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Introduction: Accounting for biological heterogeneity represents one of the greatest
challenges in biomedical research. Dynamic computational and mathematical models
can be used to enhance the study and understanding of biological systems, but
traditional methods for calibration and validation commonly do not account for the
heterogeneity of biological data, which may result in overfitting and brittleness of
these models. Herein we propose a machine learning approach that utilizes genetic
algorithms (GAs) to calibrate and refine an agent-based model (ABM) of acute systemic
inflammation, with a focus on accounting for the heterogeneity seen in a clinical data set,
thereby avoiding overfitting and increasing the robustness and potential generalizability
of the underlying simulation model.

Methods: Agent-based modeling is a frequently used modeling method for multi-scale
mechanistic modeling. However, the same properties that make ABMs well suited
to representing biological systems also present significant challenges with respect to
their construction and calibration, particularly with respect to the selection of potential
mechanistic rules and the large number of associated free parameters. We have
proposed that machine learning approaches (such as GAs) can be used to more
effectively and efficiently deal with rule selection and parameter space characterization;
the current work applies GAs to the challenge of calibrating a complex ABM to a specific
data set, while preserving biological heterogeneity reflected in the range and variance
of the data. This project uses a GA to augment the rule-set for a previously validated
ABM of acute systemic inflammation, the Innate Immune Response ABM (IIRABM) to
clinical time series data of systemic cytokine levels from a population of burn patients.
The genome for the GA is a vector generated from the IIRABM’s Model Rule Matrix
(MRM), which is a matrix representation of not only the constants/parameters associated
with the IIRABM’s cytokine interaction rules, but also the existence of rules themselves.
Capturing heterogeneity is accomplished by a fitness function that incorporates the
sample value range (“error bars”) of the clinical data.

Frontiers in Physiology | www.frontiersin.org 1 May 2021 | Volume 12 | Article 662845

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2021.662845
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2021.662845
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2021.662845&domain=pdf&date_stamp=2021-05-19
https://www.frontiersin.org/articles/10.3389/fphys.2021.662845/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-662845 May 12, 2021 Time: 17:56 # 2

Cockrell and An Genetic Algorithms to Reproduce Biological Heterogeneity

Results: The GA-enabled parameter space exploration resulted in a set of putative
MRM rules and associated parameterizations which closely match the cytokine time
course data used to design the fitness function. The number of non-zero elements
in the MRM increases significantly as the model parameterizations evolve toward a
fitness function minimum, transitioning from a sparse to a dense matrix. This results
in a model structure that more closely resembles (at a superficial level) the structure of
data generated by a standard differential gene expression experimental study.

Conclusion: We present an HPC-enabled machine learning/evolutionary computing
approach to calibrate a complex ABM to complex clinical data while preserving
biological heterogeneity. The integration of machine learning, HPC, and multi-scale
mechanistic modeling provides a pathway forward to more effectively representing the
heterogeneity of clinical populations and their data.

Keywords: machine learning, agent based modeling, high performance computing, genetic algorithm, biological
heterogeneity

INTRODUCTION

Heterogeneity of biological phenotype is an essential
characteristic that provides robustness for organisms in
variable and ever-changing environments and provides the
range of fitness across individuals necessary for natural selection
and evolution to function (Csete and Doyle, 2004; Stelling
et al., 2006). Accounting for biological heterogeneity, be it in
experimental systems or in clinical data, represents one of the
most critical challenges to identifying shared and fundamental
properties across biological entities (Gough et al., 2017). In
addition to the concepts described in Gough et al. (2017),
we have previously proposed that multi-scale computational
models can serve as focused abstractions of biological systems
to enhance the study and understanding of how these systems
function; furthermore, enhancing their ability to capture and
reflect complex biological heterogeneity can increase their
utility as means of generating more robust, generalizable
and translatable knowledge (An, 2018). All computational
and mathematical models incorporate parameters that help
define their behavior; variations of those parameters can be
used to represent the heterogeneity seen in the dynamics of
the biological systems represented by those models (Cockrell
et al., 2020). We have extended this concept to the propose
that a “parameter space” that results in recapitulation of
bioplausible phenotypes can reflect genetic and epigenetic
variation within a population, and assert that the model rule
structure, which represents knowledge of the interactions
between the components of the biological system, can be
optimized to reflect a more accurate interaction network able
to capture an increased variation of behavioral phenotypes.
Herein we present a method utilizing genetic algorithms (GAs),
a machine learning method for complex optimization, to
calibrate and refine an agent-based model (ABM) of systemic
inflammation to capture the heterogeneity and variability of
a clinical data set. This method represents a departure from
traditional approaches to calibration and parameterization
that generally focus on using “cleaner” data sets with less

variation/heterogeneity and/or fitting to a regression that
draws a mean through what variation is present in the selected
data, a process that can result in over-fit and brittle models.
Alternatively, we propose that models (in terms of both
parameters and interaction rules) selected for being able to
reproduce an entire range of data within a dataset are more
robust and generalizable, and therefore able to enhance the
translation and applicability of knowledge.

This work focuses on enhancing the utility of ABMs as
means of instantiating mechanistic hypotheses (An, 2009).
Agent-based modeling is an object-oriented, discrete-
event, rule-based, spatially explicit, stochastic modeling
method (Bonabeau, 2002). In an ABM, individual agents
representing components of the overall system are simulated
interacting with each other and with their environment.
These interactions are mediated by a pre-defined set of
rules, typically derived from the literature and expert
knowledge, and often containing stochastic components,
to reflect either known probabilistic components in their
behavioral rules or epistemic uncertainty regarding how
those rules are resolved. As such, ABMs are computational
instantiations of mechanistic knowledge regarding the systems
being modeled and consequently are often used to simulate
complex systems in which the aggregate of individual agent
interactions can lead to non-trivial or unintuitive macro-
state/system-level behaviors (An et al., 2009). This makes
agent-based modeling a powerful technique for representing
biological systems; rules are derived from experimentally
observed biological behaviors, and the spatially explicit
nature of the models give it an inherent ability to capture
space/geometry/structure of biological tissue, which facilitates
the ability of biomedical researchers to express and represent
their hypotheses in an ABM (An, 2009). ABM’s have been
used to study and model a wide variety of biological systems
(Bonabeau, 2002), from general purpose anatomic/cell-for-
cell representations of organ systems capable of reproducing
multiple independent phenomena (Cockrell et al., 2014,
2015) to platforms for drug development (An et al., 2011;
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Cockrell and Axelrod, 2018), and are frequently used to model
non-linear dynamical systems such as the human immune
system (Baldazzi et al., 2006; Bailey et al., 2007; Cockrell and An,
2017; An, 2018).

