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Background: Focal ventricular tachycardia (VT) is a life-threating arrhythmia,
responsible for high morbidity rates and sudden cardiac death (SCD). Radiofrequency
ablation is the only curative therapy against incessant VT; however, its success
is dependent on accurate localization of its source, which is highly invasive and
time-consuming.

Objective: The goal of our study is, as a proof of concept, to demonstrate the possibility
of utilizing electrogram (EGM) recordings from cardiac implantable electronic devices
(CIEDs). To achieve this, we utilize fast and accurate whole torso electrophysiological
(EP) simulations in conjunction with convolutional neural networks (CNNs) to automate
the localization of focal VTs using simulated EGMs.

Materials and Methods: A highly detailed 3D torso model was used to simulate∼4000
focal VTs, evenly distributed across the left ventricle (LV), utilizing a rapid reaction-eikonal
environment. Solutions were subsequently combined with lead field computations on
the torso to derive accurate electrocardiograms (ECGs) and EGM traces, which were
used as inputs to CNNs to localize focal sources. We compared the localization
performance of a previously developed CNN architecture (Cartesian probability-based)
with our novel CNN algorithm utilizing universal ventricular coordinates (UVCs).

Results: Implanted device EGMs successfully localized VT sources with localization
error (8.74 mm) comparable to ECG-based localization (6.69 mm). Our novel UVC
CNN architecture outperformed the existing Cartesian probability-based algorithm
(errors = 4.06 mm and 8.07 mm for ECGs and EGMs, respectively). Overall, localization
was relatively insensitive to noise and changes in body compositions; however,
displacements in ECG electrodes and CIED leads caused performance to decrease
(errors 16–25 mm).

Conclusion: EGM recordings from implanted devices may be used to successfully, and
robustly, localize focal VT sources, and aid ablation planning.

Keywords: ventricular tachycardia, implanted devices, electrograms, automated localization, torso modeling,
deep learning
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INTRODUCTION

Ventricular tachycardia (VT) is a serious cardiac arrhythmia
that represents an important source of morbidity and, upon
degeneration into more lethal arrhythmias such as ventricular
fibrillation (VF) (Srinivasan and Schilling, 2018), sudden cardiac
death (SCD) (Harris and Lysitsas, 2016; Ritchie and Roser, 2018).
Hence, the prevention of VT, and its degeneration into VF,
is of primary clinical importance to improve morbidity and
reduce mortality.

In structurally healthy hearts, VT occurs primarily as a
consequence of abnormal ectopic firing in the ventricles,
overtaking sino-atrial activation and leading to premature
ventricular contractions (PVCs). An effective treatment against
ectopic VT is radiofrequency catheter ablation, which aims to
target the tachycardia by first locating, and then electrically
isolating the region causing the episode. However, procedure
success is heavily dependent on an accurate localization of
the VT source. Often, recordings of the focal VT, in the
form of an electrocardiogram (ECG) or implanted device
electrograms (EGM), exist prior to an ablation procedure,
which inherently contain important information related to the
focal origin of the VT source. Integration of computational
studies and deep learning approaches provides an exciting
opportunity to utilize the information contained within these
recordings to potentially facilitate automated VT localization into
clinical practice.

In recent decades, computational studies (Trayanova, 2011;
Clayton and Bishop, 2014; Henriquez, 2014; Niederer et al., 2019;
Yu et al., 2019) have enhanced greatly our knowledge of VT
mechanisms and have strengthened diagnostic, therapeutic, and
prognostic VT clinical strategies (Rantner et al., 2013; Trayanova
et al., 2017; Mendonca Costa et al., 2019; Niederer et al., 2019),
helping in the growth of personalized modeling (Prassl et al.,
2009; Relan et al., 2011; Medtronic, 2016; Cedilnik et al., 2018;
Le Bras, 2018; Potse, 2018). One limitation of the majority of
these studies is the dependence on monodomain formulations to
represent electric sources in the form of transmembrane voltages.
These models are time-consuming, and thus to achieve clinical
translation, fast reaction-eikonal (RE) simulations (Neic et al.,
2017; Cedilnik et al., 2019) have been the preferred choice. More
recently, realistic simulations of full extracellular potentials at
specific locations (e.g., ECG electrodes) have been obtained from
the combination of lead field (LF) methods (Potse, 2018) with fast
RE models (Gillette et al., 2021), achieving accuracy comparable
to pseudodomain or bidomain formulations, but within a fraction
of the computational time.

Using computational simulations of electrophysiological (EP)
behavior has also been exploited to provide training datasets
for machine and deep learning algorithms (Yang et al., 2018;
Shade et al., 2020); however, these studies did not utilize rapid
RE models (Yang et al., 2018; Shade et al., 2020), or LF
methods (Shade et al., 2020). Yang et al. (2018) were among
the first to utilize convolutional neural networks (CNNs) to
localize focal VT sources from simulated ECGs. The novelty
of the study was in the integration of computational simulated
data with CNN architectures; previous studies had in fact

attempted to localize focal VTs from either simulated ECGs—
utilizing myocardial activation imaging techniques—with no use
of artificial intelligence (van Dam et al., 2009)—or clinical ECGs
utilizing machine learning algorithms (Zhou et al., 2019).

