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Background: The cause of sarcopenia has been observed over decades by clinical
trials, which, however, are still insufficient to systematically unravel the enigma of how
resistance exercise mediates skeletal muscle mass.

Materials and Methods: Here, we proposed a minimal regulatory network and
developed a dynamic model to rigorously investigate the mechanism of sarcopenia.
Our model is consisted of eight ordinary differential equations and incorporates linear
and Hill-function terms to describe positive and negative feedbacks between protein
species, respectively.

Results: A total of 720 samples with 10 scaled intensities were included in simulations,
which revealed the expression level of AKT (maximum around 3.9-fold) and mTOR
(maximum around 5.5-fold) at 3, 6, and 24 h at high intensity, and non-monotonic
relation (ranging from 1.2-fold to 1.7-fold) between the graded intensities and skeletal
muscle mass. Furthermore, continuous dynamics (within 24 h) of AKT, mTOR, and other
proteins were obtained accordingly, and we also predicted the delaying effect with the
median of maximized muscle mass shifting from 1.8-fold to 4.6-fold during a 4-fold
increase of delay coefficient.

Conclusion: The de novo modeling framework sheds light on the interdisciplinary
methodology integrating computational approaches with experimental results, which
facilitates the deeper understandings of exercise training and sarcopenia.

Keywords: sarcopenia, mathematical model, resistance training, gut microbiota, protein synthesis

INTRODUCTION

Loss in skeletal muscle mass is a hallmark of multiple pathologies, including cancer, diabetes,
obesity, and aging (Lipina and Hundal, 2017). The degenerative role of muscle mass is associated
with poor quality of life and early human mortality (Barclay et al., 2019). When the dynamic
relationship of muscle-protein balance breaks down as the protein degradation exceeds synthesis,
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catabolism of muscle occurs which results in measurable atrophy
(Bassey et al., 1992), and increased risk for falls and fractures (Fry
et al., 2011). Most previous studies emphasize the investigation
of muscle protein turnover (Kakigi et al., 2014) to explain the
age-related loss of muscle mass or combine the aging effect
(Mayhew et al., 2009; Farnfield et al., 2012; Lim et al., 2017) with
anabolic stimulations through resistance exercise (RE) or protein
ingestion. RE is generally believed to be an efficient strategy for
treating sarcopenia, resulting in increased muscle strength and
skeletal muscle mass through muscle protein synthesis (Endo
et al., 2020; Seo and Hwang, 2020) based on acute or chronic
stimulations (Bolotta et al., 2020), which varies the modulation
of myostatin and ubiquitin-proteasome enzymes atrogins (Raue
etal.,, 2007). In the meantime, the effectiveness of aerobic exercise
training in skeletal muscle hypertrophy is confirmed (Lavin et al.,
2020) and implementations of the mixture exercise training are
also tested with findings that indicate both modes are similarly
successful over 12 weeks (Trappe et al, 2011; Konopka and
Harber, 2014) or even 6 months period (Roth et al., 2001).

The traditional methods for sarcopenia researches involve
testing for the expressions of key proteins under varied exercise
training and analyzing effects in exercise mediation in biological
studies. However, this framework fails to provide a panoramic
view of how specifically the concentrations of proteins differ due
to regulations of exercise training, because the protein dynamics
are continuous but the sampling data are recorded at discrete
time nodes in case study. Hence, the dynamic behavior is still
a black-box in the interval between two neighboring nodes,
which requires new approaches to unveil it. Furthermore, what
we can learn through experimental studies is limited due to
the difficulty in incorporating all systematic effects concurrently
and comprehensively from the complicated metabolic network.
It is therefore necessary to build computational models to
fully investigate the detailed mechanisms on exercise-training-
mediated variations in muscle mass. Many mathematical models
have been established to capture biological systems. For instance,
ordinary differential equations were used to model auxin
transport from lateral organs. Heterogeneous spatial patterns
were suggested to arise from simple reaction-diffusion systems,
and the wave pinning (WP) model further provided a minimal
reaction-diffusion system with bi-stable kinetics to pin the waves
into a stable polar distribution. Phase-field model was applied
to study membrane fusion, cell delamination, and migrating
behaviors of various cell types.