In the process of developing an ABM, hypotheses or pieces
of existing knowledge are re-framed as rules that determine
the behavior of the agents when they interact with each and
their environment. For example, in the context of a biomedical
ABM one of those rules might be the definition of a cytokine
signaling pathway, i.e., Tumor Necrosis Factor α (TNFα), a pro-
inflammatory cytokine, upregulates Interleukin-10 (IL-10), an
anti-inflammatory cytokine. The quantification of the effect that
TNFα has on IL-10 in this hypothetical rule is determined by
adjusting the parameters associated with that rule during model
calibration, a critical step in the development and refinement of
an ABM (Bonabeau, 2002; Rogers and Von Tessin, 2004; Bianchi
et al., 2007; Windrum et al., 2007; Liu et al., 2017).

Parameter Space as a Means of
Capturing
Genetic/Epigenetic/Intrapopulation
Variability
All computational models incorporate parameters within the
rules/equations that make up the model. In dynamic mechanistic
models, like ABMs, those rules often represent cellular functions
and molecular events, such as receptor binding, signaling,
gene activation, protein synthesis or secretion (Figure 1).
However, the vast majority of mechanism-based computational
models do not explicitly represent every component of
every step present in the cell; in practice this is nearly
functionally impossible at the current time because the sum
total of interactions between components, or even the total
set of components, is not known. Therefore, essentially all
computational models that utilize rules to govern cellular
behavior use some degree of abstraction and developer choice
in what entities and functions are represented; these choices
are often termed the variables of the model. These models
invariably incorporate sets of parameters/coefficients that reflect
the contribution/effect of a particular biological entity/mediator
explicitly represented within a model’s rules; these are the
parameters that modify the variables within a stated rule. We
assert that for rules of this type/form the parameters/coefficients
represent a concatenation of various mediators, pathways and
genes not explicitly represented that affect the interaction
process represented in the rule (Figure 1), and therefore
provide a means of capturing “hidden” control factors (known
and unknown) that provide variation across a population of
biological entities.

Note that these parameters are an aggregation of a whole
series of factors: i.e., the effect of other health factors, such
as co-morbidities or age, on the represented rules/functions,
unknown mediators or genes, essentially any potential factor than
can affect the functional output of the represented rule. Cast
in this fashion, the multi-dimensional space of parameters can
encompass a range of genetic/epigenetic/functional variability
of the type present in a heterogeneous clinical population.

We propose that characterizing this parameter space and its
associated ensemble of model forms enhances the applicability
and generalizability of a model’s rule structure and can avoid
“overfitting” and the generation of brittle models. Given the
high-dimensional nature of this type of model parameter space
we propose to use a machine learning/evolutionary computing
optimization method, GAs, in order to generate an ensemble of
parameterizations able to recapitulate a heterogeneous clinical
data set. We would like to emphasize that while GA is an
optimization method that will converge to an “optimal” solution,
we do not suppose that the optimized solution is necessarily more
plausible that the rest of the sufficient parameterizations within
the ensemble. Rather, we are utilizing the convergence process
of the GA to identify a set of parameterizations sufficient to
represent the range of heterogenous clinical data; this ensemble
of parameterizations then forms the bioplausible manifestations
of simulation model, which can then be used for further studies
on disease forecasting (Larie et al., 2020) or therapeutic control
discovery (Cockrell and An, 2018; Petersen et al., 2019). Our
proposed method is related to how parameter spaces are used
to define the behavior of ordinary differential equation (ODE)
models, where different fits are used to match different values
within a range in a time series of data. However, we believe that
the use of ABMs provides an extension of the representational
capability of ODE parameter space characterization by the
stochastic properties of the ABMs, which reflect intrinsic
biological stochasticity, to generate population distributions for
individual parameterizations (as opposed to unique deterministic
trajectories seen in an ODE).

We also note our attempt to avoid the use of the term
“fitting” for this process, a term that brings to mind the way
that statistical models are adjusted to match data (though often
applied to the calibration of ODE models). Rather than trying
to precisely and restrictively identify “fitted” parameterizations,
which commonly requires a lossy process by which the
heterogeneity of the data is compressed into a mean, we aim
to find sufficient parameterizations that are able to recapitulate
the range of data present. Given how we have defined the
role of the parameters in the model (Figure 1) there is no
supposition that a “single” parameterization exists within the
clinical population, but rather that a population is represented by
an ensemble of parameterizations. However, given the epistemic
uncertainty associated with all the potential factors that might
affect the behavior of the model, it is currently impossible to
specify what the distribution across a real population of those
parameterizations; the only means we have of determining their
plausibility is via the existing data. This strategy is specifically
designed to avoid “overfitting,” which we interpret as a failure
of generalizability of a particular model when it is exposed
to new, additional data; our intent is to preserve and refine
the expressiveness of a model’s rule structure with a focus on
recapitulating the heterogeneity seen in biological data.

In the sections below we present a method and results that
uses the convergence process of GAs to identify an ensemble of
parameterizations for an ABM of acute systemic inflammation
sufficient to recapitulate the heterogeneity of a clinical data set
from burn patients.
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FIGURE 1 | Depiction of how representation of cellular behavioral rules governing the effect and generation of various mediators is accomplished by rule parameters.
Cellular rules are presented as input-output relationships for specific cell types; in practice not every mechanistic step is represented in such a rule. The weight of
each contributing mediator to the overall function of the cell is represented by the parameters associated within each rule. We pose that these parameters essentially
aggregates the influence of non-represented or unknown cellular components on the represented rule. a and b are rule parameters that represent “hidden”
factors/controls/genes that affect the contribution of Mediator 1 and Mediator 2 to the production of Mediator 3.

