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The speed of adaptive body patterning in coleoid cephalopods is unmatched in
the natural world. While the literature frequently reports their remarkable ability to
change coloration significantly faster than other species, there is limited research
on the temporal dynamics of rapid chromatophore coordination underlying body
patterning in living, intact animals. In this exploratory pilot study, we aimed to
measure chromatophore activity in response to a light flash stimulus in seven squid,
Doryteuthis pealeii. We video-recorded the head/arms, mantle, and fin when squid
were presented with a light flash startle stimulus. Individual chromatophores were
detected and tracked over time using image analysis. We assessed baseline and
response chromatophore surface area parameters before and after flash stimulation,
respectively. Using change-point analysis, we identified 4,065 chromatophores from 185
trials with significant surface area changes elicited by the flash stimulus. We defined
the temporal dynamics of chromatophore activity to flash stimulation as the latency,
duration, and magnitude of surface area changes (expansion or retraction) following
the flash presentation. Post stimulation, the response’s mean latency was at 50 ms
(£ 16.67 ms), for expansion and retraction, across all body regions. The response
duration ranged from 217 ms (fin, retraction) to 384 ms (heads/arms, expansion).
While chromatophore expansions had a mean surface area increase of 155.06%,
the retractions only caused a mean reduction of 40.46%. Collectively, the methods
and results described contribute to our understanding of how cephalopods can
employ thousands of chromatophore organs in milliseconds to achieve rapid, dynamic
body patterning.

Keywords: cephalopod, chromatophore, camouflage, communication, body pattern, startle response, light flash
stimulation, temporal dynamics
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INTRODUCTION

Unlike the slower chromatophore control of flatfish (2-8s;
Ramachandran et al., 1996), coleoid cephalopods can change
body patterns in milliseconds. For decades, scientists in
the field of cephalopod vision have focused on the goal
of creating a complete characterization of the sophisticated
coleoid body patterning abilities. As a result, existing reports
are sufficient to describe and explain several known body
patterns in cephalopods for camouflage and communication
(Hanlon and Messenger, 1988; Hanlon, 2007; Langridge et al.,
2007; Zylinski et al., 2009; How et al., 2017). Nevertheless, a
theoretical framework on cephalopod body patterning, which
does not include the dimension of time, will be inherently
inadequate in modeling, holistically, the range of dynamic,
rapid transformations observed in animals living in the wild.
One approach toward studying this topic is by stimulating
the visual system of a living, intact animal, using a light
flash to elicit muscular activation of chromatophores, and
quantifying the response dynamics by tracking surface area
changes in time.

Experiments conducted in the Gilly laboratory revealed
how light flashes elicit startle jet-escape responses in squid,
Doryteuthis opalescens (Berry, 1911). The brief, intense light
stimulus activates the central nervous system (CNS) at the
magnocellular and palliovisceral lobes, which relay information
to the stellate ganglia to modulate forceful muscle contractions
of the mantle expelling water through the funnel in the
process (Otis and Gilly, 1990; Gilly et al, 1991; Gilly and
Lucero, 1992; Neumeister et al, 2000; Preuss and Gilly,
2000). Within the stellar nerve, a group of non-giant motor
axons innervates chromatophore muscles (Ferguson et al.,
1988). In one of these studies (Neumeister et al., 2000),
which investigated the effects of temperature on escape
responses in restrained squid, the flash stimulus produced
transient chromatophore expansions. Responding to the light
flash startle stimulus, animals exhibited a robust jet-escape
startle response with transient chromatophore expansions.
However, when light intensity was decreased by “positioning
the flash unit further from the squid” (Neumeister et al.,
2000, p. 551), the animal showed chromatophore expansions
as sub-jet-threshold startle responses (in the absence of jetting).
Squid are a useful species for studying chromatophores
because they have fewer and larger chromatophore organs
(density: 8 mm ™2, maximum diameter: 120-1,520 pm; Hanlon,
1982) compared to octopus (density: 230 mm™2; maximum
diameter: 300 pm; Packard and Sanders, 1971) and Sepia
(density: 35-50 mm™2; maximum diameter: 300 pwm; Hanlon
and Messenger, 1988), offering a simpler model to study
chromatophore control.