One important limitation of Yang et al. (2018) was the
restriction of the method to the use of ECGs. Although ECGs
are widely used as a routine modality for VT management,
they are not always available for VT patients, particularly focal
VT patients in which the clinical VT is not inducible. Utilizing
cardiac implantable electronic device (CIED) EGMs, which the
majority of pre-ablation patients have in situ (Pekka Raatikainen
et al., 2014; Winterfield et al., 2018), and which continuously
record and store any abnormal arrhythmic activity, could bring
great improvements to the automated localization of focal VT.
Recent clinical studies have demonstrated that stored EGM
recordings of re-entrant VT episodes from implanted devices
can be successfully used to guide the construction of pace-
maps during an ablation procedure, with similar accuracy to
the use of ECGs, but with the advantage of ensuring that
the clinical VT is targeted (Yoshida et al., 2010; Yokokawa
et al., 2019). In our own recent work, we demonstrated how
such EGM recordings might be utilized to perform patient-
specific in silico pace-mapping (Monaci et al., 2020), improving
pre-procedural ablation planning for complex scar-related VTs.
However, literature lacks further investigation on the power of
EGM recordings for the localization of focal VTs, for which
computational models can address and answer a variety of
different questions, and their use in AI-based algorithms.

In this study, we demonstrate the utility of leveraging the
information contained within simulated implanted device EGM
recordings for the automated localization of focal VTs in the
LV. This could benefit clinical procedures by providing pre-
procedural ablation information of the VT episodes without the
necessity of acquiring ECG recordings of the focal VT, which
represents the long-term aim of our study. Although the majority
of idiopathic VTs originate in the right ventricular outflow track
(RVOT) (Srivathsan et al., 2005), focal VTs can also originate
from a variety of different locations in the LV (Ito et al., 2003;
Srivathsan et al., 2005; Yamada et al., 2008), and automating
their localization could be beneficial to clinical procedures. To
achieve our goal, we extend the previous work of Yang et al.
(2018) and utilize fast computational simulations (RE combined
with LF) on a realistic image-based torso model to generate ECG
and EGM traces, which serve as inputs to a CNN architecture.
We show the possibility of obtaining comparable localization
in Cartesian coordinates between ECG-based and EGM-based
trained CNNs. Moreover, we show improvement in the overall
localization by introducing a novel CNN algorithm, utilizing a
local ventricular-specific coordinate system (Bayer et al., 2018).

MATERIALS AND METHODS

The workflow of this study is summarized in Figure 1. Briefly,
this involved using a previously generated 3D torso model
(Monaci et al., 2020) (step 1) to rapidly simulate focal pacing
across the LV within a RE environment (step 2). These simulated
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FIGURE 1 | Study workflow. The 3D torso model, generated (step 1) from a CT TAVI planning scan, was utilized to pace the LV from different locations, within a fast
RE environment (step 2). These solutions were combined with LF matrices computed (step 3) on the 12-lead ECG electrodes and manufacture-guided CIED leads to
generate accurate ECG and EGM traces (step 4), which were then used as inputs to two CNN architectures, one Cartesian probability-based (step 5), and one novel
UVC-based (step 6). Localization of the paced beats across the LV was then computed (step 7) and compared to the actual locations of the simulated beats.

paced beats were combined with LF matrices computed on the
standard 12-lead ECG electrodes and manufacturer-guided CIED
right (RV) and left (LV) ventricular leads (step 3) to reproduce
accurate 12-lead ECG and EGM recordings of the paced beats
(step 4). The data were then processed and used as input to an
adapted version of a previously developed CNN architecture by
Yang et al. (2018) (step 5) and also to a novel network, consisting
of a two-output regression and a classification CNN (step 6), and
utilizing UVCs, to localize the paced beats (step 7).

Model Preparation
As in Monaci et al. (2020), a 3D torso model was generated
from a computed tomography (CT) trans-catheter aortic valve
implantation (TAVI) panning scan. The torso model included
all major organs, with conductivities reported in Table 1,
and a detailed four-chamber heart, extracted from a separate
cardiac CT scan. The patient did not present any visible
structural heart disease and consented to the use of their data
in ethically approved research: UK Research Ethics Committee
reference number 19/HRA/0502 and 15/LO/1803. To decrease
computational time without a loss of physiological electric
signals, the average ventricular edge length of the biventricular
mesh was kept at 738 µm. Realistic fiber orientation was

incorporated into the ventricular myocardium using a well-
established rule-based approach (Bayer et al., 2012).

The LV was geometrically divided into 17 segments, according
to the American Heart Association (AHA) guidelines (Selvadurai
et al., 2018), as shown in Figures 2A–F. In addition, each of

TABLE 1 | Organ conductivities of our torso model.