MATERIALS AND METHODS

The Model Rule Matrix
In our ABMs the rules and a set of coefficients that quantify the
effect of the rules (see Figure 1) are stored in an object which we
refer to as the Model Rule Matrix (MRM). In this scheme, specific
rules are represented by rows in the matrix; each computationally
relevant entity in the model is then represented by the matrix
columns. As a simple example, the system of model rule equations
for a single cell:

M1t+1 = M1t +M2t

M2t+1 = −M1t +M3t

Would be represented by the matrix:[
1 1 0
−1 0 1

]
Where the first column holds the rule coefficients for Mediator 1
(M1), the second column holds the rule coefficients for Mediator
2 (M2), and the third column holds the rule coefficients for
Mediator 3 (M3). We note that this is a simplified rule for the
purpose of illustration. The matrix is readily decomposable into a
one-dimensional vector, upon which we can operate using GAs.
The number of rows in the matrix then is equal to the number
of rules that it represents, and the number of columns is equal
to the number of entities that could potentially contribute to the
decision made by their associated rule. Note that if a particular

interaction between model components is not represented
then the corresponding position within the MRM contains a
“0.” Therefore, the MRM presents a compact mathematical
representation of the interaction rules present in an ABM.

The resulting product of this work is an ensemble of
biologically/clinically plausible model parameterizations,
representing a genetically/epigenetically/functionally diverse
cohort of in silico patients, able to represent a range of
heterogeneous experimental or clinical data. In this sense,
elements of this work are similar to traditional sensitivity analysis
techniques (Cukier et al., 1978; Saltelli et al., 2004, 2008); the
primary distinction lies in the fact that these algorithms consider
alternate rule configurations (as represented by the conversion
of zero to non-zero elements in the MRM), which can change
model-parameter sensitivities (Cockrell et al., 2020).

The Reference Model: IIRABM
In this work, we utilize a previously developed an ABM of
systemic inflammation, the Innate Immune Response ABM
(IIRABM). Though the IIRABM has been calibrated to simulate
blunt trauma and infectious insult, it is an abstract and
generalizable (An, 2004; Cockrell and An, 2017) model of human
response to injury. Cytokine time series and systemic response
varies significantly between both blunt trauma/infectious insult
and severe/large surface area burns. In this work, we demonstrate
the changes necessary to recalibrate the model from simulating
an infectious injury to a caustic and sterile injury. The IIRABM
is a two-dimensional abstract representation of the human
endothelial-blood interface. This abstraction is designed to model
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the endothelial-blood interface for a traumatic (in the medical
sense) injury and does so by representing this interface as
the unwrapped internal vascular surface of a 2D projection
of the terminus for a branch of the arterial vascular network.
The closed circulatory surface can be represented as a torus,
and this two-dimensional surface defines the interaction space
simulated by the model. The spatial geometry of the circulatory
system and associated organ interfaces are not directly mapped
using this scheme. This abstraction reproduces the circulatory
topology accessible by the innate immune system and presents
a unified means of representing interaction between leukocytes
and endothelial surfaces across multiple tissue and organ types.
The IIRABM utilizes this abstraction to simulate the human
inflammatory signaling network response to injury; the model
has been calibrated such that it reproduces the general clinical
trajectories of sepsis. The IIRABM operates by simulating
multiple cell types and their interactions, including endothelial
cells, macrophages, neutrophils, T-lymphocyte subtypes (TH0,
TH1, and TH2 cells) as well as their associated precursor
cells. Intrinsic biological stochasticity, such as the spatial
distribution of cells at initialization or movement direction
not governed by chemotaxis and the manifestation of switches
governing cellular actions, is represented by the introduction
of randomness into the IIRABM; this allows the IIRABM to
generate a population distribution of different trajectories from
an identical parameterization/initial conditions. The simulated
system dies when total damage (defined as aggregate endothelial
cell damage) exceeds 80%; this threshold represents the ability of
current medical technologies to keep patients alive (i.e., through
mechanical organ support) in conditions that previously would
have been lethal. The IIRABM is initiated using five parameters
representing the size and nature of the injury/infection as well
as a metric of the host’s resilience: (1) initial injury size, (2)
microbial invasiveness (rate at which infection spreads), (3)
microbial toxigenesis (rate at which infection damages tissue),
(4) environmental toxicity (amount of spontaneous infectious
exposure in the environment, such as an Intensive Care Unit),
and (5) host resilience (the rate at which damaged but not dead
tissue recovers). These five parameters clearly have correlates
in the real world, and yet are nearly inherently un-quantifiable.
Therefore, they are treated as dimension-less coordinate axes in
which the behavior of the IIRABM exists.

The IIRABM characterizes the human innate immune
response through the simulated generation of a suite of
biomarkers, including the pro-inflammatory and anti-
inflammatory cytokines represented in the IIRABM. At each time
step, the IIRABM outputs the total amount of cytokine present
for all mediators in the model across the entire simulation. The
ordered set of these cytokine values creates a high-dimensional
trajectory through cytokine space that lasts throughout the
duration of the simulation (until the in silico patient heals
completely or dies). We note that stochastic effects can play a
significant role in simulation dynamics. Model parameterizations
used in this work lead to a simulated mortality rate of 50%; in
these simulations, identical injuries and initial conditions are
given to the model and over time, the trajectories diverge to
the point that half of the simulated cohort heals completely and

half dies. The fact that the initial conditions are exactly identical
means that it is indeed stochasticity, not chaos, that leads to
the diverging trajectories. A detailed discussion of this can be
found in Cockrell and An (2017).

While the IIRABM successfully simulates the human immune
response to injury at a high, overall system level (outcome
proportions, time to outcome, etc.), it may not always replicate
specific cytokine time series. A cytokine time series is not a
single sequence of numerical values; rather, it is a sequence
of ranges, indicating significant heterogeneity clinical response
to severe burns, within which the cytokine measurements fall
for a given patient in the cohort that generated the time
series. This heterogeneity is challenging because the magnitude
of these ranges is not temporally constant. In order for a
computational model to be biologically realistic, it must be able
to generate any physiological state which can experienced by the
biology that is being simulated and do so with the appropriate
frequency. We have previously characterized the shapes of the
probabilistic “clouds” of multi-dimensional state space of the
IIRABM (Cockrell and An, 2017); these distributions, which
are more akin to the range of variable behavior generated
by biological systems, are too complex to be represented by
a small/simple set of stochastic differential equations with an
analytically defined “noise” term. This prompts the need to
execute the ABM at large scale in order to more effectively capture
the population dynamics structure present in a clinical data set.