The Neumeister et al. (2000) study validates a reliable
method of using flash stimulation and video-recording the skin,
from a close-up perspective, to investigate the synchronicity
of chromatophore activity at the single-organ level in squid.
Since studying chromatophore response dynamics across all
body regions was not the study’s primary focus, chromatophore
expansions only on the mantle were reported. For this

exploratory pilot study, we aim at replicating the sub-jet-
threshold behavioral responses to flash stimulation with a
different species, Doryteuthis pealeii (Lesueur, 1821), to examine
the mechanisms and temporal dynamics of the sensorimotor
system underlying chromatophore control in intact animals
(Hadjisolomou, 2017). Due to ethical and logistical issues
involved with long-distance transportation of D. opalescens for
experimentation, D. pealeii was chosen as this species is available
to be studied in Woods Hole, Massachusetts.

Further, in addition to the mantle, we expanded observations
to include chromatophore activity from the understudied
regions of the arms, head, and dorsal fin (Figure 1). Young
(1976) reported on the CNS control of chromatophores in
D. pealeii, elaborating that separate chromatophore lobes in the
brain control different body regions. Specifically, the posterior
chromatophore lobes (PCL) mainly control chromatophores
on the mantle and fin regions, while chromatophores on
the arms and head are primarily controlled by the anterior
chromatophore lobes (ACL) and pedal lobes (PL). Axons
from the PCL connect without a synapse to chromatophore
organs through the pallial nerve. Electrode stimulation of
PCL neurons in Lolliguncula brevis (Blainville, 1823) causes
chromatophore expansion on the mantle and fin (Dubas
et al, 1986), but it did not result in retraction of any
expanded chromatophores. Both species are part of the same
family, Loliginidae (Lesueur, 1821), and have anatomical
similarities (Diaz-Santana-Iturrios et al., 2019), thus allowing for
approximations between them. We chose these body regions to
observe any discrepancies in timed responses due to circuitry
differences. By video-recording all body regions in intact, living
squid, we quantified the temporal dynamics from light flash
stimulation to expansions and retractions at the single-organ
level across thousands of chromatophores. Similar to the Reiter
et al. (2018) study, which used unrestrained European cuttlefish
(Linnaeus, 1758), we measured chromatophore activity from

FIGURE 1 | D. pealeii (mantle length approximately 14 cm) expressing
disruptive body patterning with some chromatophores expanded (dark
bands), while others are retracted. Numbers indicate the different body
regions measured in the study: 1 = head/arms, 2 = mantle, and 3 = fin.
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unrestrained squid. The procedures and methodologies described
below enable non-invasive data collection of chromatophore
activity from living animals to study behavioral responses in
intact organisms.

METHODS

Animals

Adult D. pealeii were collected from coastal waters near Woods
Hole, Massachusetts, US, in 2014. From large population holding
tanks, eight healthy animals (mantle length: 12-15 cm; unknown
sex and age) without any visible physical injuries were selected
for inclusion. We transported individual squid and housed them
togetherina2m x 1.5m X 1 m rectangular, light-brown opaque,
fiberglass housing chamber connected to an open, temperature-
controlled (17-19°C) seawater system. Gravel and sand on the
bottom of the housing tank provided a natural substrate for
animals to settle. Animals were fed twice a day on an ad libitum
diet of live Fundulus fish and crabs'.

Experimental Design

Here, n refers to the number of different body regions examined
(head/arms, mantle, and fin). Each body region, therefore, was
considered to be an experimental unit. The study was a within-
subjects design consisting of one group of three experimental
units, and there were eight animals. One animal was excluded
due to a lack of significant chromatophore responses from data
analysis (see “Results” section).

Procedure

Experimental Set-Up

To collect measurements, we constructed a rectangular rig
covered with a layer of black cloth and an additional layer of an
opaque, black tarp to prevent light from entering.

Experimental Tank and Acclimation

The rectangular experimental tank, measuring 53 cm X 43 cm
x 18 cm, consisted of white, opaque plastic walls containing
10 L of seawater (Figure 2). For each trial, one squid was
placed within the experimental tank inside the rig. To establish
habituation to the experimental apparatus, each squid was placed
in the experimental tank for 10 min then returned to the
group home tank, 24 h before experimental trials began. We
created a white “V-shaped” partition configuration to enable
the squid to settle naturally at the bottom of the tank, thus
preventing chromatophore displacement outside of the camera
frame. We placed an overhead light source at a 45° angle
to illuminate the animal for video recording. The ambient
light and visual environment determined the chromatophore’s
state (expanded or retracted) before light flash stimulation.
The animals adopted a lighter skin tone to camouflage in the
white, uniformly lit tank during trials. Thus, to allow for a
lighter skin tone, most chromatophores were retracted before
flash stimulation.