Organs Tissue conductivities (S/m)

Lungs 0.0714

Bones 0.05

Skin 0.05

Fat/Muscle 0.24725

Liver 0.1667

Spleen 0.1

Kidneys 0.1667

Aorta 0.6667

Ventricular blood pools 0.6667

Atrial blood pools and walls 0.6667

Pericardium 0.2

See also Plancke et al. (2019).
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FIGURE 2 | Patient-specific LV segment models. Generic AHA 17-segment model is shown in (F). The equivalent patient-specific model of the LV mesh is shown in
(A) with basal, mid, and apical segments illustrated in (B–E), respectively. An example of the novel 68-segment model is shown in (H) highlighting the equal division
in four parts of each of the 17 segments. (G) shows an example of how segment 1 in our mesh was divided into four equal segments.

the segments was subsequently divided into four, for a total of
68 (Figures 2G,H). These models were used as guidance for the
collection of pacing locations, for the generation of training and
testing labels for the existing CNNs, and the visualization of the
localized VT sources.

To replicate focal ectopic VTs across the LV segments, ∼3767
randomly chosen paced beats—single stimuli, with a basic cycle
length (BCL) of 400 ms—were simulated using a computationally
efficient RE formulation (Neic et al., 2017) within the Cardiac
Arrhythmia Research Package (CARP) (Vigmond et al., 2003),
utilizing the 10 Tusscher ventricular cell model (ten Tusscher
et al., 2004). Intra- and extracellular tissue conductivities were
tuned to achieve physiological QRSs (Costa et al., 2013),
comparable to equivalent pseudo bidomain simulations on
a higher-resolution mesh (Monaci et al., 2020). Intra- and
extracellular conductivities were 0.1845 S/m and 0.6628 S/m
along the fiber direction, respectively, and 0.0493 S/m and
0.1769 S/m transverse to it. The corresponding RE conduction
velocities (CVs) were 0.5455 m/s and 0.1802 m/s, along and
transverse the fiber direction, respectively.

To allow the computation of extracellular potential signals
from specific locations within the torso (Figure 3), the simulated
cardiac potentials of each paced beat were combined with the LF
Method (Potse, 2018). Specifically, LF matrices were calculated
within CARP (Vigmond et al., 2003) on the standard ECG lead
locations and on the RV and LV lead sensing parts of a standard
Boston Scientific implanted device (Antoniadis et al., 2017). This
virtual device had a non-septal RV lead, with a superior vena
cava (SVC) coil in the right atrium (RA), and a straight LV lead
through the coronary sinus, with four sensing LV tips distanced
equally at 7.5 mm. Configurations of both 12-lead ECG and CIED
are shown in Figures 4A–D. All sensing electrodes, including

the can of the implanted device (CAN), were approximated
to single points, to increase the speed of LF computations
and subsequent simulations. The computation of these matrices
was only performed once for each torso configuration and
took ∼8 min (128 cores). Their combination with the RE
solutions produced high-fidelity 12-lead ECGs and EGM traces
(Figures 4E,F) in∼20 s (256 cores) for each paced location. Eight
EGM vectors were chosen as the main EGM signals (Monaci
et al., 2020), and included far-field CAN-SVC, CAN-RV, and
SVC-RV, and near-field RV tip-RV ring and each LV tip-RV tip.
However, importantly, additional vector combinations (four for
ECGs and eight for EGMs) were added to the standard signals to
facilitate integration into the CNN algorithms (see section “CNNs
Training and Testing").

Finally, a standardized universal ventricular coordinate
(UVC) system was computed on the biventricular mesh (Bayer
et al., 2018) to facilitate the development of a novel CNN
specific to the ventricles, which should be advantageous as it
identifies and constrains the localization of the paced beats
inherently within the myocardium. As shown in Figure 5, UVCs
describe the biventricular mesh using three parameters: z—
normalized distance between apex (0) and base (1) along the
long axis, ρ —normalized distance between endocardial (0) and
epicardial (1) surfaces along the short axis, and ϕ —rotational
distance from LV septum.

CNN Architectures
In this study, we developed two separate 2D CNN architectures,
which used the same ECG and EGM traces as inputs to identify
the location of a simulated paced beat (representing an ectopic
VT). The first architecture, based on Yang et al. (2018), locates
the origin of the paced beat in Cartesian coordinates, after
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FIGURE 3 | Example of our simulation pipeline. RE single point excitations were simulated in ∼3767 different locations across the LV [an example of the activation
time map generated for a single such paced beat is shown here in (A)]. These solutions were combined with the LF matrices computed on the standard nine ECG
leads (V1–V6, RA, LA, and LL), and nine EGM sensing points (LVtip1–4, RVtip, RVring, RVcoil, SVC, and CAN = LA), here shown in (B) for LF on V1. The final signals
at each lead, shown in (C), were then combined to obtain vector combinations shown in Figures 4E,F.

FIGURE 4 | Torso setup. ECG and CIED configurations are shown in (A–D). Example of 16 combinations of pacing signals used for training and testing are
illustrated in (E) for ECGs and (F) for EGMs.

converting the outputs of the CNNs. The second utilizes a
regression and a classification CNN to locate the VT in UVC
space, naturally constraining the final localization of the focal VT
source to the myocardium.