Application of Genetic Algorithms
In this work, we use GA to operate on the IIRABM’s rule set such
that it can accurately simulate the cytokine time course and final
outcomes for a serious burn injury. As noted in the Introduction,
we are employing GA is a non-standard fashion, where rather
than seeking a specific optimal parameterization of the MRM we
are using the process of convergence of the GA to identify an
ensemble of valid parameterizations. Cytokine time series were
extracted via inspection from Bergquist et al. (2019). In Bergquist
et al. (2019) provide a variety of blood cytokine levels over 15 time
points and 22 days for patients which exhibited severe burns over
50% of the surface area of their bodies. The authors observed a
mortality rate of 50% for this category of injury.

A GA (Goldberg and Holland, 1988; Fonseca and Fleming,
1993; Haupt and Ellen Haupt, 2004) is a population-based
optimization algorithm that is inspired by biological evolution.
In a GA, a candidate solution is represented by a synthetic
“genome,” which, for an individual, is typically a one-dimensional
vector containing numerical values. Each individual in a GA
can undergo computational analogs to the biological processes
of reproduction, mutation, and natural selection. In order to
reproduce, two individual vectors are combined in a crossover
operation, which combines the genetic information from two
parents into their progeny.

Using this scheme, cytokines produced by a given cell type
are held fixed, while the stimuli that lead to the production
of that specific cytokine are allowed to vary. This maintains a
distinction between the cell and tissue types represented in the
model throughout the MRM evolution from the GA.
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The candidate genomes which comprise the rule set are then
tested against a fitness function which is simply the sum of
cytokine range differences between the experimental data and the
computational model:

F =
∑

i,t

∣∣max
(
Ce

i,t
)
−max

(
Cm

i,t
)∣∣+ k |Re − Rm| ,

where Ce
i,t represents the normalized blood serum level of

cytokine i at time point t from the experimental data, Cm
i,t

represents the normalized blood serum level of cytokine i at
time point t from the IIRABM, Re represents the experimentally
observed mortality rate, Rm represents the model-generated
mortality rate, and k is an adjustable parameter to govern the
importance of the mortality rate contribution to the fitness
function. For the purposes of this work, we consider an optimal
solution to be one that minimizes the above fitness function.
In order to avoid issues of over-fitting, we held the time points
at t = 48 h post-burn and t = 8 days post-burn back from the
evaluation of candidate fitness. Despite this, these time points
were well-matched between the in silico and in vivo experiments.

We note that 50 stochastic replicate simulations of the
IIRABM were used to generate simulated ranges, while only
20 patients comprised the clinical data set. The reasoning for
this is that the simulated range was not stable using only 20
stochastic replicates; we found that when we ran 50 replicates per
parameterization, the simulated cytokine ranges varied only by a
few percent. Additionally, we did not have access to individual
data points, or distributions at different time points; we only had
the maximum and minimum values, and thus were unable to
evaluate the effect that additional clinical patients would have had
on the observed clinical data range.

Candidate genomes are then selected against each other in a
tournament fashion, with a tournament size of 2 [28, 29]. The
tournament winners make up the breeding pool, and progenitor
genomes are randomely selected and paired. We implement a
variant of elitism in that, at the completion of the tournament, the
least fit 10% of the candidate progenitors are replaced with the
fittest 10% of candidate genomes from the precious generation.
Progeny genomes are defined with a uniform crossover operation
using a standard continuous formulation (Haupt and Haupt,
2004):

C1,i = βP1,i + (1− β)P2,i

C2,i = βP2,i + (1− β)P1,i

Where C1,i is the value for gene i in child 1, P is the value for gene
i in parent 1, and β is a random floating-point number between 0
and 1. After breeding, each child is subject to a random chance of
mutation which begins at 1% and increases with each generation.

We employ an elitist strategy by replacing the least fit 10%
of the breeding population with the most fit parameterizations.
This ensures that our best solutions are not lost due to mutation.
Additionally, we utilize two non-standard additions to the GA:
the non-viability criterion and the ensemble retainment criterion.
As noted above, the potential parameter space is astronomically
large, and the vast majority of those putative parameterizations

are in no way biologically viable or plausible; it is therefore
desirable to filter these regions of parameter space early in
this process. The non-viability criterion immediately rejects any
parameterization which leads the model to die before the first
clinical time point (3 h post-injury); these are replaced with fitter
candidates. In our experience with this model, this non-viability
criterion is only activated in the first few generations, as the
algorithm quickly finds a focus on viable regions of parameter
space. Further, we recognize that any putative parameterization
which generates cytokine trajectories that always lie within the
cilnically observad range cannot be invalidated by the data, and
are therefore biologically plausible; thus, these parameterizations
should be retained for inclusion into the final ensemble. As the
goal of the fitness function is to obtain maximum coverage over
the clinical data range, some of these viable parameterizations
may be lost as the population evolves.

The IIRABM was optimized for 250 generations with a
starting population size of 1024 candidate parameterizations. The
IIRABM was implemented in C++ and the GA was implemented
in Python 3; and simulations were performed on the Cori Cray
XC40 Supercomputer at the National Energy Research Scientific
Computing Center and at the Vermont Advanced Computing
Center. Codes can be found at https://github.com/An-Cockrell/
IIRABM_MRM_GA. Pseudocode for this procedure is given
below:

(1) Initialize starting population, P, where each Pi ∈ P, is
represented by a matrix with elements randomly assigned
in the range [−2,2]

(2) REPEAT-UNTIL stopping condition is met (maximum
generations or minimum fitness)

(a) BROADCAST candidate parameterizations to available
processes

(b) On each process, CALL IIRABM simulation
(c) Determine Fitness, Fi
(i) NON-VIABILITY CRITERION: IF Fi > Fc THEN
(1) Discard Pi
(2) Replace with Pj6=i, where Fj<Fc
(d) ENSEMBLE RETAINMENT: Determine Bioplausibility
(i) IF all simulated cytokine values are contained within the

range of clinical data, then retain parameterization for
inclusion into the ensemble, E

(e) GATHER fitnesses to root process
(f) Tournament Selection
(i) Randomly select pairs of parameterizations

(ii) Select fitter parameterization for inclusion into breeding
pool B

(g) Breeding
(i) Randomly select pairs of parameterizations from B

(ii) Generate two progeny parameterizations, where
matrix elements are combined using the standard
continuous formulation.

(h) Mutation
(i) Set mutation probability, rm = 0.01+ 0.002∗gn, where gn

is the number of generations completed by the GA
(ii) Generate random number r
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(iii) IF r ≤ rm THEN randomly select matrix element to
mutate, and assign a random value in the range [−2,2]

(i) Check if any fitness has reached the minimum value
(0, indicating a single parameterization matches the
data perfectly) or the maximum number of generations
has been reached.

