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The numerical simulation of multiple scenarios easily becomes computationally

prohibitive for cardiac electrophysiology (EP) problems if relying on usual high-fidelity,

full order models (FOMs). Likewise, the use of traditional reduced order models (ROMs)

for parametrized PDEs to speed up the solution of the aforementioned problems

can be problematic. This is primarily due to the strong variability characterizing the

solution set and to the nonlinear nature of the input-output maps that we intend to

reconstruct numerically. To enhance ROM efficiency, we proposed a new generation

of non-intrusive, nonlinear ROMs, based on deep learning (DL) algorithms, such as

convolutional, feedforward, and autoencoder neural networks. In the proposed DL-

ROM, both the nonlinear solution manifold and the nonlinear reduced dynamics used

to model the system evolution on that manifold can be learnt in a non-intrusive

way thanks to DL algorithms trained on a set of FOM snapshots. DL-ROMs were

shown to be able to accurately capture complex front propagation processes, both

in physiological and pathological cardiac EP, very rapidly once neural networks were

trained, however, at the expense of huge training costs. In this study, we show that

performing a prior dimensionality reduction on FOM snapshots through randomized

proper orthogonal decomposition (POD) enables to speed up training times and to

decrease networks complexity. Accuracy and efficiency of this strategy, which we refer

to as POD-DL-ROM, are assessed in the context of cardiac EP on an idealized left

atrium (LA) geometry and considering snapshots arising from a NURBS (non-uniform

rational B-splines)-based isogeometric analysis (IGA) discretization. Once the ROMs have

been trained, POD-DL-ROMs can efficiently solve both physiological and pathological

cardiac EP problems, for any new scenario, in real-time, even in extremely challenging

contexts such as those featuring circuit re-entries, that are among the factors triggering

cardiac arrhythmias.
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1. INTRODUCTION

Computational cardiac electrophysiology (EP) is built upon
mathematical and numerical models that aim at simulating
both physiological and pathological heart rhythm, such as, e.g.,
ventricular tachycardia and atrial fibrillation (see, e.g., Vigmond
et al., 2002, 2008; Niederer et al., 2009, 2011; Trayanova, 2011;
Prakosa et al., 2018; Strocchi et al., 2020). Simulating the electrical
behavior of the heart, from the cellular scale to the tissue
level, requires the numerical approximation of coupled nonlinear
dynamical systems, such as, e.g. the Bidomain equations (see,
e.g., Colli Franzone et al., 2005, 2006), coupled with suitable
ionic models, such as the FitzHugh-Nagumo (FitzHugh, 1961;
Nagumo et al., 1962), the Aliev-Panfilov (Aliev and Panfilov,
1996; Nash and Panfilov, 2004), the Roger-McCulloch (Rogers
and McCulloch, 1994), the ten Tusscher-Panfilov (ten Tusscher
and Panfilov, 2006), or the Mitchell and Schaeffer models
(Mitchell and Schaeffer, 2003). Multiple solutions of these
systems, corresponding to different model inputs parameters
and data, such as, e.g., electrical conductivities, ionic model
parameters, and applied currents, need to be computed to
evaluate outputs of clinical interest, such as activation maps
(ACs) and action potential (AP) duration. All these instances can
be cast either in multi-query or real-time contexts. In the former
case, the input-output map is repetitively evaluated in order
to perform multi-scenario analysis, to deal with uncertainties
and with inter- and intra-subject variability and to consider
specific pathological scenarios; in the latter, outputs of interest
must be computed in a very limited amount of time, in view
of a possible integration in the clinical setting. Performing the
numerical approximation of cardiac EP problems in multi-
query context or solving them in real-time is in general out of
reach for high-fidelity techniques or full order models (FOMs),
such as the finite element (FE) method (Quarteroni and Valli,
1994) or isogeometric analysis (IGA) (Cottrell et al., 2009). To
enhance their computational efficiency, multi-query and real-
time problems may benefit from suitable surrogate models that
can be built according to different strategies (see, e.g., Niederer
et al., 2020 for a recent review). In particular, reduced order
modeling techniques, can potentially provide more accurate
approximations than data fitting techniques such as, e.g., data-
driven emulators built through polynomial chaos expansions

or gaussian processes. Moreover, they yield more significant
computational savings than low-fidelity models (such as, e.g.,

FOMs built on coarser meshes) by replacing the FOM by a

reduced order model (ROM), featuring a much lower dimension,
yet capable to express the physical features of the problem
at hand.

Cardiac EP problems are extremely challenging for traditional
ROMs. Indeed, the latters tend to be inaccurate and/or
computationally inefficient. This is primarily due to the high
variability characterizing the solution manifold (with respect to
the problem parameters), as well as to the nonlinear nature of
the input-output maps that are more frequently approximated.
Indeed, cardiac EP models feature coherent structures that
propagate over time. In particular, as soon as re-entries, the most
recognized cellular mechanisms sustaining atrial tachycardia and

atrial fibrillation (Nattel, 2002) are considered, and wavefronts
show abnormal activation patterns. These systems can hardly
be reduced to lower dimensional problems by traditional ROMs
for parametrized problems such as, e.g., the reduced basis (RB)
method (Quarteroni et al., 2016). The most advanced example
of efficient and accurate ROM in cardiac EP can be found in
Pagani et al. (2018), where a local POD-Galerkin ROM has been
proposed to handle physiological cardiac EP described in terms
of the simpler Monodomain equation. However, to the best of
our knowledge, no attempt to construct a comprehensive and
systematic ROM framework to efficiently deal with parameter-
dependent Bidomain equations involving pathological scenarios,
such as re-entries, has been made yet.

Recently, we have introduced a new class of non-intrusive—
since just a collection of FOM snapshots is required—nonlinear
ROM techniques based on deep learning (DL) algorithms,
named DL-ROMs, for the construction of efficient ROMs for
parameter-dependent PDEs; in particular, we have focused so
far on the Monodomain equations for cardiac EP, both in
physiological and pathological scenarios (Fresca et al., 2020), as
well as on several other nonlinear time-dependent parametrized
problems, see (Fresca et al., 2021). DL-ROMs proved to be
computationally efficient during the testing stage, that is, for
any new scenario unseen during the training stage, but they
might imply overwhelming training costs (and times) when the
FOM dimension becomes moderately large. POD-enhanced DL-
ROMs, first introduced and analyzed in Fresca et al. (2020), also
enable fast training stages, improving on the weakest aspect—
however, taking advantage of the key properties—of DL-ROMs.

So far, limited attempts have been made to solve, by means
of DL algorithms, problems featuring traveling waves or front
propagation processes. For example, recurrent and convolutional
deep neural networks have been employed to predict the
propagation of surface waves in Fotiadis et al. (2020). Regarding
the cardiac EP context, in Cantwell et al. (2019) machine learning
(ML) techniques have been considered for time prediction or
parameters estimation, and EP-nets have been proposed in Ayed
et al. (2019) and Kashtanova et al. (2021) to replace numerical
integration of PDEs. On the other hand, deep neural networks
have been extensively exploited to address several issues in
computational fluid dynamics (see, e.g., Kutz, 2017; Bhatnagar
et al., 2019; Ströfer et al., 2019; Brunton et al., 2020; Thuerey et al.,
2020; Eichinger et al., 2021; Fresca and Manzoni, 2021b).