!See Supplementary Material for the Ethical Note and Experimental Controls
sections.

4

&8

FIGURE 2 | Diagram of the experimental tank set-up, measuring

53 cm x 43 cm x 18 cm (situated inside the rig; external rig structure and
black tarp and opaque covers not shown). The flash unit (1) providing the
visual startle stimulus was fixed on the rig at a right angle and 50 cm above
the animal (4). The camera (2) and light source (3) were at a 45° angle above
the animal. The white “V-shaped” partition configuration (5) enabled squid to
settle naturally at the bottom of the white, rectangular tank (6).

Startle Stimulus and Sub-Jet-Threshold Startle
Response

Animals were presented with light flashes to elicit the startle
reflex response. To deliver the startle stimulus in a top-
down direction, a Canon SpeedLite 580EX-RT flash unit was
fixed on the rig at a right angle and 50 cm above the
animal. Similar to the Neumeister et al. (2000) study, we
found that D. pealeii have jet-escape startle responses and
transient chromatophore expansions to intense light flashes.
For this study, the duration of each light flash stimulus
was ~100 ps, with an illuminance of 12,500 Ix, providing
an even exposure of the stimulus on the animal from this
distance. The entire animal was illuminated, but we video-
recorded only one specific body region per trial for analysis.
The stimulus was sufficient in producing muscular contraction
but well below the jet-escape sensory threshold to minimize
jetting. Thus, this study’s behavioral responses comprised of
chromatophore expansions and retractions to light flashes in the
absence of jetting.

Experimental Trial Procedure

Once in the experimental rig, animals were allowed to
procedurally acclimate and settle on the bottom of the tank,
as evidenced by the animal remaining motionless for at least
5 min. Once an animal habituated, it received a sequence of
approximately 90 flashes. For this study, we used a 10-s inter-
stimulus interval (ISI), which does not cause attenuation due to
learning, fatigue, or a combination of both (Otis and Gilly, 1990).
With an ISI of 10 s, the total sequence duration lasted for 15 min
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per body region and each region was tested during different
sessions. The duration and ISI were tested in preliminary trials
and found to be appropriate for the purposes of this study. The
rationale was to reduce testing sessions and have only one per
body region since 15 min were sufficient.

Each flash stimulation was considered an individual trial. The
purpose was to elicit the sub-jet-threshold startle response. Each
animal received 90 trials for each of the three body regions, for a
total of 270 trials for each of the eight animals, thus 2,160 trials
in total. One body region per animal was tested at a time (we
counterbalanced the order of the body regions tested per animal).

For details on video-recording, scoring, image analysis, and
statistical analysis see Supplementary Material.

RESULTS

Chromatophore Surface Area Changes

Following Light Flash Presentation

Out of the 2,160 total trials, 230 were suitable to be analyzed
by Change Point Analysis (CPA) (Taylor, 2000). Based on
CPA, 185 were identified to have significant chromatophore
surface area changes. A total of 4,065 individual chromatophores
responded to the startle stimulus with either transient expansion
or retraction of the pigment. These chromatophores were
further analyzed to characterize response activity pre- and post-
stimulation. The remaining 45 trials showed no significant
responses by CPA and were excluded, including all Squid #8 trials
and all expansion trials in Squid #3.

Additionally, the numbers of trials with chromatophore
responses were not equivalent across squid (Squid #2,
for example, did not show any retraction responses
in any trials). Furthermore, not all squid had all body
regions significantly responding to the flash stimulus,
and in other cases, there were trials with both significant
expansion and retraction instances on the same body region.
Thus, there is an unequal distribution of chromatophore
numbers and body regions represented in the data (see
Supplementary Figures 2-5).

The discrepancies in this dataset are the observed behavioral
differences between animals; a few animals would swim back
and forth often enough to invalidate significant parts of the
footage. Additionally, trials were excluded in the process of image

analysis if the software was unable to detect chromatophores
(Hadjisolomou and El-Haddad, 2017). In such cases, image noise
due to fluctuations of color and luminance created artifacts
that interfered with chromatophore detection and tracking.
However, each significant expansion or retraction followed
the same pattern regardless of which body region or squid
showed the response.