We note that we ran the algorithm 10 times, all with random
seeding parameterizations, and found that, though the initial
populations were completely random, the GA converged to the
same region of parameter space each time we ran it. This does
not preclude the existence of alternate regions, but indicates
that, if they exist, their hypervolumes are significantly smaller
than the region of parameter space represented by our ensemble
population, which is contiguous at the level of resolution that
we have used to examine it. Additionally, the simulation never
reached a fitness of 0, indicating that a single parameterization of
our model cannot explain all the data.

RESULTS

For the initial attempt with the GA the contributions of each
of the five cytokines were weighted equally. This generated an
ensemble of sufficient forms of the MRM that produced excellent
results for four out of five of the comparison cytokines. However,
the GA could not converge well enough to produce MRMs able
to generate IL-10 concentrations which matched the literature,
with peaking occurring at 6 h post-insult rather than 5 days
post-insult, as was seen clinically Figure 2A). As a potential
explanation for this inability to replicate IL-10 data we note that
in comparison to the other cytokine time series IL-10 showed
spikes at t = 5 days but is near zero everywhere else, suggesting
that a poor fit is more likely when using a fitness function that
weights the contributions of each cytokine equally. A candidate
MRM parameterization that minimizes IL-10 production over
the entire time course would thus contribute less to the overall
fitness (in this case, we seek to minimize the fitness function)
than a hypothetical parameterization that was 10% off on TNF
levels for every time step. In order to address this, we both
doubled and tripled the weight of the coefficient to the portion
of the fitness function that incorporated IL-10 contribution. Both
of these modifications showed similar improvements over the
initial fitness function, but neither was significantly better than
the other. This leads us to expect that a doubling of the IL-10
contribution to the fitness is sufficient. We display this difference
in Figure 2.

A plot of cytokine ranges for 5 cytokines which existed in
the clinical data set and were already present in the model at
the start of this work (GCSF, TNF-α, IL-4, IL-10, and IFN-γ) is
shown in Figure 3. Ranges for the original model, described in
Cockrell and An (2017); An (2018), are shown in black; ranges for
the published data (Bergquist et al., 2019) are shown in red; and
results from the optimized ensemble model are shown in green.

The temporal cytokine dynamics expressed by the optimized
IIRABM are significantly modified from its original incarnation.
We note that the ensemble models are optimized to match four

out of five of the cytokines used in the fitness function to be nearly
indistinguishable from the clinical data. We note a slight under-
expression of IL-10 at t = 5 days post-injury. This discrepancy
identifies a weakness in our model when it is being used to
simulate burns, namely, that the cellular production of IL-10
is not well enough defined, in that its production is limited
to activated macrophages and TH2 helper cells. Given that the
IIRABM was developed to represent the innate immune response
to traumatic injury, we consider this recalibration to burn injuries
to be a success.

In Figure 4, we depict the MRM as a heat map of the values
(Figures 4A,B) before and at the end of the GA runs. Numerical
values for these matrices can be found in the Supplementary
Material. Figure 4A shows the MRM values of the original
implementation of the IIRABM prior to training; the sparseness
of the matrix reflects the necessary abstracting modeling choices
made in terms of which rules to represent. Figure 4B shows the
“optimized” MRM at the end of the GA runs, noting that while
this MRM is the one that most closely matches the range of data
seen clinically it is representative of the ensemble of MRM able to
generate data matching the ranges seen in the clinical data. The
optimized matrix has a much more connected structure, and is a
dense matrix, as opposed to the sparse original rule matrix. There
are not any matrix elements with a value of 0 in the optimized
matrix, though there are many elements with comparatively small
values. This is an intuitive result and is the intended output
based on how the MRM is defined in terms of Figure 1; as all
mechanism-based computational models represent a limited and
reduced representation of biological reality it is not surprising
that there are additional connections needed in order for the
model to recapitulate real-world data. As such, this structure of
the optimized MRM is similar to what is seen in experimental
bioinformatic studies; all of the cytokines in this network appear
to be connected to each other, at least to a small degree,
while a smaller number of strong connections (which could
also be considered correlations) provide the majority of the
influence on the system dynamics. The original rule matrix,
formatted and with complete labeling, can be found in the
Supplementary Material.

We note that while the process of the GA will lead to
convergence to an “optimal” MRM that most closely matches
the range of data observed clinically, any parameterization which
generates a range of data that is encompassed by the clinical
data is retained in the ensemble of valid parameterizations. It is
this ensemble that is the intended output of the GA process. In
Figure 5 we depict the ranges of values of the MRM in the valid
ensemble, both as a 2-dimensional heatmap and the same data
shown as a 3-dimensional bar graph to aid in visualization of the
range of MRM values within the ensemble.

In Figure 6, we present the time evolution of the diversity
of the simulated population. We define the total diversity of
a population to be the sum of the ranges of each matrix
element. In Figure 6A, matrix element ranges are ordered
from low to high. In the first several generations, diversity
is maximized over the entire matrix. As the system evolves
toward an optimum parameterization, diversity decreases, and
the matrix begins to converge to a single value. In order to
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FIGURE 2 | Cytokine ranges are shown for IL-10 for the original model (black), published data (red), and optimized ensemble model (blue). On the left (A), the IL-10
contribution to the fitness function is weighted equally to the other cytokines, with the result that simulated IL-10 levels after 6 h are essentially 0; on the right (B), the
IL-10 contribution to the fitness function was doubled.

FIGURE 3 | Cytokine ranges are shown for the original model (black), published data (red), and optimized ensemble model (blue) for TNFα (top-left), IL-10 (top-right),
IFNγ (center-left), IL-4 (center-right) and GCSF (bottom-left). Ranges for the computational models were generated using 50 stochastic replicates.

combat this, we use a mutation rate that increases as a function
of the generation number, which begins to reintroduce diversity
into the population. This is seen in Figure 6A, as the matrix
element ranges begin to return to a diverse configuration, and
more globally in Figure 6B, which plots the total diversity metric
as a function of generation number.