The existing Cartesian probability-based architecture was
reproduced from Yang et al. (2018) and is composed of two
classification CNNs named Segment and EpiEndo CNNs. Segment
CNN classified in which LV segment the pacing beat originated,
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FIGURE 5 | Patient-specific bull’s-eye diagram. 3D patient-specific 17-segment model in (A,B) can be related to the 2D representation in (C) by considering UVC
coordinates ϕ and z. Specifically, z (the distance from apex to base) can be linked to the radius of the 2D diagram, as shown, separately for each apical (Za), mid
(Zm), and basal (Zb) part of the model. ϕ is linked to the segments along the spherical axis. The final patient-specific 2D 17-segment model can be seen in (D),
where the various segments (1–17) are illustrated from blue-to-red color range [mapped from panel B].

whereas EpiEndo CNN determined whether the pacing was
endocardial or epicardial (binary decision). In our study, we
developed two separate Segment CNNs: one classified between
17 LV segments (CNN with 17 output neurons) and the
other between 68 LV segments (68 output neurons). Briefly,
the structure of both Segment and EpiEndo CNNs consisted
of two hidden layers alternating with two pooling layers and
terminating with a fully connected (FC) layer. The output of
both Segment and EpiEndo CNNs was a probability distribution
(likelihood of each output neuron being the correct class). These
distributions were obtained utilizing a softmax function on
the output of the final FC layer. As performed in Yang et al.
(2018), the probability distributions (Piseg and Pjepiendo for Segment
and EpiEndo, respectively) of each output segment (largest
probability) and its adjacent segments were then combined
with the centers of gravity CoG(x, y, z)ij of the corresponding
endocardial and epicardial surfaces, as shown in Equation 1, to
localize a paced beat in Cartesian coordinates.

(Scartesian)out =
N∑

i = 1

Piseg ×

 2∑
j = 1

Pjepiendo × CoG(x, y, z)ij


(1)

The distance of the localized sources to the ground truths
(simulated sources) was expressed in terms of localization errors
(computed as Euclidean distance in millimeters).

Our novel UVC-based algorithm is composed of one
regression CNN, outputting z and ρ, and one 68-feature
classification CNN, predicting the rotational coordinate ϕ. The
structure of both CNNs was similar to the Cartesian probability-
based network (hidden layer–hidden layer–pooling layer–FC

layer), as shown in Figure 6. Because of the cyclic nature of
ϕ, a three-output regression would have not returned satisfying
and accurate results; hence, we used ϕ to divide the LV into
68 “wedges” (ϕ was grouped into intervals of 0.09 radians with
each class assigned a label from 1 to 68, spanning ϕ = − π

to ϕ = π). Using a higher number of LV “wedges” would
have not returned desirable accuracies; thus, we decided to use
a number of features (68) that had worked for Segment CNN
and that was still suitable for achieving precise localization
along ϕ. For the final localization of the paced beats, the
outputs of the 68-feature classification (“wedges” with the highest
probabilities) were converted back to ϕ, and combined with z and
ρ regression predictions.

FIGURE 6 | UVC-based convolutional neural networks (CNNs). Structure of
68-feature classification (top) and 2-output regression (bottom).
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Both Cartesian probability-based and UVC-based algorithms
were implemented in Python using Scikit-learn (Pedregosa et al.,
2011) and TensorFlow (Abadi et al., 2015).

CNN Localization Performance
Localization performance of the Cartesian probability-based
algorithm was expressed in terms of localization error in
millimeters, as described above. The same metric was used for
our novel UVC-based architecture; however, the predicted values
were first transformed from UVC space to Cartesian space [by
locating the closest node in the mesh, with appropriate scaling
of UVC coordinates (Bayer et al., 2018)] and then the distance
with the ground truths (simulated pace beats) was evaluated
(Euclidian distance, in millimeters).

For the Segment CNN of the Cartesian probability-based
architecture, testing performance was evaluated in terms of
accuracy, to allow comparison with results from Yang et al.
(2018). Accuracy is defined as the percentage of paced beats
correctly classified within each segment.