In this article, we aim to propose a novel approach to
systematically investigate the mechanisms between intensity of
resistance exercise and skeletal muscle mass. One of the major
contributions is to recapitulate and extend the findings reported
on experiments with human subjects (Fry et al, 2011) from
the mathematical modeling point of view. In the original study,
subjects are instructed to complete exercise via a leg-extension
machine with a warm-up set of 10 repetitions at 45% 1RM and
eight sets of 10 repetitions at 70% 1RM with 3 min of rest
between each set.

The structures are organized as follows: (i) Section
“A Dynamic Model Derived From Ordinary Differential
Equations” presents a dynamic model of skeletal muscle mass

through the mediation of exercise; (ii) Section “The Minimal
Regulatory Network Between Exercise and Skeletal Muscle
Mass” suggests a minimal regulatory network by summarizing of
published results; (iii) Sections “The Dynamic Model Captures
Characteristic Features of Exercise Intensity Regulation to
Muscle Mass” and “Simulations of Muscle Mass Variation
Mediated by Exercise Intensity” describe the simulations
generated by the model, along with the verifications of the model
parameters; and (iv) Section “Discussion” addresses the potential
application of the novel technique to couple mathematical
models with experimental studies.

MATERIALS AND METHODS

A Dynamic Model Derived From Ordinary
Differential Equations

Exercise is the most effective and accessible intervention to
regulate skeletal muscle mass (Fry et al., 2011). However, aerobic
exercise or resistance exercise leads to different physiological
pathways and measurements of intensity (Konopka and Harber,
2014). Since protein metabolism plays a critical role in
the regulation of muscle mass through cascade signaling of
protein synthesis and degradation from key components, the
panoramic landscape linking exercise intensity with muscle
mass is envisioned as a continuum temporal process. Ahead of
introducing the details of model, some major assumptions are
necessary to provide. (i) Resistance exercise training types are
neglected, since the intensity is converted to a scale into the
model. (ii) Time frames in training are excluded. The removal
of exercise stimuli marks the onset of modeling, and the basal
value for continuous dynamics of protein expressions. (iii) The
expression levels of all protein species are considered, including
their phosphorylated forms and conformations.

Here, we establish a dynamic system based on the minimal
regulatory network in Figure 1. Our model includes protein
interactions between seven species, denoted as uspas, UAKT>
UmTOR> Uatrs UFoxO> WTNF—a> and ty,ye, respectively, which are the
same as shown in Figure 1. Each differential equation in the
system is consisted of four similar components as follows:

d (u;)
dt

= basal value + activation — deactivation — degradation

(1)

where u; represents protein species. The left-hand side of
Eq. 1 describes the temporal difference in protein expression
levels, while the right-hand side shows the kinetics of “gains”
and “losses” concerning regulations. Our dynamic system is
streamlined by omitting the complex metabolic regulations due
to other protein interactions that have less effect on the variation
of expression level of ;. Consequently, the first and last terms
in the right hand mean the net increments without considering
interactions with other species, while the second and third terms
specify the results of the interplay. Our model adopts the standard

Frontiers in Physiology | www.frontiersin.org

May 2021 | Volume 12 | Article 670381


https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

Tao et al.

A Computational Model on Sarcopenia

assumption that the activation and deactivation terms are linear
for positive feedbacks, which means that they are expressed as
the multiplication of concentrations of two species, whereas Hill
functions are applied for the negative feedbacks. The complete
model is presented as follows:

