
seemed to confirm our conjecture.

Ubiquitin-mediated proteolysis plays an important role in a
wide range of basic cellular processes. These include regulating
the cell cycle, regulating immune and inflammatory responses,
controlling signal transduction pathways, and development and
differentiation (Ciechanover et al, 2000). Relatively, it was
speculated that the larvae of S. insularis might still overcome the
harsh environment to maintain slow growth and development
during the overwintering period. RNA transport is an important

aspect of gene expression (Rodriguez et al, 2004). During
the overwintering period, S. insularis larvae up-regulate DEGs
related to cold tolerance, growth, and development, which is
likely to require the expression of related genes in the RNA
transport pathway. The transcription factors of the FoxO family
regulate the expression of genes in cell physiological activities,
including apoptosis, cell cycle control, glucose metabolism, anti-
oxidative stress, and longevity (Eijkelenboom and Burgering,
2013). The nuclear factor kappa-B family regulates the expression
of genes involved in various cellular processes, including
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FIGURE 8 | (A) Correlation analysis between the differential metabolites and DEGs of Valine, leucine and isoleucine degradation. Pink indicates positive correlation,
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indicates positive correlation, and gray indicates negative correlation. (C) Correlation analysis between the differential metabolites and DEGs of Glycerophospholipid
metabolism. Pink indicates positive correlation, and gray indicates negative correlation. (D) Correlation analysis between the differential metabolites and DEGs of
Glycine, serine and threonine metabolism. Pink indicates positive correlation, and gray indicates negative correlation.

inflammation, immunity, and cell survival (Karin and Lin, 2002).
It was speculated that the role of the FoxO signaling pathway
and NF-kB signaling pathway during the overwintering period
was to ameliorate the damage caused by low temperature and
maintain low-energy survival of the larvae of S. insularis during
dormancy. Tight binding proteins are involved in maintaining
barrier regulation, cell polarity, and gene transcription (Zihni
et al., 2016). It has been speculated that the DEGs enriched

in the tight-junctional pathway play a role in the growth and
development process of S. insularis.

Longevity regulating pathway-multiple species were related
to aging, which was used to resist a complex process of
accumulation of molecular, cell, even organ damage leading
to loss of function and increased vulnerability to disease
and death (Bitto et al, 2015). It has been speculated that
DEGs enriched in the longevity regulation pathway mainly
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resist low-temperature injury and maintain survival. Circadian
rhythms help to synchronize the organism’s metabolic process
with its environment, thereby improving biological adaptability.
The circadian rhythm pathway can regulate active oxygen
homeostasis and oxidative stress response, cell and body
metabolism, DNA repair, and anti-aging signal pathways
(Harmer et al., 2001). It was speculated that the DEGs enriched
in the circadian rhythm also play a role in maintaining the
survival and growth of the larvae of S. insularis during the
overwintering period.

The continuous up-regulated DEGs of S. insularis larvae
during the overwintering period were mostly involved in
ensuring survival, growth, cell proliferation, and other
physiological activities. Therefore, it was speculated that
the larvae still ensure their slow growth and development
under a low-temperature environment, indicating no diapause
phenomenon during the overwintering period, which was
consistent with the previous observation.

Metabolic Pathways Related to Changes
in Cold Tolerance in Time Series Analysis
Might Play a Role in Improving the Cold

Tolerance of S. insularis

According to the research on the cold tolerance of S. insularis
larvae during the overwintering period, the cold tolerance first
showed an increasing trend, then decreasing (Pei et al., 2020).
In the time-series analysis results, the trend of Profile 25 and
27 also increased first and then decreased, similar to the change
in cold tolerance. Therefore, it is speculated that the metabolic

pathways enriched in DEGs in Profile 25 and 27 are related
to cold tolerance.

Previous studies have reported that 5'- AMP-activated protein
kinase (AMPK) plays an important role in regulating cell
lipid and protein metabolism and a key role in the regulation
of cell energy homeostasis. AMPK is the main regulator of
catabolism and anabolic balance in cells (Hardie, 2007; Peers
et al, 2007; Mihaylova and Shaw, 2011; Storey and Storey,
2012). The activation of AMPK signaling pathway is determined
by the ratio of AMP and ATP (Gowans et al, 2013). In the
fruit fly (D. melanogaster), AMPK functions as a regulator
of energy homeostasis in cells and the whole body (Sinnett
and Brenman, 2016). AMPK promotes the catabolic pathway
that produces ATP and suspends the process of consuming
ATP; AMPK also activates glucose and fatty acid uptake,
glycolysis, and fatty acid oxidation (Hardie and Ashford, 2014).
Under energy-limited conditions, AMPK inhibits fat production
and promotes fatty acid oxidation (Hardie, 2011). AMPK
activation also exerts inhibitory control on carbohydrate storage
and protein synthesis. AMPK plays a role in insect cold
tolerance. AMPK measurement in Eurosta solidaginis before the
overwintering period (September) and during the overwintering
period (February) showed that the AMPK activity of larvae in
February was greatly increased by 70-90% (Rider et al., 2011).