DISCUSSION

The IIRABM rule set utilized in this work contained 432 free
and continuous parameters, many of which had highly non-
linear or conditional effects on the model-generated cytokine

trajectories and outcomes. This high-dimensional parameter
space provides an astronomically large set of possible behaviors,
of which only a subset are bioplausible. Concurrently, biological
objects manifest population-level individual heterogeneity, which
means that “bioplausibility” is not a particular trajectory (or
mean of trajectories) but rather a set of behaviors and outputs
producible by the biological system. Our only guide to this set
of behaviors is the range of outputs captured within a data set.
The task, then, is to establish a concordance between the range
of behaviors represented by a subset of the parameter space of
the computational model and the range of outputs seen in the
data set and to bound the putative bioplausible parameter space
using the data available. The subject of this paper is to present an
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FIGURE 4 | Depictions of the MRM A heatmap of the original rule matrix is shown in panel (A), the optimized matrix representative of the valid ensemble is shown in
panel (B). In panels (A,B), the white blocks represent a matrix element with a value of 0 (e.g., no connection); the dark blue to green represents a negative matrix
element; the pink to light blue represents a positive matrix element. The optimization process vastly increases the connectivity of the ABM elements (as would be
expected in the true biological system).

FIGURE 5 | Depiction of the range of values of the MRM for the valid ensemble able to produce data consistent with the clinical data. Panel (A) shows the ranges of
the MRM values as a heatmap, where dark blue is a range of 0 and yellow indicates a range of 3.42, with a maximal range of 4.0. Panel (B) shows this same data as
a 3-dimensional bar graph, where the height of each cell reflects the range of the values for each matrix element.

alternative means of calibrating a computational model to a data
set with an emphasis on maintaining the capability to represent
the heterogeneity of the data, thereby potentially reflecting
critical biological processes that account for the ubiquitous inter-
individual variability seen in biological systems.

There are the critical and intertwined issues regarding
definition of the fitness function, overfitting, and choice of
algorithm. Our utilization of GA was non-standard: while the
algorithm sought to optimize the results of the simulation to
minimize a fitness function, the discovery of the optimum
parameterization was not the actual goal of the work. As our GA
traversed the parameter space toward its optimum destination,
it gathered all model parameterizations that were not invalidated
by the available data into the final ensemble. The fitness function

was designed such that an optimal solution would minimize the
difference between the range of data generated by the model and
the range of data observed clinically, but with the explicit aim
of defining this bioplausible set rather than finding “a” particular
optimal solution.

The design of the fitness function is intimately connected to
the concept of overfitting, and some might interpret transition
from a sparse rule matrix to a dense rule matrix as the parameter
set is optimized as an indication of potential overfitting. This
concern stems from the concept of overfitting of statistical
models, where the addition of new terms can lead to spurious
relationships that may not be present in new data and therefore
lead to decreased performance (e.g., failure of generalizability).
To some degree this is not the case for mechanism-based dynamic
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FIGURE 6 | Panel (A) displays the ordered matrix element ranges for a variety of time points throughout the genetic algorithm. In this plot, the most diverse
generations are represented by a nearly horizontal line at the top of the plot. As the system evolved, this diversity begins to collapse until the increasing mutation rate
compensates for the algorithm’s convergence. This is displayed in panel (B), which shows the total diversity of the population as a function of generation number.

models, where the putative additions to the model represent
additional knowledge that (1) has a scientific justification for
its addition, (2) theoretically increases the expressiveness (e.g.,
increased generalizability) of the data and (3) are actually
present in the real-world biological object. In addition, from
a methodological standpoint, we contend that the traditional
concern of overfitting (e.g., failure to generalize) should not be
an issue for this approach, according to the following logic:

(1) The primary danger of overfitting is the introduction of
spurious elements to the model which would lead to the model’s
failure to generalize to new data outside of the data used to
train it, ultimately resulting in an invalidation of the model. The
primary goal of this work is to generate a diverse population of
model parameterizations which are encompassed by the clinical
data; when taken in aggregate, and due to the fact that each
parameterization generates a range of behavior, this population of
parameterizations fills out the range of data observed clinically.
While one could claim that a particular added component may
not be necessary in order to replicate the data (violation of the
concept of parsimony), the addition of such a term cannot be
invalidated in comparison to the data.

(2) The introduction of new data cannot invalidate individual
parameterizations in our ensemble because the introduction of
new data can take only two forms: (1) it is either encompassed
within the range of the existing data, in which case the
previously valid parameterizations are still valid, or (2) new data
can be outside the existing range, which does not invalidate
any of the previously validated parameterization, but rather
suggests an insufficiency in the expressiveness of the previously
defined parameter space. In this case an additional search of
the parameter space is needed because the current ensemble
is insufficiently expressive to explain the heterogeneity of the
clinical data and therefore parameterizations that were formerly
considered invalid would now be seen to be biologically plausible.

We note that by setting the fitness function to match the
published data as exactly as possible we are limiting the targeted
degree of heterogeneity to that presented by the relatively small
cohort of clinical patients.; the true range of biologically plausible
blood cytokine concentrations in undoubtedly larger than what is

seen in a small cohort of 20 individuals. In order to obtain a more
generalizable model, we propose two alternative approaches to
the above presented work: (1) that the fitness function should be
configured to over-encompass the available data, with cytokine
range boundaries determined by the probability density function
(pdf) which governs the experimental data; or (2) synthesize
multiple datasets in order to design a fitness with maximum
cytokine rage coverage that is still supported by experimental
data. Incorporating the shape of the probability density function
into the fitness function can be difficult purely as a matter of
practicality–often the raw data for human cytokine levels isn’t
available, and only the absolute range can be extracted from
published manuscripts, and it is also common to see a cohort
size that is too small to definitively propose a single pdf which
adequately describes the data.

Our approach also involves addressing the limited
representation inherent in all computational models. As
essentially all mathematical/computational models of biological
processes represent some degree of abstraction and are therefore
necessarily incomplete, we recognize that the task of model
“validation” is more often one of determining the conditions
in which a model is “valid” and at what point the model is
insufficient. While the employment of the MRM refinement
is a means of “encompassing” the uncertainties and “missing”
components of the ABM rules, there are still cases where the
constraints placed by the choice of rules in the model preclude
fitting to particular data points; it is at this point that the
model is recognized to be falsified (in the Popperian sense).
However, being able to specify where the model fails is extremely
useful. In this case, the difficulties in being able to reproduce
the trajectories of IL-10 help point to where the IIRABM is
insufficient as a representation of the systemic response to burn
injury, specifically with respect to the level of representation of
anti-inflammatory components. This insight points to the need
to incorporate other known anti-inflammatory components into
future iterations of the IIRABM.