Chromatophore Expansion

Out of the 185 trials with significant chromatophore surface area
changes (from seven animals), 166 (thus, 90% of these trials)
showed expansion following the flash stimulus (six animals). Out
of these, the head/arms region had 85 trials (Squids #1, 5, and 7),
followed by the mantle with 50 (Squids #1 and 4-7), and then the
fin with 31 (Squids #2 and 5-6).

Within these 166 trials, 4,000 (98% out of the total
4,065) chromatophores showed significant expansion. On the
head/arms, there were 1,598 chromatophores; from the mantle,
there were 1,743; and on the fin, there were 659.

Chromatophore Retraction

The remaining 19 trials showed significant chromatophore
retractions following the flash stimulus (six animals). The
head/arms had nine trials (Squids #1, 3, and 7), the mantle eight
(Squids #1 and 4-6), and the fin had two (Squid #1).

Within these 19 trials, we tracked and measured 65
chromatophores showcasing significant retraction. On the
head/arms, there were 39 chromatophores; from the mantle 21;
and on the fin, there were five.

Descriptive Statistics of Transient

Responses

Temporal Dynamics

We calculated descriptive statistics on the temporal dynamics
of chromatophore surface area changes following the startle
stimulus (see Table 1 and Figure 3). We estimated each value
with an estimated margin of error of & 16.67 ms, determined
by the inter-frame interval when recording at 60 frames per
second frequency.

Magnitude of Response
We calculated the magnitude of chromatophore expansion or
retraction activity by comparing peak response values of response

TABLE 1 | Descriptive statistics of temporal dynamics in milliseconds (ms).

Response time (tR) Delay time (tD) Rise time (tRt) Response duration (rD)
Expansion Retraction Expansion Retraction Expansion Retraction Expansion Retraction
(ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms)
Head/Arms 50 50 83 83 117 117 300 267
Mantle 67 67 117 100 150 150 384 250
Fin 67 67 100 117 134 134 334 217

Response time (tR) is the time to reach or pass the 5% value of the maximal response;
delay time (tD) is the time to reach or pass the 50% value of the response; rise time (tRt) is the time required to reach the 100% value of the response; response duration

(rD) is the time between the 5% values of response before and after the peak.
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Temporal Dynamics of Chromatophore Expansion and Retraction Across Body Regions
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FIGURE 3 | Temporal dynamics (in milliseconds) of chromatophore expansion and retraction across body regions. Surface area values are relative to the average
pre-flash chromatophore surface area (1 = average of pre-flash chromatophore surface area; values above 1 = expansion, values below 1 = retraction). Negative
values of milliseconds indicate time before the light flash presentation, O indicates flash presentation, positive values indicate time after the light flash presentation
(The two frames containing the flash stimulus, t = 0 ms and t = 17 ms, were removed from analysis due to the animal not being observable).

chromatophore surface area (RCSA) with the pre-flash baseline
chromatophore surface area (BCSA) (Figure 3).

Expansion
On average, the relative chromatophore surface area increased
by 155.06% across all body regions (4,000 chromatophores).
Specifically:

Head/arms: 159%

Mantle: 168%

Fin: 116%

Retraction
On average, the relative chromatophore surface area decreased by
40.46% across all body regions (65 chromatophores). Specifically:
Head/arms: 43%
Mantle: 46%
Fin: 50%

DISCUSSION

In this exploratory pilot study, we systematically elicited
behavioral responses using a light flash stimulus in intact, living
squid and analyzed the temporal dynamics and magnitude of
thousands of chromatophore surface area changes at the single-
organ level. Here, we report a replication of the following
Neumeister et al. (2000) findings using a different squid species.
D. pealeii with uniform light skin patterns before stimulation
responded to flashes with jetting and chromatophore expansion
and lower flash intensities triggered transient darkening in the
absence of jetting. Our results demonstrate that it is feasible to use
intact, living animals, to measure, non-invasively, the temporal
dynamics of chromatophore control during body patterning.

We also report the following novel observations: this is the
first record of chromatophore activation to light flash stimulation
on regions other than the dorsal mantle; our videos show
chromatophore activation on the head, arms, and fin, in addition
to the mantle. Also, for the first time, we show chromatophore
retraction to light flash stimulation: chromatophores that were
expanded before stimulation (such as dark bands on the
mantle or expanded chromatophores on the head) responded
with a transient retraction. Further, we observed synchronous
chromatophore expansion and retraction on different parts of
the mantle in the same trial (for example, chromatophores on
dark bands on the mantle contracted, while chromatophores on
light skin expanded).