In this study, we show that POD-DL-ROMs can handle
parametrized problems in cardiac EP effectively and provide fast
and accurate solutions to EP problems set on realistic geometries.
In particular, the performance of POD-DL-ROMs is assessed
on cardiac EP on a left atrium (LA) surface geometry, both
in physiological and pathological scenarios. These problems are
challenging for traditional ROMs, due to (i) the presence of steep
wavefronts, (ii) the complex activation patterns associated with
pathological scenarios, (iii) the high FOM dimension, and (iv)
the geometrical complexity. POD-DL-ROMs yield accurate and
extremely efficient numerical approximations, irrespectively of
the concurrence of these challenging features. This is particularly
useful in view of the evaluation of patient-specific features to
enable the integration of computational methods in current
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clinical practice; indeed, outputs of clinical interest, such as
ACs, APs, electrograms, and ablation targets, can be more
efficiently evaluated by the POD-DL-ROMs than by a FOM,
while maintaining a high level of accuracy. The numerical tests
carried out in this study represent a proof-of-concept of the POD
DL-ROM technique ability to investigate intra- and inter-subjects
variability toward performing multi-scenario analyses in real-
time and, ultimately, supporting decisions in clinical practice.

To build our ROMs, we rely on a FOM obtained by means
of an IGA spatial discretization. This choice is motivated by
the suitability of high order polynomials, with high order global
continuity, to control and limit numerical dispersions and, thus,
to accurately capture wavefronts (Dedè et al., 2015; Pegolotti
et al., 2019) and the smoothness in the representation of the
computational domain (Cottrell et al., 2009). These relevant
features have been exploited to address cardiac EP problems in
Patelli et al. (2017), Pegolotti et al. (2019), and Bucelli et al. (2021).
It is also worthy to highlight that, so far, only few works provide a
combination of IGA-based FOMs and reduced order modeling
techniques. IGA POD-Galerkin ROMs have been first applied
to potential flows (Manzoni et al., 2015) and shell structural
problems (Rinaldi, 2015), then to linear parabolic PDEs (Zhu
et al., 2017a) and time-dependent parameterized acoustic wave
equations (Zhu et al., 2017b); see also (Salmoiraghi et al., 2016;
Garotta et al., 2020).

The structure of this study is as follows. In section 2, we
introduce the FOMused to approximate the problem at hand and
the POD-DL-ROM technique. The numerical assessment of this
latter is carried out in section 3 on three different test cases; a
more in-depth discussion is reported in section 4.

2. MATERIALS AND METHODS

This section provides an overview of the mathematical and
numerical models describing cardiac EP, including the reduced
order modeling technique we employ to achieve computational
efficiency in the solution of the Bidomain equations.

2.1. Mathematical Models for Cardiac
Electrophysiology
The electrical activation of the heart, which drives its contraction,
is the result of two processes (Klabunde, 2011; Colli Franzone
et al., 2014): the generation of ionic currents through the cellular
membrane producing a local AP, at the microscopic scale, and
the propagation of the AP from cell to cell in the form of a
transmembrane potential, at the macroscopic scale. The latter
process can be described by means of PDEs, suitably coupled
with systems of ODEs accounting for the former (Quarteroni
et al., 2017, 2019). To model the propagation of the electrical
signal in the heart, we may consider the so-called Bidomain
equations (Geselowitz and Miller III, 1983; Colli Franzone et al.,
2014) in a domain � ⊂ R

d, with d = 2, 3, representing
a portion of the myocardium, considered as a continuum
composed of two interpenetrating domains, the intracellular
and the extracellular spaces. Each point x ∈ � is associated
with the intracellular potential ui, the extracellular potential

ue, and the transmembrane potential u = ui − ue. Coupling
the parabolic-elliptic formulation of the Bidomain model for
the transmembrane potential u = u(x, t) and the extracellular
potential ue = ue(x, t) with a phenomenological1 model for the
ionic currents—involving a single gating variable w = w(x, t)—
results in the following nonlinear time-dependent system:



























































∂u

∂t
− div(Di∇u)− div(Di∇ue)+ Iion(u,w) = Iiapp (x, t) ∈ � × (0,T),

−div(Di∇u)− div((Di +De)∇ue) = Iiapp + Ieapp (x, t) ∈ � × (0,T),

∂w

∂t
+ g(u,w) = 0 (x, t) ∈ � × (0,T),

Di∇(u+ ue) · n = 0 (x, t) ∈ ∂� × (0,T),

(Di +De)∇ue · n+Di∇u · n = 0 (x, t) ∈ ∂� × (0,T),

u(x, 0) = u0, w(x, 0) = w0 x ∈ �.
(1)

Here, t and u denote a rescaled and dimensionless time
and trasmembrane potential, depending on the ionic model
considered2, n denotes the outward directed unit vector normal
to the boundary ∂� of �, whereas Iiapp = Iiapp(x, t) and
Ieapp = Ieapp(x, t) are the intracellular and the extracellular
applied currents representing, e.g., the initial activation of the
tissue. The parabolic nonlinear diffusion-reaction equation for
u is two-way coupled with the ODE system; this latter must
be solved, in principle, at any point x ∈ �. Indeed, both Iion
and g depend on u and w, and the most common choices to
efficiently reproduce the AP are, e.g., the FitzHugh-Nagumo
(FitzHugh, 1961; Nagumo et al., 1962), the Aliev-Panfilov
(Aliev and Panfilov, 1996; Nash and Panfilov, 2004), the Roger-
McCulloch (Rogers and McCulloch, 1994), or the Mitchell-
Schaeffer models (Mitchell and Schaeffer, 2003). The diffusivity
tensors Di,De usually depend on the fibers-sheet structure of the
tissue, affecting directional conduction velocities and direction.
In particular, by assuming an axisymmetric distribution of the
fibers, the intracellular and extracellular conductivity tensors
take the form

Di(x) = σ i
t I+ (σ i

l − σ i
t ) f0(x)⊗ f0(x),

De(x) = σ e
t I+ (σ e

l − σ e
t ) f0(x)⊗ f0(x), (2)

where σ i
l
, σ e

l
and σ i

t , σ
e
t are the electrical conductivities in the

fibers and the transversal directions, for the intracellular and
extracellular conductivity tensors. A simplified model is given by
the Monodomain equation (Colli Franzone et al., 2014), written
only in terms of the transmembrane potential u.

For most of the basic phenomenological ionic models, such
as the FitzHugh-Nagumo, the Aliev-Panfilov (A-P) (Aliev and

1We can distringuish among phenomenological, first generation, and second

generation ionic models (Sundnes et al., 2006; Colli Franzone et al., 2014).