d (tscras)
% = a1 + a(s) — QuUscFAsUAKT
K3 I5Ks
—_— Y NP — ————2 4 —d1u FA. (2)
use + pas + Kz * Use + FAs + Ks e o
d (uakr)
— = ay + CoUscFAsUAKT — C3UAKTUmTOR
LK, N 4Ky
- T UFx0 + ————— Ukt
ugr + Koo urNF—a + Ky
IsKs
—————————UAkT — dz 1+ dZ (S) UAkT (3)
Umyo + Ks ( )
d (mroR)
# = a3 + C3UAKT — CalakTUmuscle — A3UmTOR (4)
d (u 1 )
% = a4 + C5UFoxOUatr + C6UTNF — allatr
LKy
Ty R e At ;
d(umuscle)
———————— = as 4+ C4UAKTUmuscle
dt
LK,
— mummck — dsthmuscle ©
d (urox0) _ 4 + lziu + ot
it 6 it + Ko FoxO 7UmyoUFoxO
— CsUatriFox0 — AeUFox0 @
d (UrNF—o)
dt
.\ K3 4Ky
= a7 + —————UINF-a — ——— " UMT
uscras + Ks O umvE—o + Ky
— CEUTNF — aqlatr — A7UTNF — o )
d (ttmyo) N I5Ks u IsKs "
U)o 4+ — 5 — —————UnT
dt UscFAs + KS "o umyo + K6 ‘
— C7UmyoUFoxO — dSum}"’ ©)

where muscle mass and exercise intensity are denoted as
Umyscle and s, respectively. Meanwhile, the stimulus from exercise
intensity a(s) is defined as ¢;s/(s + K) and the degradation rate
of AKTd, (s) is assumed to be proportional to intensity, which is
defined as s/M. The descriptions of all the unitless parameters are
listed in Supplementary Table 1.

The sarcopenic patients displayed different fecal microbiota
compositions at species level with fecal metagenome representing
genes belonging to 108 metabolic pathways (Ticinesi et al., 2020).
These species of gut microbiota could significantly influence the
metabolic capacity of producing SCFAs. Note that the microbial

skeletal muscle mass

FIGURE 1 | The schematic diagram of the minimal regulatory network.
Exercise training (illustrated by two cartoon characters performing Chinese
martial arts) enhances skeletal muscle protein metabolism by activities of the
intestinal microbiome, which significantly promotes the expression of SCFAs
(uscras)- Meanwhile, SCFAs increase the concentration of membrane
receptor IGF-1 that recruits the phosphorylation of AKT (uakr) and positively
regulates mMTOR (Um7oR), Which is deemed as the downstream target of AKT.
On the other hand, SCFAs inhibit TNF—a (urnF—q) Which is a
membrane-bound inflammatory cytokine produced by macrophages and
myostatin (Umyo) which is a growth factor controlling muscle fibers. Both
TNF-a and myostatin deactivate the phosphorylation of AKT, enhancing the
expression of atrogins (uatr) through ubiquitin-proteasome system and
autophagy-lysosome pathways via the transcription factor FoxO (Urox0),
which is related with the apoptosis during muscle fibers metabolism and is
suppressed by AKT. The skeletal muscle mass (Umnuscle) is balanced by
synthesis and degradation processes, with the former activated by mTOR and
the latter inhibited by atrogins. Black solid arrows indicate positive feedbacks
between protein interactions, and negative feedbacks are denoted by .

productivity rate of SCFAs fecal metabolites is maximized with
rising exercise intensity (Lamoureux et al, 2017; Liu et al,
2017; Barton et al, 2018), the overload intensity hinders the
efficiency of production performance (Yuan et al., 2018), and the
degradation rate of AKT is accelerated with increasing intensity
compatible with experimental evidence in vivo (Bortolon et al.,
2020; Chen et al., 2020). Homogeneous zero initial values for
USCFAs> UWAKT> UmTOR> Uatrs UFoxO> UTNF—a > Umyo> and Uyygcle
are provided to stress the disparity in expression levels from
exercise training mediations. Since the parameter values are
dimensionless, our model is capable of distinguishing the fold-
change comparisons among parameters, and all parameter
values are displayed in Supplementary Table 2. This ODE
system was numerically solved by ode23 solver implemented
in Matlab 2017b.
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RESULTS

The Minimal Regulatory Network
Between Exercise and Skeletal Muscle
Mass

The discovery of muscle crosstalk with other organs and
tissues provides a plausible framework for understanding how
exercise impacts performance and health. Although recent high-
throughput-omics techniques have mapped out contraction-
induced pathways through interplays of tissue-specific and
cell-specific molecular responses, the integrated mechanism
of control between exercise and skeletal muscle mass still
remains enigmatic due to the difficulty of performing top-bottom
metabolic network experiments with multiplicity and complexity.