Profile 25 had a trend similar to larvae cold tolerance
according to our previous study (Pei et al., 2020). The reason we
paid attention to profile25 was to try to find relevant information
that affects the cold tolerance of S. insularis larvae in winter.
In Profile 25, we noticed that 522 DEGs were enriched in the
AMPK signaling pathway, and there were also continuously
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up-regulated DEGs enriched in this pathway. Therefore, it was
speculated that the AMPK signaling pathway might play a key
role in the overwintering period of S. insularis larvae and might
change the larvae’s metabolic type during the overwintering
period (from anabolic metabolism to catabolism) and consume
stored functional substances. According to our previous research,
glycogen content decreased when cold tolerance increased (Pei
et al., 2020), and this process might be regulated by AMPK
signaling pathway according to previous study (Hardie, 2007;
Peers et al., 2007; Mihaylova and Shaw, 2011; Storey and Storey,
2012). The AMPK signaling pathway might also reduce the
larvae’s overwintering metabolic level, to ensure that energy
consumption was reduced under low temperature and low intake
conditions according to previous study. At the same time, larvae
still ensured a certain concentration of antifreeze protection
agents (such as fatty acid) in dynamic balance to maintain body
fluid concentration and participate in cold-tolerant physiological
activities. According to our previous research, S. insularis larval
glycogen and total lipid are not exhausted, and there is no
significant difference in protein content in overwinter period

(Pei et al., 2020). The ultimate goal is to ensure that the larvae can
survive the winter.

In Profile 27, we noticed pathways such as “Pentose
and glucuronate interconversions,” “Fructose and mannose
metabolism,” “Galactose metabolism,” and “Glycerolipid
metabolism.” Those pathways were related to the use of energy
by organisms. We speculated that these metabolic pathways
might be regulated by AMPK signaling pathway, and some
catabolism might occur in S. insularis larvae. Simultaneously,
the larvae also used these metabolic activities to ensure energy
supply during overwintering.

Co-pathway in Metabolomics and
Transcriptomics Might Be the Key to
Affecting the Cold Tolerance of

S. insularis

During the overwintering, the extracellular fluid of freezing
tolerant insects freezes while the intracellular fluid does not
freeze (Sinclair, 1999). Therefore, maintaining the cell membrane
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might be the key to their overwintering period. Phospholipids
are the main components of cell membranes, and different
phospholipid compositions affect the thickness and fluidity of cell
membranes (Renne and de Kroon, 2018). In our study, according
to the results of metabolomics, a variety of Lyso-PCs (LPC) and
Lyso-PEs (LPE) changed during the overwintering period and
LysoPC[18:2(9Z,12Z)] and LysoPC[20:4(5Z,8Z,11Z,14Z)] had a
similar tend with cold tolerance of S. insularis larvae. The content
of GPC increased first and then decreased. The content of G3P
accumulated before the lowest temperature. Except the higher
levels of SI_1 and SI_13, the content of Chol also tended to
increase first and then decrease. According to the results of
transcriptomics, we found that the gene expression involved
in the degradation of LPCs was extremely low, however genes
involved in the synthesis of Chol and G3P were expressed
in large quantities, and the change trend was similar to the
change in cold tolerance. In addition, we considered that the
synthesis and decomposition in glycerophospholipid metabolism
pathway seemed to occur at the same time. In our results, a
DEG annotated in the decomposition of GPC were also expressed
during the overwintering, and GPC was decomposed into G3P
and Chol under the catalysis of this enzyme. According to
our analysis, the “glycerophospholipid metabolism” pathway
was an important KEGG metabolic pathway throughout the
overwintering period. This pathway might participate in the
physiological activities of stabilizing cell membranes during this
period (Tomcala et al., 2006). However, in the choice of column
in metabolomics determination, we put more emphasis on the
accurate chromatographic separation of metabolites with high
polarity. We still need further research to understand how
glycerophospholipid metabolism participate in cold tolerance.
In order to have a more in-depth understanding of the
glycerophospholipid metabolic pathways in the cold tolerance of
S. insularis larvae, we will conduct detailed studies on the content
of weakly polar metabolites such as GLs, PCs, and PEs.

CONCLUSION

In conclusion, through transcriptomics and metabolomics
analyses during the overwintering period, we conclude that the
AMPK signaling pathway and glycerophospholipid metabolism
are likely to play key roles in the overwintering physiological
process of S. insularis larvae in the field. During winter,
the AMPK signal pathway played a signal transduction role.
After receiving cold stimulation, it adjusted the metabolism
from anabolism to catabolism to ensure energy supply and
survival. The glycerophospholipid metabolism pathway is
important because it allows the larvae to ensure the stability
of cell membrane. Through omics analysis, we explained the
physiological process of the S.insularis larvae overwintering in
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