CNNs Training and Testing
Training and testing inputs of both Cartesian probability-based
and UVC-based CNNs were ECG and EGM traces computed
from 3767 pacing excitations across the LV. To facilitate the
execution of the 2D CNNs, the ECG and EGM signals had to
be placed in square matrices; hence, we added four additional
leads to the standard 12-lead ECGs [LL-RA-LA, LA-RA-LL,
RA-LA-LL, and (RA+LA+LL)/2], as performed in Yang et al.
(2018), and eight more EGM vectors to the standard eight
EGMs (CAN-each LV tip and SVC-each LV tip), to achieve
a total of 16 combinations of ECG and EGM vectors. QRSs
were then extracted and sampled in time (16 time points),
and stacked in 16 × 16 matrices, as shown in Figures 4E,F.
A total of 2767 sets of these ECG and EGM matrices were
used for training and were uniformly distributed across the
myocardium (∼36% intramural/mid-wall, ∼32% epicardial, and
∼32% endocardial), with the exception of EpiEndo training data,
which were epicardial and endocardial only (Yang et al., 2018).
White Gaussian noise with a signal-to-noise ratio (SNR) of
25 dB was then added 10 consecutive times to all 16 ECG and
EGM leads of the training set to augment the data by 10-fold
(∼27,670) and increase robustness of the CNN training. A 10-
fold cross-validation was performed in the existing Cartesian
probability-based CNNs as part of the training (Yang et al., 2018),
with a 90% (training)–10% (validation/testing) split. On the other
hand, the cross-validation was used for hyper-parameter tuning
in the UVC-based networks. After training, the localization
performance of both Cartesian probability-based and UVC-based
networks was tested by feeding the retained 1000 sets of ECG and
EGM QRSs, with a SNR of 25 dB. Parameters of both Segment
and EpiEndo CNNs were taken from Yang et al. (2018); batch
size was set to 23, number of epochs was set to 10, learning rate
was set to 0.001, and cross-entropy was used as loss function.
A ReLU function was used as the activation function for feed-
forward propagation, and a gradient-descent-projection method
was used as the back propagation algorithm. In our UVC-based
networks, we used similar parameters, except for the regression

where we set the batch size to 23 and the number of epochs to 15,
and we used mean absolute error as loss function.

Investigation of Model Uncertainties
Localization performance of both Cartesian probability-based
and UVC-based CNN architectures, trained on the data described
above, was also investigated by introducing different noise
levels to the retained 1000 sets (SNR = 5, 10, 15, 20, and
30 dB). Moreover, we investigated the localization performance
of both architectures as body compositions of the torso model
were also varied, shown in Table 2, as well as different
ECG electrode configurations (Figure 7) and different CIED
configurations (Figure 8). For all these variations, LF matrices
were recomputed (according to the new organ conductivities
or electrodes positions) and combined with the retained 1000
intramural excitations to obtain new ECG and EGM matrices.
These traces were then used to test both previously trained CNN
architectures. Some of the major organ conductivities were varied
according to physiological variations (Trakic et al., 2010; Sovilj
et al., 2014); however, we chose to pair specific changes (for
instance, liver and lungs, fat/muscle, named “bath” and liver,
and different blood pools, etc.) to challenge CNN localization
performance. ECG electrodes were displaced by 5 cm in all major
orthogonal directions, and across all leads. Specifically, we shifted
all ECGs leads upward (Figure 7A) and downward (Figure 7B)—
RA and LA were always shifted downward, and LL upward—
toward the left (Figure 7C) and the right (Figure 7D). Moreover,
in one configuration (Figure 7E), the distance between ECG leads
was increased by ∼10 cm. Finally, we simulated variations in
electrode location and diameter of the virtual implanted device,
as reported in Antoniadis et al. (2017) for different cardiac-
resynchronization therapy (CRT-D) devices available in the
market. Specifically, we changed the spacing between the sensing
electrodes of the straight LV lead, to account for shorter or longer
inter-electrode distance; in addition, we increased the diameter
of RV and LV tips to ∼2 mm. In the latter scenario, instead of
considering the EGM signals from single point electrodes, we
averaged the signals obtained from a cloud of points within a 2-
mm radius, to simulate more realistic conditions, and investigate
whether our single point approximation of the CIED leads could
affect the final localization. Finally, we considered the case of
a septal RV coil configuration, which has been tested in CRT-
D (Leclercq et al., 2016) and cardioverter defibrillators (ICD)
(Winter et al., 1998).

RESULTS

Utility of EGMs in Existing
Segment/EpiEndo-Based CNNs
We successfully reproduced the existing classification CNNs,
namely, Segment and EpiEndo, introduced by Yang et al. (2018),
to be trained and tested not only on ECG traces, but also on 16
different combinations of EGM vectors from a standard CIED
with RV and LV leads. Testing performance of Segment CNN was
similar for both ECG-based and EGM-based testing. As shown in
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TABLE 2 | Variations in body compositions.

(1) Liver: 0.023 (S/m) and lungs: 0.039 (S/m)

(2) Bath: 0.45 (S/m) (pure muscle) and lungs: 0.039 (S/m)

(3) Bath: 0.05 (S/m) (pure fat) and lungs: 0.203

(4) Liver: 0.2 (S/m) and lungs: 0.039 (S/m)

(5) Bath: 0.05 (S/m) and lungs: 0.039 (S/m)

(6) Bath: 0.45 (S/m) and lungs: 0.203 (S/m)

(7) Bath (all organs except lungs): 0.24 (S/m) and lungs: 0.07 (S/m)

(8) Skin: 0.117 (S/m)

(9) Atria, ventricles, and aorta: 0.84 (S/m)

Combinations of different organ conductivities within physiological changes are
here reported, used in our CNNs sensitivity analysis.

Figure 9A, 86.76% accuracy was achieved for ECG-based testing
and 79.70% was achieved for EGM-based testing (SNR = 25 dB).