In future work, we will utilize this method to generate
diverse in silico cohorts as part of our machine-learning
therapeutic discovery workflow (Cockrell and An, 2018;
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FIGURE 7 | A diagram indicating a hybrid experimental/computational
workflow for the automated calibration and validation of ABMs using the MRM
scheme. In this workflow, a computational model containing all mechanistic
knowledge hypothesized to be relevant to the biological system in question is
developed. The range of output for a comprehensive set of viable model
parameterizations is determined and compared to biological data. At this
point, experimental data can be used to eliminate some of the formerly viable
model parameterizations or invalidate the model. In the event the model is
invalidated, it can be redesigned/reconfigured to address its shortcomings.
After that, the remaining set of putative model parameterizations is
investigated to determine which specific parameters contribute the most
variability to the model output. These are then the parameters that are
selected for further characterization in subsequent biological experiments.

Petersen et al., 2019). We note the importance of in silico
genetic diversity for therapeutic discovery in Cockrell and An
(2018); in this work, we developed a multi-cytokine/multi-
time-point therapeutic regimen which decreased the mortality
rate from ∼80 to ∼20% for a severe simulated injury. The
therapy was discovered using GAs on a single model internal
parameterization. When we examined the non-responders,
we noted that hyperactivity in specific pathways could
manifest negatively, specifically, excess Granulocyte Colony
Stimulating Factor activity lead to excess neutrophil recruitment,
which instigated a state of perpetual inflammation. Brittle
policies/solutions (i.e., those that are not applicable outside of
the very specific circumstances used to train them) have long
been recognized as a weakness of machine learning research
(Holland J.H.(ed.), 1983). In order to overcome this obstacle,
data used to train machine-learning algorithms should be
sourced as broadly as possible. A useful analogy would be
to compare the machine learning experiment to an in vivo
biological experiment: performing a biological experiment on a
set of genetically identical animals will yield less generalizable
information than an experiment performed on a set of genetically
heterogenous animals.

Further, we note that, while we generated a diverse in silico
patient cohort which generates cytokine trajectories that match
clinical data, the diversity is limited by the algorithm. We
recognize that by using GA to find a path through parameter
space toward some optimum of the fitness function, even though

we collect viable parameterizations as the algorithm progresses,
they are sampled from a limited region of parameter space.
Many of the genes in each individual parameterization end up
tightly constrained by the algorithm, while others have a larger
range. These latter parameters are those about which the model is
most uncertain. Future work will seek to more comprehensively
explore the entire parameter space using active learning, similar
to Cockrell et al. (2020). Active Learning is a sampling technique
used in machine learning in which sampled data is chosen based
on how much information it can apply to the machine learning
model. A similar approach can be taken in this case. In order
to most efficiently update and refine the computational model,
experiments should be designed to query the model features that
are most uncertain. This approach is illustrated in Figure 7. In
this way, GA can play an integral role in the iterative cycle of
model refinement and experimentation necessary to construct a
high-fidelity generalizable computational model.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

CC designed the machine-learning workflow, ran simulations,
performed data analysis, and contributed to the manuscript.
GA designed the initial IIRABM simulation and assisted in the
design of the machine-learning workflow and contributed to
the manuscript. Both authors contributed to the article and
approved the submitted version.

FUNDING

This work was supported by National Institutes of Health
grant U01EB025825. Additionally, this research used high
performance computing resources of the National Energy
Research Scientific Computing Center, a DOE Office of Science
User Facility supported by the Office of Science of the
United States Department of Energy under Contract No. DE-
AC02-05CH11231, as well as resources provided by the Vermont
Advanced Computing Core (VACC).

ACKNOWLEDGMENTS

This manuscript has been released as a Pre-Print at https://www.
biorxiv.org/content/10.1101/790394v2.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphys.2021.
662845/full#supplementary-material

Frontiers in Physiology | www.frontiersin.org 11 May 2021 | Volume 12 | Article 662845

https://www.biorxiv.org/content/10.1101/790394v2
https://www.biorxiv.org/content/10.1101/790394v2
https://www.frontiersin.org/articles/10.3389/fphys.2021.662845/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2021.662845/full#supplementary-material
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-662845 May 12, 2021 Time: 17:56 # 12

Cockrell and An Genetic Algorithms to Reproduce Biological Heterogeneity

REFERENCES
An, G. (2004). In silico experiments of existing and hypothetical cytokine-directed

clinical trials using agent-based modeling. Crit. Care Med. 32, 2050–2060.
An, G. (2009). Dynamic knowledge representation using agent-based modeling:

ontology instantiation and verification of conceptual models. Methods Mol.
Biol. 500, 445–468. doi: 10.1007/978-1-59745-525-1_15

An, G. (2018). The crisis of reproducibility, the denominator problem and the
scientific role of multi-scale modeling. Bull. Mathematical Biol. 80, 3071–3080.
doi: 10.1007/s11538-018-0497-0

An, G., Bartels, J., and Vodovotz, Y. (2011). In silico augmentation of the drug
development pipeline: examples from the study of acute inflammation. Drug.
Dev. Res. 72, 187–200. doi: 10.1002/ddr.20415

An, G., Mi, Q., Dutta-Moscato, J., and Vodovotz, Y. (2009). Agent-based models
in translational systems biology. Wiley Int. Rev. Syst. Biol. Med. 1, 159–171.
doi: 10.1002/wsbm.45

Bailey, A. M., Thorne, B. C., and Peirce, S. M. (2007). Multi-cell agent-based
simulation of the microvasculature to study the dynamics of circulating
inflammatory cell trafficking. Ann. Biomed. Eng. 35, 916–936. doi: 10.1007/
s10439-007-9266-1

Baldazzi, V., Castiglione, F., and Bernaschi, M. (2006). An enhanced agent based
model of the immune system response. Cell Immunol. 244, 77–79. doi: 10.1016/
j.cellimm.2006.12.006

Bergquist, M., Hastbacka, J., Glaumann, C., Freden, F., Huss, F., and Lipcsey, M.
(2019). The time-course of the inflammatory response to major burn injury and
its relation to organ failure and outcome. Burns 45, 354–363. doi: 10.1016/j.
burns.2018.09.001

Bianchi, C., Cirillo, P., Gallegati, M., and Vagliasindi, P. A. (2007). Validating and
calibrating agent-based models: a case study. Comput. Econo. 30, 245–264.
doi: 10.1007/s10614-007-9097-z

Bonabeau, E. (2002). Agent-based modeling: methods and techniques for
simulating human systems. Proc. Natl. Acad. Sci. U.S.A. 99(Suppl. 3), 7280–
7287. doi: 10.1073/pnas.082080899

Cockrell, C., and An, G. (2017). Sepsis reconsidered: identifying novel metrics
for behavioral landscape characterization with a high-performance computing
implementation of an agent-based model. J. Theor. Biol. 430, 157–168. doi:
10.1016/j.jtbi.2017.07.016

Cockrell, C., and Axelrod, D. (2018). Optimization of dose schedules for
chemotherapy of early colon cancer determined by high performance computer
simulations. Cancer Inform 18:1176935118822804.