Compared to phenomenological models, first, and second-generation models

attempt to include also a description of the cell mechanisms, with the latter

also including sub-cellular processes. In the following, we will focus only on

phenomenological models.
2In the A-P ionic model, dimensional times and potentials are given by t̃ =

12.9t [ms] and ũ = (100u− 80) [mV]. The transmembrane potential ranges from

the resting state of−80 mV to the excited state of+20 mV.
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Panfilov, 1996) or the Roger-McCulloch (R-M) (Rogers and
McCulloch, 1994) model, the ionic current takes the form of
a cubic nonlinear function of u and a single (dimensionless)
gating variable plays the role of a recovery function, allowing to
model cell refractoriness. In this study, we focus on the simple
phenomenological A-P and R-M ionic models in order to lessen
the computational costs associated with the approximation of
Equation (1) through a FOM. The A-P model consists in taking

Iion(u,w) = Ku(u− a)(u− 1)+ uw,

g(u,w) =

(

ǫ0 +
c1w

c2 + u

)

(−w− Ku(u− b− 1)), (3)

where the parameters K, a, b, ε0, c1, c2 are related to the cell.
Here, a represents an oscillation threshold, the weighting factor
ε0 +

c1w
c2+u was introduced in Aliev and Panfilov (1996) to tune

the restitution curve to experimental observations by adjusting
the parameters c1 and c2, whereas K and b are coefficients set
according to Aliev and Panfilov (1996); see, e.g., (Clayton et al.,
2011; Colli Franzone et al., 2014) for a detailed review. For the
R-M ionic model, we rely on the following variant provided
in Rogers and McCulloch (1994)

Iion(u,w) = Gu
(

1−
u

uth

)(

1−
u

up

)

+ η1uw,

g(u,w) = η2

( u

up
− η3w

)

, (4)

where G, η1, η2, η3 are positive coefficients, vth is a threshold
potential, and vp is the peak potential.

The coupled system (Equation 1) depends on several
parameters representing either functional or geometric data such
as, e.g., material properties, initial and boundary conditions,
or the shape of the domain. In the remaining part of the
study, we denote by µ ∈ P ⊂ R

nµ a parameter vector
listing all the nµ input parameters characterizing physical
(and, possibly, geometrical) properties; P is a subset of Rnµ ,
denoting the parameter space. Relevant physical situations are
those in which input parameters affect the diffusivity matrix
D (through the conduction velocities) and the applied current
Iapp; for previous analyses focused instead on the gating variable
dynamics (through g) and the ionic current Iion in the case of the
Monodomain equation (see, e.g., Pagani et al., 2018).

Regarding the spatial discretization of the system (Equation
1), we consider NURBS-based IGA on surfaces (e.g., the LA),
in the framework of Galerkin methods (Quarteroni, 2017).
Here, the same NURBS basis functions are employed both to
define the computational domain and to construct the finite-
dimensional space in which the numerical solution of the PDE
is sought (Cottrell et al., 2009). Globally high order continuous
polynomials have proved to control and limit numerical
dispersion (Dedè et al., 2015), which may lead to artificial
fractionated potential fronts, when dealing with the sharp but
smooth fronts arising in cardiac EP. To correctly describe cardiac
EP, capturing propagating fronts and their velocity is essential.
The use of NURBS basis functions with high polynomial
degree (say, p) and global high order continuity (say, Cp−1) is

beneficial, in terms of both accuracy and efficiency, to deal with
Monodomain/Bidomain equations since they limit dispersion
effects typical of traveling wave phenomena (Patelli et al., 2017;
Pegolotti et al., 2019). Moreover, NURBS basis functions also
allow a smooth representation of the computational domain
starting from medical images, compared to methods exploiting
polyhedral elements, as it usually happens when dealing with
finite element approximations (Cottrell et al., 2009). In particular,
we employ a two-dimensional NURBS surface of the LA built
starting from B-spline basis functions of degree p = 2. For
further details on the construction of the LA computational
domain, we refer to Patelli et al. (2017). The smoothness of the
computational domain, together with the regularity of NURBS
basis functions, makes IGA well-suited for surface problems
requiring high order polynomials.

2.2. Proper Orthogonal
Decomposition-Enhanced Deep
Learning-Based Reduced Order Models
(POD-DL-ROMs)
From an algebraic standpoint, the spatial discretization
of the system (Equation 1) through a NURBS-based IGA
approximation yields the following nonlinear dynamical system
for uh = uh(t,µ), ue,h = ue,h(t,µ) and wh = wh(t,µ),
representing our FOM:







































M(µ)
∂uh

∂t
+ Ai(µ)uh + Ai(µ)ue,h = Iiapp(t;µ) t ∈ (0,T),

+Iion(t, uh,wh;µ)

Ai(µ)uh + A(µ)ue,h = Iiapp(t;µ)+ Ieapp(t;µ) t ∈ (0,T),

∂wh

∂t
= g(uh,wh;µ) t ∈ (0,T),

uh(0) = u0(µ), wh(0) = w0(µ),
(5)

where uh, ue,h, and wh ∈ R
Nh , being the dimension Nh related

to the dimension of the NURBS space, and µ ∈ P ⊂ R
nµ . In the

remaining part of this study, we consider as initial data u0(µ) = 0

and w0(µ) = 0. A detailed derivation of the FOM (Equation 5) is
reported in the Supplementary Material.

Solving (Equation 5) is computationally demanding and far
beyond the possibility to provide solutions or compute outputs
of interest in real-time applications. Indeed, the propagation
of the electrical signal is characterized by the fast dynamics
of very steep fronts, thus requiring very fine space and time
discretizations (Colli Franzone and Pavarino, 2004; Sundnes
et al., 2006). This is even more true if such a coupled
system must be solved for several parameters instances, that
is, in a multi-query context, in order to investigate different
scenarios or intra- and inter-subject variability. ROM techniques
replace the FOM (Equation 5) by a model featuring a much
lower complexity but still able to retain the physical features
of the problem at hand. Traditional projection-based ROMs
built, e.g., through the RB method (Quarteroni et al., 2016),
yields inefficient ROMs when dealing with nonlinear time-
dependent parametrized PDE-ODE system as the one arising
from cardiac EP (Fresca et al., 2020). To overcome the limitation
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of traditional projection-based ROMs, we have recently proposed
in Fresca et al. (2021) a strategy to construct, in a non-
intrusive/data-driven way (indeed neither access or solution to
the governing equations are required), DL-based ROMs (DL-
ROMs) for nonlinear time-dependent parametrized problems,
exploiting deep neural networks (Goodfellow et al., 2016) as a
main building block, and a set of FOM snapshots. A first attempt
to solve, by means of DL-ROMs, parametrized benchmark test
cases in cardiac EP described by the Monodomain equations,
has been carried out in Fresca et al. (2020). Although extremely
efficient at testing (i.e., online) time, when evaluating the
problem solution for any new testing-parameter instance, DL-
ROMs require an expensive training (i.e., offline) stage, because
of the extremely large number of network parameters to be
estimated. POD-DL-ROMs provide a possible enhancement
of DL-ROMs, which avoids expensive training stages, by (i)
performing a prior dimensionality reduction through proper
orthogonal decomposition (POD), and (ii) using a multi-
fidelity pretraining stage, where different physical models can be
efficiently combined, as recently shown in Fresca and Manzoni
(2021a). In particular, through the use of randomized POD,
the POD-DL-ROM training phase is extremely fast, especially
if compared to the training stage of DL-ROMs. For example,
in Fresca and Manzoni (2021a), where we consider the solution
of the parametrized Monodomain equation in a square slab of
cardiac tissue on a FOM dimension Nh = 4096, the use of the
POD-enhanced DL-ROM reduces the GPU training time from
15 h to 24 min, while preserving extremely efficient testing times.