The precision of Segment CNN in each segment, which
defined how correct the CNN is at classifying one segment, is

shown in Figure 9B. Here, we see that ECGs and EGMs have a
similar influence on the network in almost every segment, with
only few exceptions. The three highest precisions are in segments
1, 10, and 14 for ECG-based testing, and 1, 10, and 16 for EGM-
based testing. The three lowest are in 2, 3, and 15 for ECGs, and
2, 7, and 9 for EGMs.

Utility of EGMs in Cartesian
Probability-Based Localization
Localization in Cartesian space of each paced beat, from either
ECG or EGM signals, was possible by combining probability
distributions of Segment and EpiEndo CNNs (as shown in
Equation 1). The localization performance, defined as the
Euclidean distance in millimeters between an estimated source
and the real location of the simulated paced beat, for the
testing dataset of 1000 cases, is reported in Figure 10 for
ECG-based and EGM-based testing. ECG-based localization and

FIGURE 7 | Variations in ECG electrode placements. ECG leads were displaced by ∼5 cm upward (A), downward (B), toward the left (C), toward the right (D), and
by ∼10 cm (mixed displacements toward the right and left) (E).

FIGURE 8 | Variations in CIED configurations. Different CIED LV configurations according to different manufacturers (Boston Scientific, Livanova, Biotronik, and
Medtronic) are shown on the top panels. The standard configuration of RV and LV leads is illustrated on the bottom left, and the septal RV coil configuration is shown
on the bottom right. The main difference between the various configurations is the inter-electrode distance (reported above the manufacturers’ names).
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FIGURE 9 | Cartesian probability-based CNN performance. Testing
performance of 17-feature Segment CNN is here reported in terms of
accuracy (%) (A), and precision (B) for each of the 17 segments of the LV
mesh. ECG-based and EGM-based testing performances are reported in blue
and red, respectively.

EGM-based localization produced a mean localization error of
11.76± 5.32 mm and 13.25± 6.79 mm, respectively.

Application of the 68-feature Segment CNN, based on the 68-
segment LV AHA model shown in Figure 2G, was able to reduce
localization errors of both ECGs and EGMs to 6.69 ± 3.19 mm
and 8.74± 6.41 mm, respectively, as shown in Figure 10.

UVC-Based Localization
Further improvements in localization performance were made by
developing two CNNs, which returned the position of a paced
beat in a reference frame specific to the ventricles (UVCs). This
UVC-based localization outperformed the Cartesian probability-
based localization, as shown in Figure 11A, reducing localization
errors to 4.06± 2.47 mm and 8.07± 8.26 mm for ECG and EGM-
based testing, respectively.

UVC-based localized sources are visualized in 2D in a
patient-specific bull’s-eye diagram, shown in Figure 11B for
30 beats, as previously illustrated in Figure 5. Here, a paced
beat can be visualized using its UVC coordinates and can be
compared to the ground truth, revealing a close match between
all pairs. The radius of the diagram describes the distance of
a paced beat to the LV apex (center of the diagram), relatable
to UVC z, and its circumferential direction (ϕ) facilitates the
positioning of the beat within a specific segment. The intramural

location (ρ) of the beat (how far from the endocardium and/or
epicardium) is color coded.

Sensitivity to Noise
Overall, localization was only slightly affected by noise, as
seen in Figure 12A (ECG-based localization) and Figure 12B
(EGM-based localization). As SNR decreased (increased noise),
localization errors increased only slightly, with one exception
(SNR = 5 dB), where the performance of both UVC-
based and Cartesian probability-based localization was reduced.
However, all localization errors were < 12.5 mm for ECG-
based localization. Moreover, noise seemed to affect EGM-based
localization more than ECG-based localization.

Sensitivity to Electrode Locations
Displacements of ECG leads and different CIED configurations
did affect the localization performance of UVC-based and
Cartesian probability-based algorithms (errors > ∼15 mm) for
ECG- and EGM-based testing, as shown in Figures 12C,D,
respectively. ECG-based localization was more affected by
displacements away from the heart (20 mm)—right and
downward shifts. Errors in EGM-based localization were higher
(20 mm) when considering longer inter-electrode distance
(20 mm) and increased lead surface diameter (2 mm). For UVC-
based localization, a septal RV coil configuration caused errors to
increase > 20 mm as well.

Sensitivity to Tissue Conductivities in
Torso Model
A comparison between ECG-based and EGM-based localization
for different body compositions is shown in Figure 13A
(for UVC-based localization) and Figure 13B (for Cartesian
probability-based localization). ECG-based localization was only
affected by a high increase of fat in the torso bath (scenarios
3 and 5) and when the whole torso was simplified to bath and
lungs (scenario 7). In those three scenarios, mean localization
errors increased to 17.75 ± 9.88 mm, 20.72 ± 10.99 mm, and
14.08 ± 7.38 mm for UVC-based testing, respectively, and to
13.01 ± 8.89 mm, 15.07 ± 11.20 mm, and 13.88 ± 8.40 mm for
68-segment Cartesian probability-based testing. Other variations
of tissue conductivity did not affect the performance of either
algorithm (localization errors <∼8 mm).