The general temporal dynamic patterns emerging from this
data are the following: the speed of expansion and retraction
activation was the same across body regions. Differences in
response durations were not dependent on the magnitude
of response. Finally, the head/arms were faster in most
measurements compared to other body regions. The short
latencies reported here are suggestive of a reflexive component
of the response.

Light Flash Stimulation Elicits
Sub-Jet-Threshold Responses in

D. pealeii

Chromatophore Expansion

Packard and others have described how flashes of light can
elicit responses in chromatophores from dissected octopus skin
(Packard and Brancato, 1993; Ramirez and Oakley, 2015). More
relevant to this study, Neumeister et al. (2000) reported how light
flashes elicit sub-jet-threshold chromatophore expansion in the
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squid D. opalescens. In agreement with the Neumeister study
findings, we demonstrate that the presentation of light flashes
elicits chromatophore expansion in a different squid species,
D. pealeii. Also, we validate a method to measure chromatophore
activity from unrestrained squid.

Chromatophore Retraction

This is the first study to report chromatophore retraction in
response to presentation of a light flash stimulus. Comparing
the two different types of chromatophore activity, expansions
and retractions, enables a more thorough characterization of
the sensorimotor system since the mechanisms underlying each
type of action are not well understood. However, out of 4,065
chromatophores analyzed, only 65 showed retraction. As stated
in the “Experimental Tank and Acclimation” section, only a
small number of chromatophores were expanded in the original
experimental set-up. Therefore, chromatophores responded in
the only possible outcome given their original state: retracted
chromatophores expanded and expanded chromatophores
retracted. These findings demonstrate the methods validity
in studying the retraction mechanism, an essential part of the
chromatophore system in rapid body patterning.

Characterization of Temporal Dynamics

of Sub-Jet-Threshold Responses

Response Time (tR)

Our findings indicate similarities when comparing expansion
with retraction and between the different body regions. The
average response time to reach or pass the 5% value of the
maximal response was 50 ms (£ 16.67 ms). This was identical
across all body regions and between expansions and retractions.
These results echo the timing of the startle response mentioned
in previous studies (Neumeister et al., 2000; Mooney et al., 2016).
Based on these findings, the speed of the onset of rapid body
patterning in squid is characterized by a latency of 50 ms.

Delay Time (tD)

When measuring the average time to reach or pass the 50%
value of the response, the head/arms is faster in reaching this
mark than the other two body regions in both expansions and
retractions. We believe this difference can be explained by the
fact that chromatophores on this body region are controlled by
separate lobes (ACL and PL; Young, 1976), and thus the temporal
discrepancies may be due to the circuitry. The differences
between fin and mantle timings average out when we aggregate
data for both expansion and retraction.

Rise Time (tRt)

The rise time to reach the 100% value of the response peak is the
same within body regions in expansion and retraction, though
there are differences between regions. Thus, each body region has
specific temporal benchmarks of maximum response regardless
of the chromatophore change type. The chromatophores on
the head/arms are the fastest between body regions, followed
by the fin in second place, and lastly, the mantle. Considering
the slight differences in the magnitude of response between the
body regions, it is surprising that the chromatophores on the

head/arms are about 33 ms faster than those on the mantle.
The time difference may not be explained due to response
magnitude since these two body regions are almost identical in
that dimension. The circuitry’s differences (Young, 1976) may
explain these temporal discrepancies on the head/arms (ACL and
PL) compared to those of the mantle (PCL).

Response Duration (rD)

Most discrepancies were found in the response duration, the time
between the 5% values of response before and after the peak,
between and within body regions when comparing expansion
and retraction. We calculated the duration by finding the time
difference between the initial response and the return to the
pre-flash state following the peak response. Across the type of
responses and body regions, chromatophore change duration is
short, between 217 and 384 ms. Compared to color changes seen
in other species (Ramachandran et al., 1996), the sub-second
cephalopod chromatophore change is unparalleled.

When it comes to expansion, the chromatophores on the
head/arms are the fastest to complete the response and reach pre-
flash surface area values at 300 ms, followed by the fin (+34 ms)
and the mantle (-84 ms). A different pattern was observed with
retraction responses: chromatophores on the fin had the shortest
duration of response at 217 ms, followed by those on the mantle
(433 ms), and lastly by those on head/arms (+50 ms).