Tailored on the applications at hand, the goal of POD-DL-
ROMs is to approximate the map (t,µ) 7→ uh(t,µ), where
t ∈ (0,T) denotes time, µ ∈ P ⊂ R

nµ a vector of input
parameters, and uh(t,µ) ∈ R

Nh the trasmembrane potential
solution of Equation (5). This may be achieved without taking
into account, and then expensively solving, the dynamics of the
extracellular potential ue,h(t,µ) and the gating variable wh(t,µ)
in the construction of the ROM. More precisely, we build a
nonlinear ROM to approximate VTuh(t;µ) ≈ ũN(t;µ) by

ũN(t;µ) = 9N(un(t;µ)), (6)

where 9N :R
n → R

N ,9N : sn 7→ 9N(sn), n≪N, is a nonlinear,
differentiable function and V ∈ R

Nh×N is the rPOD basis matrix
of a N-dimensional subspace of RNh . In particular, the columns
of V form an orthonormal basis of dimension N, computed by
means of randomized SVD (rSVD) (Halko et al., 2011). In this
way, the manifold SN = {VTuh(t;µ) | t ∈ [0,T) and µ ∈

P ⊂ R
nµ} ⊂ R

N is approximated by the n-dimensional reduced
nonlinear trial manifold

S̃n = {9N(un(t;µ)) | un(t;µ) ∈ R
n,

t ∈ [0,T) and µ ∈ P ⊂ R
nµ} ⊂ R

N , (7)

where ũN :[0,T) × P → S̃n. The function un :[0,T) × P → R
n

denotes the minimal coordinates of ũN on the nonlinear trial
manifold S̃n. Our goal is to set-up a ROM whose dimension n is
as close as possible to the intrinsic dimension nµ + 1 (time plays
the role of an additional coordinate) of the solution manifold Sh,

i.e. n ≥ nµ + 1, to correctly capture the degrees of freedom of
the set SN by containing its size (Lee and Carlberg, 2020). To
model the relationship between each pair (t,µ) 7→ un(t,µ), and
to describe the reduced dynamics on the reduced nonlinear trial
manifold S̃n, we consider a nonlinear map under the form

un(t;µ) = 8n(t,µ), (8)

where 8n :[0,T) × R
nµ → R

n is a differentiable,
nonlinear function. As for DL-ROMs (see e.g., Fresca et al.,
2021), both the reduced dynamics and the reduced nonlinear
manifold where the ROM solution is sought (or trial manifold)
must be learnt. In particular,

• reduced dynamics learning: We aim at learning the dynamics
of the set SN on the nonlinear trial manifold S̃n in terms of
minimal coordinates, by means of a deep feedforward neural
network (DFNN). Indeed, we set the function 8n in Equation
(8) equal to

8n(t;µ, θDF) = φDF
n (t;µ, θDF),

where θDF denotes the vector of parameters of the DFNN,
collecting all the corresponding weights and biases of each
layer of the DFNN;

• nonlinear trial manifold learning: We employ the decoder
function of a convolutional autoencoder (AE), that is, we
define the function in Equation (6) as

9N(un(t;µ, θDF); θD) = fDN(un(t;µ, θDF); θD),

where fDN depends on the vector θD of parameters of the
convolutional/dense layers of the decoder.

By combining the two previous stages, the POD-DL-ROM
approximation ũN finally takes the form

ũN(t;µ, θDF , θD) = fDN(φ
DF
n (t;µ, θDF); θD). (9)

The encoder function of the convolutional AE can then be
exploited to map the intrinsic coordinates VTuh associated to
(t,µ) onto a low-dimensional representation

ũn(t;µ, θE) = fEn(V
Tuh(t;µ); θE),

where fEn denotes the encoder function, depending upon a vector
θE of parameters. The architecture of the POD-DL-ROM neural
network, employed at training time, is the one shown in Figure 1.
At testing time we can discard the encoder function.

Computing the POD-DL-ROM approximation (Equation 9)
thus consists of solving the optimization problem

min
θ

J (θ) = min
θ

1

Ns

Ntrain
∑

i=1

Nt
∑

k=1

L(tk,µi; θ), (10)

where the per-example loss function is given by

L(tk,µi; θ) =
ωh

2
‖VTuh(t

k;µi)− ũN(t
k;µi, θDF , θD)‖

2

+
1− ωh

2
‖ũn(t

k;µi, θE)− un(t
k;µi, θDF)‖

2, (11)
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FIGURE 1 | Starting from the FOM solution uh(t;µ), the intrinsic coordinates VTuh(t;µ) are computed through rSVD; their approximation ũN (t;µ) is provided by the

neural network as output, so that the reconstructed solution ũh(t;µ) is recovered through the rPOD basis matrix. In particular, the intrinsic coordinates VTuh(t;µ) are
provided as input to block (A), which returns as output ũn (t;µ). The same parameter instance (t;µ) enters block (B), which provides as output un(t;µ), and the error

between the low-dimensional vectors is accumulated. The minimal coordinates un(t;µ) are given as input to block (C), which returns the approximated intrinsic

coordinates ũN (t;µ). Then, the reconstruction error is computed.

Ntrain andNtest are the number of training- and testing-parameter
instances, respectively, Nt is the number of time instances, Ns =

NtrainNt , and ωh ∈ [0, 1]. The POD-DL-ROM approximation of
the FOM solution ũh(t;µ) ≈ uh(t;µ) is then recovered bymeans
of the rPOD basis matrix as.

ũh(t;µ, θDF , θD) = VũN(t;µ, θDF , θD).