Finally, EGM-based testing was less affected by changes
in body compositions during Cartesian probability-based
localization. Similar to above for ECG-based localization,
simplification of the torso to bath and lungs (scenario 7) caused
the highest mean error (14.83 ± 11.24 mm), but in all other
scenarios, localization ranged between 9.04 and 10.66 mm. On
the other hand, UVC-based EGM localization had a similar
trend to ECG-based localizations, with errors > 15 mm for
scenarios 3, 5, and 7.

DISCUSSION

In this study, we successfully utilized simulated implanted device
EGMs to localize virtual focal VT sources using CNNs, achieving
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FIGURE 10 | Localization performance of Cartesian probability-based algorithm. Localization errors in millimeters are reported for ECG-based (blue) and EGM-based
(red) testing. A comparison in localization performance between different Segment CNNs can also be seen; the 17-feature Segment CNN is on the left (A) and the
68-feature Segment CNN is on the right (B).

FIGURE 11 | Localization comparison between UVC-based and Cartesian probability-based algorithms. Mean localization errors (A) are reported in millimeters with
corresponding standard deviations for ECG-based (blue) and EGM-based (red) testing. An example of how ventricular tachycardia (VT) focal origins compare to
UVC-based localized sources is shown in (B); diamonds represent the ground truths, whereas the circles are the CNN outputs. The gray color bar represents the
distance from endocardial (black) to epicardial (white) surfaces of each source, whereas the blue-to-red color bar represents 1–17 patient-specific AHA segments.

accuracies that could be useful in clinical settings. A previous
algorithm (Yang et al., 2018) utilized 12-lead ECGs for a similar
purpose; here, we managed to replicate the structure of the CNN
architecture for EGM traces and improve the overall localization
by introducing a higher number of segments in the AHA LV
model. Moreover, we also improved the overall localization
precision by introducing a novel architecture composed of

regression and classification algorithms, which was able to
identify the source in a framework specific to the ventricles, easily
interpretable by clinicians. Finally, we investigated the robustness
of both CNN algorithms to the introduction of uncertainties,
such as different noise levels in the data, and possible inter-patient
variabilities (different body compositions, ECG lead positions,
and CIED configurations).
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FIGURE 12 | Localization comparison between UVC-based (light gray) and Cartesian probability-based (dark gray) networks. Localization performance for
ECG-based and EGM-based testing are here reported during sensitivity analysis for different noise levels—(A,B), respectively—and for different lead
configurations—(C,D), respectively. For all panels, mean errors with corresponding standard deviations are reported for UVC-based (light gray) and Cartesian
probability-based (dark gray) localization. Displacements of ECG leads, shown in Figure 7, results in localization errors in (C); on the other hand, different CIED
configurations, shown in Figure 8, return errors in (D). Little difference in localization is present between the two networks with similar mean localization errors.

Successful Application of EGMs in
Existing Cartesian Probability-Based
Algorithm
Simulated focal VT sources were successfully identified from 16
combinations of implanted device EGM vectors. In the previous
study, Yang et al. (2018) achieved localization precision in the
range of 10–11 mm when utilizing a combination of 16 ECG
vectors; here, we reduced localization errors to 6.69 mm and
8.74 mm for ECG and EGM traces, respectively, by incrementing
the number of segments in the LV to 68. In clinical practice, the
average diameters of catheter tips are between 4 mm and 8 mm
(Ilg et al., 2010), limiting the average lesion size to a minimum
of ∼8.5 mm (Wittkampf et al., 1989). Hence, we achieved
localization precisions in a range suitable for improving ablation
planning. Especially in patients with a non-stable condition, pre-
planning of these procedures could be expedited and aided if the
acquisition of ECG data during VT would not be required, which
can be achieved by utilizing information stored in implanted
devices. Our algorithm thus proposes a first level of investigation

that could direct clinicians to the region of interest with high
precision. Moreover, we achieved ECG-based and EGM-based
testing accuracies in ranges comparable to Yang et al. (2018)
(77%). Similar patterns to the previous study were seen when
investigating how noise affects the localization; only a loss in
accuracy and localization precision is seen with SNR = 5 dB.
Interestingly, noise seems to have a greater impact on EGM-
based localization than on ECGs. This could be explained by
the fact that implanted device sensing vectors are closer to
one another and to the cardiac electrical activity, amplifying
variations caused by noise, thus affecting EGM-based localization
to a greater degree.

Novel UVC-Based Algorithm Improves
Localization
Our novel UVC-based algorithm improves localization to
4.06 mm and 8.07 mm for ECGs and EGMs, respectively,
outperforming the existing study. Whereas the Cartesian
probability-based algorithm relies on combining probabilities of

Frontiers in Physiology | www.frontiersin.org 11 July 2021 | Volume 12 | Article 682446

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-682446 June 25, 2021 Time: 19:20 # 12

Monaci et al. Focal VT Automated Localization Through EGMs

FIGURE 13 | Localization sensitivity to tissue conductivities. Mean localization errors are here reported for UVC-based (A) and Cartesian probability-based (B)
localization as different organ conductivities were changed in the torso model—see Table 2. Small differences are seen between ECG-based (red) and EGM-based
(blue) localization errors.

two networks with the geometrical centers of gravity of each
LV segment to locate a VT origin, our architecture predicts
the actual location of the source in terms of its (normalized)
distance from the apex, the LV septum and, most importantly,
the endocardium. Furthermore, it intrinsically bounds the
localization to the myocardium. Knowing the exact intramural
(mid-wall) location, a VT source could help in the choice of
power, tip diameter, and lesion size to apply, as well as access
direction (epicardial or endocardial), in pre-procedural planning.
Finally, our novel localization facilitates the visualization of
focal estimates, by plotting a patient-specific bull’s-eye diagram,
where the radius represents the distance from the apex and the
circumferential direction relates to septal, anterior, inferior, and
lateral LV segments.