We therefore suggested a novel idea as a minimal regulatory
network to systematically investigate the mechanism by
summarizing experimental data from the reported findings. The
core of the minimal network is to create a regulatory topology
based on, yet simplified, main proteins. Figure 1 presents a
schematic diagram of the minimal regulatory network that
considers SCFAs, AKT, myostatin, FoxO, atrogins, mTOR,
and TNF-a interplays based on gut-muscle axis. Short-chain
fatty acids (SCFAs) are known to be potential regulators of
skeletal muscle metabolism in the gut-muscle axis pathway,
which is produced by gut microbiome and enhances insulin
sensitivity and regulates glucose uptake (Den Besten et al., 2013).
Exercise training alters SCFA producers (Evans et al., 2014), and
modulates the metabolic ability of intestinal microbiota, with
high cardiorespiratory performance being favorably associated
with improved bacterial diversity (health metric) and SCFA-
producing bacteria (Estaki et al., 2016; Barton et al.,, 2018).
SCFAs enhance several membrane-bound receptors, including
inflammatory cytokine TNF-a, growth factor IGF-1 (Yan et al,
2016), and myostatin. TNF-a stimulates muscle catabolism
by inhibiting the activity of AKT (Reid and Li, 2001; Frost
and Lang, 2007) and promotes the expression level of atrogins
(Mourkioti et al., 2006; Wu et al., 2014), ie., E3 ubiquitin
ligases in the skeletal muscle that mediate degradation (Bodine
and Baehr, 2014; Yoshida and Delafontaine, 2015). Likewise,
myostatin, which interferes with AKT-mTOR signaling (Sartori
et al., 2009; Trendelenburg et al., 2009), also activates atrogins
through FoxO-dependent pathways (Allen and Unterman, 2007;
Lokireddy et al., 2012; Winbanks et al., 2012). Upon binding
to IGF-1, AKT phosphorylates and activates the downstream
target of rapamycin (mTOR) through PI3K-AKT pathway thus
inhibiting FoxO-mediated transcription of E3 ubiquitin ligases
(Lee et al., 2004; Sandri et al., 2004; Stitt et al., 2004), and has been
confirmed to be indispensable for fostering muscle hypertrophy
(Glass, 2003).

The increase of skeletal muscle mass is dynamically balanced
by signaling channels where the average protein synthesis
rate exceeds protein degradation rate. On the basis of the
minimal network, a minimal dynamic model is developed that
obtains multiple observations same as the experiments in vivo
(Figures 2A,C,E), and in the meantime, several extensions
(Figures 2B,D) and predictions (Figures 2F, 3E,F) are made

for informative investigations. The priority of variable selection
criteria depends on the complexity of interactions (Figure 1),
though mTOR is included due to prominence and irreplaceable
functionality (Ilha et al., 2018).

The Dynamic Model Captures
Characteristic Features of Exercise

Intensity Regulation to Muscle Mass

To the best of our knowledge, the novel perspective based on
the proposed model is sufficient for an in-depth analysis of
the mechanism by which exercise intensity regulates muscle
mass from reported experimental findings. First, we attempt
to reveal the time-course responses of the AKT and mTOR to
the varied exercise intensities. In most biological experiments,
these responses are compared to samples obtained at different
times, i.e., AKT and mTOR phosphorylation were recorded 3,
6, and 24 h after resistance exercise between young and elderly
classes (Fry et al., 2011). It is therefore heuristic to recapitulate
the dynamic behaviors of AKT and mTOR from the minimal
regulatory network in Figure 1 at a set level of exercise intensity
and then extend to graded intensities.

