TY - JOUR AU - Santocildes, Garoa AU - Viscor, Ginés AU - Pagès, Teresa AU - Ramos-Romero, Sara AU - Torres, Josep Lluís AU - Torrella, Joan Ramon PY - 2021 M3 - Original Research TI - Physiological Effects of Intermittent Passive Exposure to Hypobaric Hypoxia and Cold in Rats JO - Frontiers in Physiology UR - https://www.frontiersin.org/articles/10.3389/fphys.2021.673095 VL - 12 SN - 1664-042X N2 - The benefits of intermittent hypobaric hypoxia (IHH) exposure for health and its potential use as a training tool are well-documented. However, since hypobaric hypoxia and cold are environmental factors always strongly associated in the biosphere, additive or synergistic adaptations could have evolved in animals’ genomes. For that reason, the aim of the present study was to investigate body composition and hematological and muscle morphofunctional responses to simultaneous intermittent exposure to hypoxia and cold. Adult male rats were randomly divided into four groups: (1) control, maintained in normoxia at 25°C (CTRL); (2) IHH exposed 4 h/day at 4,500 m (HYPO); (3) intermittent cold exposed 4 h/day at 4°C (COLD); and (4) simultaneously cold and hypoxia exposed (COHY). At the end of 9 and 21 days of exposure, blood was withdrawn and gastrocnemius (GAS) and tibialis anterior muscles, perigonadal and brown adipose tissue, diaphragm, and heart were excised. GAS transversal sections were stained for myofibrillar ATPase and succinate dehydrogenase for fiber typing and for endothelial ATPase to assess capillarization. Hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor (VEGF), and glucose transporter 1 (GLUT1) from GAS samples were semi-quantified by Western blotting. COLD and HYPO underwent physiological adjustments such as higher brown adipose tissue weight and increase in blood-related oxygen transport parameters, while avoiding some negative effects of chronic exposure to cold and hypoxia, such as body weight and muscle mass loss. COHY presented an additive erythropoietic response and was prevented from right ventricle hypertrophy. Intermittent cold exposure induced muscle angiogenesis, and IHH seems to indicate better muscle oxygenation through fiber area reduction. ER -