3. RESULTS

In this section, we apply the POD-DL-ROM technique to
relevant problems in cardiac EP, both in physiological and
pathological scenarios, solved on a rectangular slab and a left
atrium surface geometry. Dealing with realistic geometries, large-
scale problems, i.e., high FOM dimensions Nh, and pathological
scenarios, such as re-entries, show the feasibility of POD-DL-
ROM to be integrated in to the clinical practice in order to
compute outputs of interest, e.g., ACs, action potential durations,
electrograms, and location of cores of rotors. To evaluate the
performance of POD-DL-ROM, we rely on the loss function
(Equation 11) and on:

• the error indicator ǫrel ∈ R given by

ǫrel = ǫrel(uh, ũh)

=
1

Ntest

Ntest
∑

i=1





√

∑Nt

k=1
||uk

h
(µtest,i)− ũk

h
(µtest,i)||

2

√

∑Nt

k=1
||uk

h
(µtest,i)||

2



 ; (12)

• the relative error ǫk ∈ R
Nh , for k = 1, . . . ,Nt , defined as

ǫk = ǫk(uh, ũh) =
|uk

h
(µtest)− ũk

h
(µtest)|

√

1
Nt

∑Nt

k=1
||uk

h
(µtest)||

2
. (13)

While Equation (12) is a synthetic indicator, the quantity defined
in Equation (13) is instead a spatially distributed function.

The configuration of the POD DL-ROM neural network,
together with the values of the hyperparameters not reported in
this study, used for our numerical tests is the same provided as in
Fresca and Manzoni (2021a). The FOM simulations are carried
out on aMacBook Pro Intel Core i7 6-core with 16GBRAMCPU,
while the POD-DL-ROM training and testing phases on a Tesla
V100 32GB GPU.

3.1. Test 1: Slab and Left Atrium Surface
Geometry by Varying Conductivities
3.1.1. Test 1.1: Slab Geometry
We consider the Bidomain Equation (1) coupled with the R-
M ionic model (Equation 4) in a two-dimensional rectangular
slab of cardiac tissue � = (0, 10) cm × (0, 2) cm. In order to
characterize the bidomain nature of the tissue, we focus on the
reconstruction of both the transmembrane and the extracellular
potentials. To achieve this task, the intrinsic coordinates of the
two field variables, i.e. vh(t) and ue,h(t), are stacked together, thus
forming a tensor with d = 2 input channels, which represent
the actual input (output) of the POD-DL-ROM neural network.
The parameter (nµ = 1) consists of the electrical extracellular
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FIGURE 2 | Test 1.1: FOM solution (top) and POD-DL-ROM one (center), with n = 2 and N = 256, along with the relative error ǫk for uh (bottom-left) and ue,h
(bottom-right), for the testing-parameter instance µtest = 0.0143 �−1cm−1 at t = 150 ms.

conductivity in the longitudinal direction to the fibers, i.e., the
conductivity tensorDe(x;µ) takes the form

De(x;µ) = σ e
t I+ (µ − σ e

t )f0 ⊗ f0,

where f0 = (1, 0)T and the parameter space is P =

1.5 · [10−3, 10−2] �−1cm−1. The remaining intracellular and
extracellular conductivities are set equal to σ i

l
= 2.3 ×

10−3 �−1cm−1, σ i
t = 2.4 × 10−4 �−1cm−1, and σ e

t = 1 ×

10−3 �−1cm−1, respectively. The parameters of the R-M ionic
model are given by uth = 13 mV, vp = 100 mV, G = 1.5 ms−1,
η1 = 4.4 ms−1, η2 = 1.2× 10−2, and η3 = 1 (see, e.g., Gerardo-
Giorda, 2007). We provide snapshots computed by means of
P3/C2 NURBS basis functions, where Nh = 165 × 35 = 5705,
with nel = 5120 mesh elements. Time integration is performed
over the interval (0,T), with T = 150 ms and a time-step 1t =
0.05 ms, through a BDF of order 2. The intracellular applied
current takes the form

Iiapp(x, t) = C1�app (x)1[ti ,tf ](t), (14)

where C = 100 mA, �app = {x ∈ � : x ≤ 0.2}, ti = 0 ms, and

tf = 1 ms.
For the training phase, we consider Nt = 1500 time instances

in the interval (0,T) and Ntrain = 11 training-parameter

instances uniformly distributed in the parameter space. For the
testing phase, Ntest = 10 testing-parameter instances have been
considered, each of them corresponding to the midpoint of
two consecutive training-parameter instances. The maximum
number of epochs is Nepochs = 20, 000, the batch size is Nb = 40,
and regarding the early-stopping criterion, we stop the training
if the loss function does not decrease along 1,000 epochs. In
Figure 2, we report both the FOM and the POD-DL-ROM
solution, the latter with n = 2 and N = 256, together with
the resulting relative error, both for the transmembrane and
the extracellular potentials, for the testing-parameter instance
µtest = 0.0143 �−1cm−1 at t = 150 ms.

The trend of the mean (with respect to the spatial coordinates)
of the relative error ǫk over time, for the selected testing-
parameter instance µtest = 0.0143 �−1cm−1, is shown in
Figure 3, for both the trasmembrane (left) and the extracellular
(right) potentials. We highlight that the errors are, on average,
always smaller than 0.15%. The distribution of the errors is
almost uniform over time; indeed, due to the fact that the
snapshots associated with different time instances are treated as

independent by the POD-DL-ROM, errors do not accumulate

over time. In this manner, neither instability issues nor specific
error patterns are found. In particular, the error related to the

extracellular potential is higher than the one associated with
the transmembrane potential. As a matter of fact, the former
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FIGURE 3 | Test 1.1: Relative error ǫk , averaged with respect to the spatial coordinates, for the transmembrane (A) and the extracellular (B) potentials, for the

testing-parameter instance µtest = 0.0143 �−1cm−1, over time.

TABLE 1 | Test 1.1: POD-DL-ROM and DL-ROM computational times.

DL-ROM: total (offline) POD-DL-ROM:

total (offline)

POD-DL-ROM:

testing (online)

29 h 4 h 0.053 s

can be more difficult to approximate than the latter, because of
the different ranges the extracellular potential can vary in for
different parameters and time instances—and on the other hand,
the transmembrane potential always takes values in the [0, 100]
mV range.

In Table 1, we report the GPU POD-DL-ROM total training
and validation times, together with the testing time, and the DL-
ROM total time; the time needed to assemble the snapshot matrix
S is not included. Using a POD-DL-ROM, that is, employing
a prior dimensionality reduction through rSVD, drastically
accelerates the training stage. We point out that in this test case,
in contrast with the following ones, we did not perform any
sampling in time, considering all the time instances provided by
the IGA solver.

3.1.2. Test 1.2: Left Atrium Surface Geometry
We now consider the solution of the Bidomain (Equation 1)
coupled with the A-P ionic model (Equation 3) on an idealized
LA surface geometry. We are interested in the reconstruction of
both the transmembrane and the extracellular potentials as in the
previous test. The direction of the cardiac fibers is determined
by following the same strategy adopted in Rossi et al. (2014) and
Patelli et al. (2017), where a vector field directed as the gradient
of the solution of a Laplace problem defined on the atrial surface
is assigned to the LA. The resulting distribution of fibers on the
atrial surface is displayed in the Supplementary Material.