Automated Localization Is Only Affected
by Extreme Changes in ECG Lead
Positions and Implanted Device Lead
Configurations
Focal VT localization is only marginally affected by differences
in body compositions. However, to increase the accuracy of
the results, a torso model constructed for algorithm training
should at least include all major thoracic and abdominal organs
with realistic conductivity values; our findings suggest that
representing bath and lungs (as used in Yang et al) only produce
signals that differ substantially from more complete torso models,
importantly affecting localization accuracy. Moreover, EGM-
based algorithms seem to be more robust to tissue variations,
possibly due to the closer positioning of the device leads to
the electrical cardiac source, with extracellular potentials being
less affected by the surrounding tissue/organ conductivities.

Displacements in ECG leads and differences in common
CIED configurations do seem to have an impact on the final
localization; this suggests the necessity of integrating a higher
variability in the training data, or extrapolating ECG or CIED
patient-specific information from imaging data to strengthen
future automated algorithms and allow clinical validation
and translation.

Limitations
A notable limitation of this study is the absence of clinical
validation. However, our main goal was to strengthen the
automated localization of focal VTs and investigate the properties
of our 3D pipeline that need improvement for future clinical
studies. For future validation of our in silico EGM model
and corresponding CNN localization, we will need to generate
patient-specific 3D models that have been registered and tuned
to the clinical framework used during EP mapping and ablation,
collect simulated data on such models for CNN training, and test
the latter on clinical EGM recordings of the focal VT(s), and/or
paced beats, that have been collected from CIEDs directly or
from the latter recording during the mapping. When attempting
clinical translation in the future, we will also investigate other
aspects of our work regarding patient-specific EP properties that
were not taken into consideration in this study. Our model
required certain simplifications, such as rule-based fibers and
lack of Purkinje activation, which we believe would not make
an impact in the final performance of our algorithms when
dealing with focal beats, but that could be useful to take into
account for more complex patient-specific approaches. Although
our cardiac model was static, we do not believe that the absence
of electro-mechanical feedback significantly influenced the final
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ECG or EGM signals, when considering only QRSs (ventricular
activation); many studies have validated static simulated EGM
signals against clinical data (Cardone-Noott et al., 2016; Cedilnik
et al., 2018; Gillette et al., 2021), showing that it is not necessary
to couple mechanical simulations with EP for these types of
problems. Moreover, we only considered single beats originating
in the LV. In future studies, it will be worth including focal
VTs in the RV, which is a common region of VT especially
around the outflow track (RVOT). This could be easily achieved
by using the UVC system, which covers the RV, to generate
labels and prepare simulations, facilitating both modeling and
localization pipelines. Although we believe that simulating
multiple paced beats would not have an impact in the final CNN
performance and localization, it will be necessary to achieve
more realistic scenarios, as it can influence the waveforms of
ECG and EGM traces. Furthermore, extending the automated
localization of VT to more complex episodes (for instance, in
presence of micro re-entries and/or infarction) represents an
interest of ours that will be addressed in future studies. The
investigation on how different signal uncertainties influence the
performance of our CNNs could also be extended to include
more complex and realistic ways of adding noise to customize
computational models to patient-specific settings (Barone et al.,
2020; Marcotte et al., 2021). Another aspect of this study that
could be refined is the overall structure of our novel UVC-based
architecture; both regression and classification networks were
implemented following the structure proposed by Yang et al.
(2018), although some parameters were optimized to fit the new
tasks. In future studies, deeper networks could be developed,
and different input data shapes could be investigated (e.g., 2D
vs. 1D). Moreover, to tackle the problem of computational
efficiency and decrease even further our simulation time when
dealing with more complex arrhythmias, we may investigate the
possibility of GPU-based models, which have recently opened
new perspectives in terms of real-time, physiologically detailed
simulations (Vasconcellos et al., 2020).

CONCLUSION

By integrating fast EP simulations with deep-learning algorithms,
we have demonstrated the utility of our in silico pipeline for

the simulations of EGMs stored in implanted devices, which, in
addition to 12-lead ECGs, can accurately localize focal VTs. Our
novel in silico automated algorithm, which utilizes a coordinate
frame specific to the ventricles, increased localization precision
above previous segment-classification approaches, facilitating
clinical interpretation. Moreover, we showed the necessity of
including more variability in the training data regarding lead
positions, and the stability, on the other hand, of the localization
to changes in body compositions.
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