In simulations, the relative effect of different exercise
intensities is incorporated with the high intensity reaching 1.5-
fold larger than low intensity, which are corresponding to 45%
IRM (low) and 70% 1RM (high). Although the parameter
of intensity is dimensionless in mathematical models, the
benchmark can be mapped into measurements from experiments
through scaling factors. The results show that the expression
level of AKT undergoes a maximum 3.9-fold shift at high
intensity within 24 h of the simulated exercise (Figure 2A).
Meanwhile, increasing intensities result in a tendency where
the accumulation of AKT reaches its peak at 3 h (6 h) and
decreases marginally (Figure 2A) after the removal of stimulus
at low and moderate intensity, respectively. Similar observations
are obtained for mTOR with the largest rise occurring at high
intensity (Figure 2C), as mTOR is downregulated by AKT in
the signaling pathway when AKT dephosphorylates at overload
stimulations of resistance exercise training.

However, the discrete sampling method is inadequate to
completely capture the characteristics as the dynamic behaviors
of AKT and mTOR are continuous and more complicated.
Furthermore, data from discrete time nodes might lead to a
misleading inference that the expression level of mTOR goes to
infinity (Figure 2C), which contradicts common sense as protein
species should eventually reach dynamic equilibriums afterward.
Hence, to compensate for these shortcomings, we present a
continuous dynamic landscape accordingly in Figures 2B,D with
red dots representing details of 3, 6, and 24 h. In this case, the
results show that peak values of fold change occur between 3
and 6 h for both proteins, independent of exercise intensity. In
addition, the expression levels of AKT and mTOR are stable after
the release of exercise training stimulation within 24 h.

Meanwhile, our numerical simulations obtain a non-
monotonic relationship between exercise intensity and muscle
mass. The intensity scales from resistance exercise are graded
(Figure 2E), and set to around 4-fold difference in the proposed
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model, representing 25% 1RM (low) and 100% 1RM (high). The
leftmost bar in Figure 2E means the reference value from the
control condition, indicating that the subjects are sedentary. The

muscle mass is maximized at the intermediate level of intensity
(Figure 2E) because AKT/mTOR has reduced phosphorylation
potential as a result of limited or overload exercise stimulation,
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which is consistent with clinical observations (Bortolon et al.,
2020; Chen et al., 2020). Furthermore, we evaluate the influence
of losing the capability of phosphorylation to exercise intensity
by attuning the delay coefficient in the model. Not surprisingly,
all the fitted curves reveal similar trends as in Figure 2E with the
distinction that the best value of exercise intensity increases with
an increasing delay coefficient (Figure 2F) because it delays the
dephosphorylation of AKT.

Simulations of Muscle Mass Variation

Mediated by Exercise Intensity

We further performed analysis on the proposed model whether
the non-monotonic relationship between exercise intensity and
the maximum muscle mass is robust under random noise since
internal noise is normal in gene expression, which contributes to
the fluctuation of protein expressions in the signaling pathway. In
addition, model parameters are dimensionless and some of them
are hypothetical, and lack direct measurements by experimental
approaches. Confirming the reliability of the numerical effects in
response to noise perturbations is thus essential to maintaining
the feasibility of the model.

Simulations in Figures 3A-D show the stabilization of the
non-monotonic relationship in the condition of different delay
coeflicients. Most dots are clustered in the area between quantiles,
regardless of the delay coefficient values, and not a single irregular
data point is observed in all situations, meaning that the dynamic
system is stable considering the differing parameters. The main
distinction from Figures 3A-D is that the maximized medians
of muscle mass from all numerical experiments shift toward
higher exercise intensity with rising delay coeflicients, which is
consistent with the observations in Figure 2F and in conjunction
with the fundamental mechanism involved in the deactivation of
AKT. While our model considers the minimal regulatory network
conceptual for model establishment to be implicitly linked to
certain protein activation or inhibition interactions, the findings
in Figures 3A-D reveal the mechanism of the non-monotonic
variations of muscle mass to exercise intensity and confirm the
stability of the inference.