System Equation (1) has been first discretized in space by
means of P2 NURBS basis functions, with a global C1 continuity,
yielding a FOM dimension equal to Nh = 61, 732. Time
integration over (0,T), with T = 200 ms, has been performed
introducing a time-step 1t = 0.2 ms. Provided the position of

the Bachmann bundle x̄ = (x̄, ȳ, z̄)T = (−1.51, 0.1,−1.71)T cm,
the intracellular applied stimulus is given by

Iiapp(x, t) = C1�app (x)1[ti ,tf ](t),

with C = 1 mA, �app = {x ∈ � :(x− x̄)2 + (y− ȳ)2 + (z− z̄)2 ≤

(0.5)2}, ti = 0 ms and tf = 5 ms.
The parameter (nµ = 1) consists of the electrical intracellular

conductivity in the longitudinal direction to the fibers, i.e., the
conductivity tensorDi(x;µ) takes the form

Di(x;µ) = σ i
t I+ (µ − σ i

t )f0(x)⊗ f0(x),

where the parameter space is P = 3.1 · [10−4, 10−2] �−1cm−1.
The remaining intracellular and extracellular conductivities are
equal to σ i

t = 2 × 10−2 �−1cm−1, σ e
l
= 1.3 × 10−4 �−1cm−1,

and σ e
t = 2 × 10−3 �−1cm−1. The parameters of the A-P ionic

model (Equation 3) are given by K = 8, a = 0.1, ǫ0 = 0.01,
b = 0.1, c2 = 0.3, and c1 = 0.05 (ten Tusscher, 2004).

For the training phase, we uniformly sample Nt = 500
time instances in the interval (0,T) and consider Ntrain = 11
training-parameter instances, uniformly distributed over P . For
the testing phase, Ntest = 10 testing-parameter instances have
been considered, each of them corresponding to the midpoint
of two consecutive training-parameter instances. The maximum
number of epochs is set to Nepochs = 20, 000, the batch size is
Nb = 40, and regarding the early-stopping criterion, we stop
the training if the loss function does not decrease along 1,000
epochs. In Figures 4, 5, we report the FOM transmembrane and
extracellular potentials and their POD-DL-ROM approximation,
obtained by selecting n = 2 and N = 256, for the testing-
parameter instance µtest = 0.0295 �−1cm−1 at t = 52.8 ms and
t = 112 ms.

In Figure 6, we show the FOM and POD-DL-ROM APs and
extracellular potentials evaluated at a point x∗, with n = 2 and
N = 256, for the testing-parameter instance µtest = 0.0295
�−1cm−1. Despite the POD-DL-ROM solution is affected by
some tiny oscillations related to the truncated rPOD modes, it is
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FIGURE 4 | Test 1.2: FOM solution (left) and POD-DL-ROM one (right), with n = 2 and N = 256, for the testing-parameter instance µtest = 0.0295 �−1cm−1 at

t = 52.8 ms (A) and t = 112 ms (B).

able to capture the shape and the different phases of the electrical
propagation over time.

In Table 2, we report the CPU computational time needed to
solve the FOM by means of NURBS-based IGA and the GPU
POD-DL-ROM total training and validation times, together with
the testing time. Also in this case, the time needed to assemble
the snapshot matrix S is not included. We notice that, using a
POD-DL-ROM, we achieve the possibility to solve the problem in
several different scenarios, during the testing stage, in real-time,
since the final time T = 0.2 s coincides with the computational
time entailed by the evaluation of the POD-DL-ROM.

3.2. Test 2: Left Atrium Surface Geometry
by Varying Stimulation Site
We still consider the LA surface geometry and the direction of
cardiac fibers as in test 1.2 and deal with the Bidomain (Equation
1) coupled with the R-M model (Equation 4), thus selecting a
different ionic model than the one of the previous example. The
equations have been discretized in space by means of P2 NURBS
basis functions, with a global C1 continuity, yielding a FOM
dimension equal to Nh = 154, 036; time integration has been
performed over the interval (0,T), with T = 200 ms and a

time-step 1t = 0.1 ms. Here, we consider nµ = 3 parameters,
consisting of the coordinates of the center of an intracellular
applied current, and belonging to the subregion highlighted
in Figure 7—and the portion of the domain affected by the
corresponding stimulus is highlighted, too. The intracellular
applied current is thus defined by setting C = 100 mA and

Iiapp(x, t) = C1�app(µ)(x)1[ti ,tf ](t),

with �app(µ) = {x ∈ � :(x − µ1)
2 + (y − µ2)

2 + (z − µ3)
2 ≤

(0.5)2}, ti = 0 ms, and tf = 5 ms.
We set the rPOD dimension equal to N = 256 and the

dimension n of the POD-DL-ROM approximation equal to n =

nµ + 1 = 4. For the training phase, we uniformly sample Nt =

200 time instances in the interval (0,T) and consider Ntrain =

18 training-parameter instances randomly sampled from the
parameter space. For the testing phase, Ntest = 14 randomly
sampled testing-parameter instances have been considered. The
maximum number of epochs is Nepochs = 40, 000, the batch size

is Nb = 40, the starting learning rate is η = 2 · 10−4, and
regarding the early-stopping criterion, we stop the training if the
loss function does not decrease along 2,000 epochs.
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FIGURE 5 | Test 1.2: FOM solution (left) and POD-DL-ROM one (right), with n = 2 and N = 256, for the testing-parameter instance µtest = 0.0295 �−1cm−1 at

t = 52.8 ms (A) and t = 112 ms (B).

FIGURE 6 | Test 1.2: FOM and POD-DL-ROM, with n = 2 and N = 256, APs

for the testing-parameter instance µtest = 0.0295 �−1cm−1.

We remark that the POD-DL-ROM approximation to the
FOM solution is also efficient in computing several outputs of
interest. We compare, for instance, the ACs obtained through

the FOM and by POD-DL-ROM. Given the transmembrane
potential u = u(x, t;µ), the (unipolar) AC at a point x ∈ � is
evaluated as the minimum time which the AP peak reaches the
point x at,

AC(x;µ) = arg min
t∈(0,T)

(

u(x, t;µ) = max
t∈(0,T)

u(x, t;µ)

)

.

In Figure 8, we compare the FOM and the POD-
DL-ROM outputs, together with the associated
relative error ǫk, for the testing-parameter instances
µtest = (1.7168,−0.353198, −1.70097) cm and
µtest = (1.43862,−0.803806,−1.43678) cm. We highlight
the strong variability of the solution over the parameter
space, shown by the different shape of the contour lines in
Figures 8A,B, and the ability of the POD-DL-ROM to capture
it accurately.

Finally, in Table 3 we report the FOM CPU computational
time and the POD-DL-ROM GPU training and testing times;
the time needed to assemble the snapshot matrix S is not
included. Solving the FOM, for a single testing-parameter
instance, requires 10 h, with respect to the POD-DL-ROM
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total training and validation time, which is equal to 5
h. POD-DL-ROM also proves to be extremely efficient at
testing time, since it provides, once again, accurate results in
almost real-time.

TABLE 2 | Test 1.2: FOM and POD-DL-ROM computational times.