Cockrell, C., Christley, S., and An, G. (2014). Investigation of inflammation and
tissue patterning in the gut using a spatially explicit general-purpose model
of enteric tissue (SEGMEnT). PLos Comput. Biol. 10:e1003507. doi: 10.1371/
journal.pcbi.1003507

Cockrell, C., Ozik, J., Collier, N., and An, G. (2020). Nested active learning for
efficient model contextualization and parameterization: pathway to generating
simulated populations using multi-scale computational models. Simulation
97:0037549720975075.

Cockrell, R. C., and An, G. (2018). Examining the controllability of sepsis using
genetic algorithms on an agent-based model of systemic inflammation. PLos
Comput. Biol. 14:e1005876. doi: 10.1371/journal.pcbi.1005876

Cockrell, R. C., Christley, S., Chang, E., and An, G. (2015). Towards anatomic
scale agent-based modeling with a massively parallel spatially explicit general-
purpose model of enteric tissue (SEGMEnT_HPC). PLoS One 10:e0122192.
doi: 10.1371/journal.pone.0122192

Csete, M., and Doyle, J. (2004). Bow ties, metabolism and disease. Trends
Biotechnol. 22, 446–450.

Cukier, R., Levine, H., and Shuler, K. (1978). Nonlinear sensitivity analysis of
multiparameter model systems. J. Comput. Phys. 26, 1–42.

Fonseca, C. M., and Fleming, P. J. (1993). Genetic algorithms for multiobjective
optimization: formulationdiscussion and generalization. Icga 93, 416–423.

Goldberg, D. E., and Holland, J. H. (1988). Genetic algorithms and machine
learning. Machine Learn. 3, 95–99.

Gough, A., Stern, A. M., Maier, J., Lezon, T., Shun, T.-Y., Chennubhotla, C., et al.
(2017). Biologically relevant heterogeneity: metrics and practical insights. Slas
Dis. Adv. Life Sci. R. D. 22, 213–237.

Haupt, R. L., and Ellen Haupt, S. (2004). Practical Genetic Algorithms. Hoboken,
NJ: John Wiley & Sons.

Haupt, R. L., and Haupt, S. E. (2004). Practical Genetic Algorithms. Hoboken, NJ:
John Wiley & Sons.

Holland, J. H. (ed.) (1983). “Escaping brittleness,” in Proceedings of the Second
International Workshop on Machine Learning, (Citeseer).

Larie, D., An, G., and Cockrell, C. (2020). Artificial neural networks for disease
trajectory prediction in the context of sepsis. arXiv [preprint] arXiv:200714542,

Liu, Z., Rexachs, D., Epelde, F., and Luque, E. (2017). A simulation and
optimization based method for calibrating agent-based emergency department
models under data scarcity. Comput. Indus. Eng. 103, 300–309.

Petersen, B. K., Yang, J., Grathwohl, W. S., Cockrell, C., Santiago, C., An, G., et al.
(2019). Deep reinforcement learning and simulation as a path toward precision
medicine. J. Comput. Biol. 26, 597–604.

Rogers, A., and Von Tessin, P. (2004). “Multi-objective calibration for agent-based
models,” in Proceeding of the Agent-Based Simulation 5.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., et al.
(2008). Global Sensitivity Analysis: the Primer. Hoboken, NJ: John Wiley & Sons.

Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M. (2004). Sensitivity Analysis
in Practice: a Guide to Assessing Scientific Models. England: John Wiley & Sons.

Stelling, J., Sauer, U., Iii, F., and Doyle, J. (2006). “Complexity and robustness
of cellular systems,” in System Modeling in Cellular Biology, eds Z. Szallasi, V.
Periwal, and J. Stelling, (Elsevier), 3–18.

Windrum, P., Fagiolo, G., and Moneta, A. (2007). Empirical validation of agent-
based models: alternatives and prospects. J. Artif. Soc. Soc. Simulat. 10:8.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Cockrell and An. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 12 May 2021 | Volume 12 | Article 662845

https://doi.org/10.1007/978-1-59745-525-1_15
https://doi.org/10.1007/s11538-018-0497-0
https://doi.org/10.1002/ddr.20415
https://doi.org/10.1002/wsbm.45
https://doi.org/10.1007/s10439-007-9266-1
https://doi.org/10.1007/s10439-007-9266-1
https://doi.org/10.1016/j.cellimm.2006.12.006
https://doi.org/10.1016/j.cellimm.2006.12.006
https://doi.org/10.1016/j.burns.2018.09.001
https://doi.org/10.1016/j.burns.2018.09.001
https://doi.org/10.1007/s10614-007-9097-z
https://doi.org/10.1073/pnas.082080899
https://doi.org/10.1016/j.jtbi.2017.07.016
https://doi.org/10.1016/j.jtbi.2017.07.016
https://doi.org/10.1371/journal.pcbi.1003507
https://doi.org/10.1371/journal.pcbi.1003507
https://doi.org/10.1371/journal.pcbi.1005876
https://doi.org/10.1371/journal.pone.0122192
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

	Utilizing the Heterogeneity of Clinical Data for Model Refinement and Rule Discovery Through the Application of Genetic Algorithms to Calibrate a High-Dimensional Agent-Based Model of Systemic Inflammation
	Introduction
	Parameter Space as a Means of Capturing Genetic/Epigenetic/Intrapopulation Variability

	Materials and Methods
	The Model Rule Matrix
	The Reference Model: IIRABM
	Application of Genetic Algorithms

	Results
	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