Next, we also predict the dynamics of SCFAs and myostatin
under representative strengths of exercise intensity, regarded
as the most fundamental productions of indirect effects from
exercise on skeletal muscle by intestinal microorganisms (Estaki
et al., 2016; Barton et al., 2018). The peaks are attained around
2 h after the removal of stimulus of the graded intensities, the
higher level corresponds to a higher concentration level of SCFAs,
as exercise proactively raises the development of gut microbiota
(Matsumoto et al., 2008; Liu et al., 2017; Barton et al., 2018).
Subsequently, the concentration level declines and converges to
a steady level with a high intensity stimulation resulting in a
larger value (Figure 3E). Likewise, the dynamics of myostatin,
implicated in muscle wasting (Han et al., 2013), follow a similar
pattern with the maximum expression level reaching at 4 h after
exercise (Figure 3F). Note that albeit low intensity leads to the
larger maximum expression level of myostatin, the equilibrium
indicates a different scenario with the lowest level at moderate
exercise intensity and the largest at the high intensity.

These predictions remain to be verified further by clinical
researchers and the model parameters shall be optimized
according to experimental measurements, yet the modeling
framework is fixed which is capable of revealing detailed
mechanisms by alterations of parameters.

DISCUSSION

Our proposed dynamic model provides a minimal system
that regulates skeletal muscle mass through exercise intensity.
This study is a novel attempt to investigate the detailed
mechanism based on a minimal regulatory network (Figure 1)
via computational tools. Our model focuses on the dynamics
of protein expression levels which are described by ordinary
differential equations. In simulations, the model recapitulates
characteristic features of muscle mass alteration mediated by
exercise intensity (Figure 2E) and successfully illustrates the
expression level change of key components at discrete moments
(Figures 2A,C) as reported by biological experiments.

In addition, our model extends the ability to detect the
continuous expression level transition for AKT and mTOR
after exercise training (Figures 2B,D) and peak values are thus
observed. In contrast to conventional experimental methods
that gather data at discrete moments, our dynamic model is
effective in managing infinite measurement times within a given
time interval. A more comprehensive dynamic landscape is
also accomplished through in this continuum scenario, which
facilitates a deeper interpretation of expression level change
over the extended period. We also predict the dynamics of
SCFAs and myostatin (Figures 2E,F) that are decisive for
skeletal muscle mass (Leal et al., 2018). Analysis has successfully
demonstrated the latent effect of SCFAs on lipids (Walsh
et al., 2015), carbohydrate (Chriett et al., 2017) and protein
metabolism (Tipton and Wolfe, 2001) in skeletal muscle tissues,
and the transition from anabolic to catabolic muscle junction for
myostatin (Rodriguez et al., 2014). Since the model parameters
are dimensionless, and as far as we know, lack experimental
measurements, we verify the stability of the model system under
perturbation of random noise. The findings indicate that the non-
monotonic relationship between exercise intensity and muscle
mass is uniformly confirmed by varying delay coefficients, which
are consistent from experiments.

The main advantage of our modeling framework lies in
the accountability of experiments in vivo with an intrigue
mechanism at a lower cost but higher precision, with predicted
behaviors determined by fine-tuning parameters. In addition,
the predictions from our model shed light on the manifestation
of skeletal muscle mass synthesis governed by exercise intensity,
which motivates experimental confirmations. Note that this
structure can be further explored by modifications of model
assumptions and parameters, which, we believe, are adequate
to investigate the mechanism thoroughly. Although some
challenges still remain, such as the replication of the expected
outcomes by experimental researches, selections of model
parameters, incorporations of more complex metabolic
network rather than minimal regulatory topology, etc.,
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this interdisciplinary paradigm integrating computational
approaches with clinical results facilitates the development of
exercise and skeletal muscle mass models extensively and brings
a novel viewpoint to research in the field of exercise physiology.
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