FOM POD-DL-ROM: total (offline) POD-DL-ROM: testing (online)

2 h 1.8 h 0.3 s

FIGURE 7 | Test 2: Parameter space (dark magenta region) and portion of

domain affected by the stimulus (light magenta region).

3.3. Test 3: Figure of Eight Re-entry on Left
Atrium Surface Geometry
We finally investigate the generation of the figure of eight re-
entries on the left atrium surface geometry as a consequence of
a S1-S2 electrical stimulation protocol, to highlight the ability of
the POD-DL-ROM the technique of solving cardiac EP problems
in a more challenging pathological scenario as well. The set-up
of the FOM is the one provided in the Supplementary Material,
except for the final time equal to T = 500 ms. Here, we
consider nµ = 3 parameters, consisting of the coordinates of
the center of the S2 intracellular applied currents, which can
vary in the three-dimensional region highlighted in Figure 10

(left). The choice of the parameter space is motivated by the
fact that ectopic complexes usually arise in correspondence of
pulmonary veins (PVs). We first apply a physiological stimulus
(S1) in correspondence of the posterior septum and then a
second stimulus (S2) acting on �2(µ) = {x ∈ � :(x −

TABLE 3 | Test 2: FOM and POD-DL-ROM computational times.

FOM POD-DL-ROM: training POD-DL-ROM: testing

10 h 5 h 0.2 s

FIGURE 8 | Test 3: FOM (left) and POD-DL-ROM (center), with n = 4 and N = 256, ACs and relative error ǫk (right), for the testing-parameter instances

µtest = (1.7168,−0.353198,−1.70097) cm (A) and µtest = (1.43862,−0.803806,−1.43678) cm (B).
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TABLE 4 | Test 3: FOM and POD-DL-ROM computational times.

FOM POD-DL-ROM: training POD-DL-ROM: testing ne

N = 256 7.2 h 4.9 h 0.32 s 8,849

N = 1, 024 7.2 h 20 h 0.77 s 30,000

µ1)
2 + (y − µ2)

2 + (z − µ3)
2 ≤ (0.5)2}, which takes

the form

Ii,2app(x, t) = C1�2(µ)(x)1[ti2 ,t
f
2]
(t),

with C = 100 mA, ti2 = 210 ms, and t
f
2 = 215 ms.

This test case represents a proof-of-concept of the strategy
used in the clinical practice to identify possible re-entrant
circuits, part of which may be latent, by conducting a virtual
multi-site delivery of electrical stimuli from a number of possible
atrial locations (Arevalo et al., 2016; Boyle et al., 2018; Prakosa
et al., 2018).

As before, we set the rPOD dimension equal to N = 256, and
the dimension n of the POD-DL-ROM approximation equal to
n = nµ + 1 = 4. We consider Nt = 1, 000 time instances
in the interval (300, 500) ms and randomly sample Ntrain = 15
training-parameter and Ntest = 5 testing-parameter instances
from the parameter space. The maximum number of epochs is
Nepochs = 30, 000, the batch size is Nb = 40, and regarding
the early-stopping criterion, we stop the training if the loss
function does not decrease along 2,000 epochs. Choosing the
rPOD dimension equal to N = 256 yields, over the testing
set, a projection error indicator ǫrel(uh,VV

Tuh) = 6.8 × 10−2

and the projection relative error ǫk(uh,VV
Tuh) shown in the

Supplementary Material. This value can be used as the lower
bound of the reconstruction error indicator, being smaller than

the previous values over the testing set.
In Figure 9A, we compare the FOM and POD-DL-ROM

solutions, the latter with n = 4 andN = 256, together with ǫk, for

the testing-parameter instance µtest = (0.2508, 0.7932, 1.66) cm

at t = 316.4 ms. The error indicator ǫrel(uh, ũh) is equal to 7.06×

10−2, meaning that the projection error provides an upper bound

to the error ǫrel(uh, ũh) over the testing set. However, the POD-

DL-ROM is able to completely capture the location and the shape
of the re-entry, and the moving front; the error is indeed related
to the reconstruction of the steep fronts. Obtained results are
thus satisfying, keeping into account the extreme complexity of
the problem at hand. Then, we investigate the impact of a higher
value for the rPOD dimension, setting it equal to N = 1, 024. In
this case, the projection error indicator ǫrel(uh,VV

Tuh) is equal
to 2.84 × 10−2 and the error indicator (Equation 12) becomes
ǫrel = 5.4 × 10−2. In Figure 9B, we report the FOM solution
and the POD-DL-ROM approximation, obtained with n = 4 and
N = 1, 024, together with the relative error (Equation 13), for
the testing-parameter instance µtest = (0.2508, 0.7932, 1.66) cm
at t = 316.4 ms. By comparing Figures 9A,B, we can note how
the use of a larger N leads to only slightly more accurate results.

In Table 4, we report the FOM CPU computational time and
the POD-DL-ROM GPU total, i.e., training and validation time,
and testing times, and the total number of epochs ne, by varying
N. As expected, both the training and the testing times are larger
forN = 1, 024 than forN = 256, since the number of parameters
of the neural network is higher in the former case. We highlight
that, if we do not take into account the time needed to assemble
the snapshot matrix, the time required to train the POD-DL-
ROM over the parameter space, for N = 256, is smaller than
performing a FOM simulation for a single parameter instance.
We remark that we started from a learning rate equal to η =

2 · 10−4 for N = 256 and η = 10−4 for N = 1, 024, the latter
resulting in a longer total training and validation time; indeed,
in this case training stops because of the maximum number of
epochs achieved, however, yielding a higher accuracy. At testing
time, both the networks show to be extremely efficient.

As done in Fresca et al. (2020), we increase the complexity of
the problem by enlarging the dimension of the parameter space,
thus considering both re-entry and non re-entry dynamics. We
randomly sample Ntrain = 20 + 20 = 40 training-parameter
and Ntest = 10 + 10 = 20 testing-parameter instances from
the parameter space. We set the rPOD dimension equal to
N = 1, 024. In this case, the projection error indicator value is
ǫrel(uh,VV

Tuh) = 4.34× 10−2, while the reconstruction error is
ǫrel(uh, ũh) = 7.7×10−2. We set themaximumnumber of epochs
Nepochs to 30,000—by increasing this value it is possible to achieve
a reconstruction error equal to the projection one. The parameter
space is the one shown in Figure 10 (right).

In Figure 11, we report the FOM and POD-DL-ROM
solutions, with n = 4 and N = 1, 024, along with ǫk, for the
testing-parameter instances µtest = (0.3162, 0.8638, 0.6864) cm
and µtest = (0.2508, 0.7932, 0.8895) cm at t = 300.8 ms. The
POD-DL-ROM is then able to reproduce the main features of the
dynamics of the solution, and the error is mainly associated with
the truncated POD modes.