It is worth noting that the response duration was the only
dimension in which retraction had a shorter overall interval
than expansion. For example, the most prolonged response
duration during retraction (267 ms) was still faster than the
briefest response duration in expansion (300 ms). One reason
to explain this phenomenon is that chromatophore expansion
and retraction may depend on separate mechanisms; during
expansion, the surrounding radial muscles pull and expand the
pigment (Bell et al., 2013). The retraction mechanism, however,
is still not fully understood.

Characterization of the Magnitude of
Sub-Jet-Threshold Responses

Results indicate differences between the scale of chromatophore
surface area changes when a chromatophore expands or retracts.
While the surface area increased 155.06% on average during
an expansion, the retraction only caused a 40.46% decrease. As
discussed in the “Response Duration” section, one reason for
this may be the different mechanisms involved in expansion
compared to retraction.

Other  discrepancies were found when analyzing
chromatophores across the body regions. The mantle and
head/arms showed the largest surface area expansions with 168%
and 159% corresponding changes, respectively. The fin had a
116% increase on average. It is unclear why there is a close to 50%
difference between the fin and the other regions. This may be due
to differences in the type and distribution of chromatophores on
the fin compared to the head/arms and mantle when it comes
to body patterning. It is necessary to investigate further if fin
chromatophores do not expand as much as those on the mantle
and head/arms and why that would be the case.
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LIMITATIONS AND FUTURE DIRECTIONS

Unequal Distribution of Trials Between

Body Regions and Animals

The number of trials with significant chromatophore responses
was not equal per body region within each animal nor between
animals, and thus there was an unequal distribution of body
regions and chromatophores represented in the dataset. This
unequal distribution precludes the possibility to run statistical
analyses in determining significant differences in the temporal
dynamics and magnitude of responses. Also, due to ethical
considerations, we determined that a larger number of animals
to be used was not well-warranted. For future studies, we advise
scheduling shorter trials over several days so more data can be
collected from fewer animals.

Unequal Number of Significant Surface
Area Changes Between Expansion and
Retraction

Out of the 4,065 chromatophores showing significant responses,
only 65 showed retractions. The small sample size makes it
difficult to generalize the retraction results. To promote the
animal adopting a darker skin tone, we ran additional pilot
trials using black tanks and white gravel to generate visual
contrast between the substrate and walls. The contrast increased
the probability of squid expressing a disruptive or uniformly
dark pattern. When squid experienced light flashes while having
dark patches of skin, we observed more retractions. However,
attempting to replicate these trials using black tanks within the rig
was impossible due to the video frames’ noise resulting from less
visibility. Future studies on chromatophore retraction may utilize
visual contrast in the environment and appropriate equipment to
remove videography noise.

Potential Extraocular Chromatophore

Responses

The overall results of our study showed that the response time
(tR) was in line with timings from Otis and Gilly (1990).
They argue that “[tlhe 50-ms delay for giant axon excitation
in the startle-escape is similar to that for mantle contraction,
indicating that the major source of behavioral delay lies in
the central nervous system and not in conduction time along
the giant axon (<10 ms) or muscle activation” (p. 2912).
Thus, we may conclude that squid chromatophore responses are
dependent on the CNS. To test the possibility that squid skin
responds directly to light flashes, we used flash stimulation with
a recently deceased squid from the main population holding
tank. The squid showed spontaneous chromatophore activity
before stimulation, and the aim was to observe if there were any
extraocular chromatophore responses to the flash stimulus. We
found no discernible changes due to stimulation. However, since
we only used one deceased squid to test this, we cannot exclude
the possibility that extraocular responses may have contributed to
chromatophore activity changes in this study.

CONCLUSION

In the natural world, cephalopods are renowned for the dynamic
range and speed of adaptive body patterning used in camouflage
and communication. In this exploratory study, we used a
light flash stimulus to elicit transient chromatophore surface
area changes to quantify the chromatophore system’s temporal
dynamics in living, intact animals. Our measurements here verify
the early onset of the sub-second chromatophore changes in body
patterning with an unparalleled speed. Based on our findings,
we argue that measuring the temporal dynamics of complete
behavioral responses during body patterning in intact, living
animals is a feasible and essential addition to studies using excised
isolated skin of subjects. The unexpected differences between
body regions and expansion and retraction responses exemplify
the need to continue this research line. Such details of timing
the temporal dynamics are essential for comprehensive and
quantitative descriptions of body patterning. The methodology
and findings described in this study collectively contribute to
our understanding of how cephalopods can employ thousands
of chromatophore organs within milliseconds for rapid, adaptive
body patterning.
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