4. DISCUSSION

The cardiac EP problems addressed in this paper fit into both
(i) a multi-query context, since repetitive evaluations of the
input-output map are required in order to perform multi-
scenario analysis, in order to deal with inter- and intra-subject
variability and to consider specific pathological scenarios, and
a (ii) real-time context, due to the need, in a clinical setting, to
compute outputs of interest in a very limited amount of time.
Performing the numerical approximation of cardiac EP problems
in these contexts, by means of traditional FOMs, such as the FE
method or NURBS-based IGA, is prohibitive because of the huge
computational costs associated to the solution of the equations.
Indeed, small time-step sizes must be selected to ensure stability;
small mesh sizes are required in order to capture the steep fronts
and preserve accuracy.

We have taken advantage of a recently proposed technique
(Fresca and Manzoni, 2021a) to build low-dimensional ROMs
by exploiting DL algorithms. This strategy allows us to
overcome typical computational bottlenecks shown by classical,
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FIGURE 9 | Test 3: FOM (left) and POD-DL-ROM (center) solutions, the latter obtained with n = 4 and N = 256 (A), and n = 4 and N = 1, 024 (B), together with ǫk

(right), for the testing-parameter instance µtest = (0.2508, 0.7932, 1.66) cm at t = 316.4 ms.

FIGURE 10 | Test 3: Possible sites of S2 stimulus applications in the case of re-entry dynamics (magenta region) (A) and including both re-entry and non-re-entry

dynamics (magenta region) (B). The coordinates of the points belonging to the highlighted region are the input parameters.
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FIGURE 11 | Test 3: FOM (left) and POD-DL-ROM (center) solutions, the latter obtained with n = 4 and N = 1, 024, together with ǫk (right), for the testing-parameter

instances µtest = (0.3162, 0.8638, 0.6864) cm (A) and µtest = (0.2508, 0.7932, 0.8895) cm (B) at t = 300.8 ms.

linear projection-based ROM techniques (such as POD-
Galerkin ROMs) when dealing with problems featuring coherent
structures propagating over time. The DL-ROM technique allows
to approximate the solution manifold of a given parametrized
nonlinear, time-dependent PDE by means of a low-dimensional,
nonlinear trial manifold, and the nonlinear dynamics of the
generalized coordinates on such reduced manifold, as a function
of the time coordinate and the parameters. Both the nonlinear
trial manifold and the reduced dynamics are learnt in a non-
intrusive way, thus avoiding to query the FOM high-dimensional
arrays. The solution manifold is learnt by means of the decoder
function of a convolutional AE neural network; the reduced
dynamics is approximated through a DFNN and the encoder
function of the convolutional AE. Through the use of the
DL-ROM, it is possible to boost the solution of parametrized
problems in cardiac EP remarkably, thus overcoming the main
computational bottlenecks that affect POD-Galerkin ROMs in
this context (Fresca et al., 2020). A key aspect in the setting of
DL-ROMs concerns their computational efficiency during the
offline (or training) stage, which is also related with the curse
of dimensionality entailed by the (possibly, extremely large)
dimension of the FOM. This gain, which makes the offline
training stage dramatically faster, hinges upon (i) a preliminary
dimensionality reduction in the FOM snapshots, by means
of rPOD, and (ii) a suitable multi-fidelity pretraining stage,
exploiting snapshots computed through different low-fidelity

models to initialize the parameters of the neural networks in a
sequential procedure.

So far, only few works have focused on the solution, by
means of DL algorithms, of problems featuring traveling waves
or front propagation processes in the cardiac EP context.
For example, in Court and Kunisch (2021) the ionic model
is designed to exploit an artificial neural network, in order
to identify the nonlinearity in the Monodomain model from
given data, yet without providing information about neither the
spatial distribution of the electrical signal in the heart, nor the
whole range of time and spatial scales of the transmembrane
potential. The reconstruction of ACs by means of a physics-
informed neural network (PINN) trained by minimizing the
residual associated with the Eikonal equation is addressed by
Sahli Costabal et al. (2020); several techniques based on ML
algorithms are reviewed in Cantwell et al. (2019), for the sake
of addressing either classification or estimation problems, such
as, e.g., prediction making from the contact electrogram. Finally,
neural networks are used for the numerical integration of
the Monodomain equation coupled with the Mitchell-Schaeffer
ionic model, assessing their performance on two-dimensional
benchmarks, in Ayed et al. (2019) and Kashtanova et al. (2021).

In this study, we assessed the performance of the POD DL-
ROM technique when applied to the solution of cardiac EP
problems on a left atrium geometry, in both physiological and
pathological scenarios, by showing its ability in providing an
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accurate and efficient ROM, which multi-query and real-time
problems may rely on. Indeed, POD-DL-ROMs enable to explore
the parameter space, thus accounting for different scenarios,
and it not only provide real-time solutions to parametrized
cardiac EP problems at the testing stage—being able to match the
intrinsic dimension of the problems investigated—but can also
be trained very efficiently. Moreover, we point out that it is also
possible to include more complex ionic models in the FOM, for a
more accurate description of the electrical activity of the heart
at the microscopic level, without affecting the computational
times of the POD-DL-ROM. Indeed, due to the non-intrusive
nature of this technique, the dynamics of the gating variables
is not taken explicitly into account by the networks in order to
compute the electrical potential. In the same way, the choice of a
particular model of fibers and the definition of the conductivity
tensor (possibly accounting for the presence of ischemic, non-
conductive regions as in Fresca et al., 2020; Kashtanova et al.,
2021), are considered by the neural network only through the
effects they produce on the FOM snapshots. The accuracy and the
efficiency obtained by the POD-DL-ROM approximations make
them amenable, in the clinical setting, to replace high-fidelity,
FOM solvers, for the computation of quantities of interest, such
as ACs and APs.

Finally, we highlight that a possible pitfall of the proposed
methodology is represented by the amount/quality of training
data: If too few (or low-quality) snapshots are considered, further
operations like (i) increasing the number of parameters of the
network, (ii) training the network for a larger number of epochs,
or (iii) generating more data by means of data augmentation
techniques can be required. A relevant issue is also related to the
generalization properties of the network outside the parameter
range and/or the time interval where snapshots are sampled.
Ensuring good approximation properties when interested in
long-time scenarios, even in presence of almost periodic regimes,
without more specific network architectures, is an open issue our
efforts are focusing on; however, this represents a general aspect
shared by several ROM techniques.

To the best of our knowledge, this study represents the first
attempt of reducing the computational complexity associated
with the reconstruction of both the transmembrane and the
extracellular potentials and re-entry problems, this virtually

opening a new path toward the model personalization in
real-time, even when dealing with extremely challenging,
and computationally involved, settings. We remark that the

performance of the POD-DL-ROM technique evaluated on
new, unseen scenarios with respect to the ones used during
the training phase of the network, thus virtually allowing
to compute, during interventions, outputs related to subject-
specific data such as, e.g., ACs o voltage maps, in real-time.
The possibility to perform real-time numerical simulations, in
cardiac EP, can be seen as the first step toward the translation
of computational methods into the clinical practice enabling a
cooperation for supporting decisions, quantifying risks related to
cardiac pathologies, planning therapies, and interventions.
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