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Chronic liver inflammation is a complex pathological process under different stress

conditions, and the roles of stellate cells and macrophages in chronic liver inflammation

have beenwidely reported. Moderate liver inflammation can protect the liver from damage

and facilitate the recovery of liver injury. However, an inflammatory response that is too

intense can result in massive death of hepatocytes, which leads to irreversible damage

to the liver parenchyma. Epigenetic regulation plays a key part in liver inflammation. This

study reviews the regulation of epigenetics on stellate cells and macrophages to explore

the new mechanisms of epigenetics on liver inflammation and provide new ideas for the

treatment of liver disease.
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INTRODUCTION

Most chronic liver diseases are accompanied by hepatic inflammation, which is a complex
physiological and pathological process in response to various pressure conditions (Kubes and
Mehal, 2012). Hepatic stellate cells (HSCs) and macrophages are important cells in chronic liver
inflammation. Similar to most other organs, a certain degree of liver inflammation is needed
to protect the liver from damage and facilitate the recovery of liver injury. However, an overly
intense or chronic inflammatory response almost always leads to a massive loss of hepatocytes,
which leads to severe liver damage (Schattenberg et al., 2006). Patients with severe liver function
impairment and other organ failures usually show a strong systemic inflammatory response, which
is correlated with the severity of the disease. When chronic inflammation stimulates fibroblasts
to replace necrotic hepatocytes, liver fibrosis occurs and liver function also declines (Iwaisako
et al., 2012). Since the liver is the main site for the production of complement, the decreased liver
function reduces the synthesis of complement in serum, affects the immune function of the body,
and further aggravates liver inflammation. Dysregulation of the inflammatory response is closely
associated with liver injuries including (1) bacterial and viral infections; (2) poisoning by exogenous
organisms or heavy metals; and (3) systemic metabolic diseases, such as obesity, diabetes, and
metabolic syndrome (Navab et al., 2008). In this study, we review the epigenetic regulation on liver
inflammation at the cellular level, focusing on the cellular and molecular mechanisms that trigger
this phenomenon.
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INTRODUCTION OF EPIGENETIC
MODIFICATIONS

Epigenetic regulation has a variety of ways. In this study, we
mainly describe three ways of epigenetic regulation, namely,
DNA methylation, expression of non-coding RNAs (ncRNAs),
and histone modification.

NON-CODING RNAs

Not all transcriptional genomes are translated into proteins,
but they perform regulatory functions in the form of ncRNAs
(Rinn and Chang, 2012). MicroRNAs (miRNAs) are the most
thoroughly studied and have the most comprehensive functions
so far. MiRNAs generally regulate target proteins by regulating
the expression of messenger RNA (mRNA), and many miRNAs
have been identified as targets for the treatment of diseases
(Hassanein and Frederick, 2004; Janssen et al., 2013). Thus, there
aremore andmore reports on long non-coding RNAs (lncRNAs),
their lengths are >200 nucleotides, and they can be further
divided into long intergenic RNAs (lincRNAs), intronic lncRNAs,
and antisense lncRNAs. LncRNAs are considered to modulate
various processes involved in liver diseases.

It has been reported that the transmission of ncRNAs can be
mediated by exosomes. Exosomes are small extracellular vesicles
(sEVs), 30–150 nm in diameter, that have been discovered in
recent years. Almost all types of cells can release exosomes
under physiological and pathological conditions. Exosomes play
a crucial role in epigenetic regulation by transporting key
molecules, such as miRNAs, lncRNAs, and proteins.

HISTONE MODIFICATION AND
CHROMATIN REMODELING

Histone modification is regulated by histone-modifying enzymes
(HMEs) (Hoeksema and deWinther, 2016). HME targets specific
histones by interacting with transcription factors, and the
modified histones can affect the density of chromatin structure
and thus regulate gene expression. Histone modification is highly
dynamic. Amino acids (AAs) in histone can be modified by
methylation, phosphorylation, acetylation, and ubiquitination.
Histone acetylation loosens the chromatin structure and
promotes transcription, while histone deacetylases (HDACs)
deacetylate AA residues in histone, which makes histone
bind more closely to negatively charged DNA, leading to
chromatin concentration and inhibiting gene transcription.
The trimethylation of histone 3 lysine 9 (H3K9me3) can also
concentrate chromatin and suppress transcription. However, not
all modifications of lysine methylation inhibit transcription, for
example, H3K4me3 usually promotes transcription. H3K4me3 is
a sign of genetic start, andH3K4me1 is usually associated with the
remote control components (enhancement). Besides, H3K27ac
near transcription start site or on the enhancer and H3K36me3
throughout the genome both usually promote gene transcription.

DNA METHYLATION

DNA methylation is regulated by DNA methyltransferases
(DNMTs) and ten-eleven translocation (TET) enzymes.
DNMT converts cytosine to 5-methylcytosine that is bound
to guanine (Iacobazzi et al., 2013), while the TET enzyme
catalyzes progressive oxidation of methyl and ultimately reduces
unmodified cytosine residues (Tahiliani et al., 2009). The
most well-known modification of DNA is the methylation
of cytosine at its fifth carbon ring, which is common within
the cytosine–phosphate–guanine (CpG) dinucleotide, and the
methylation of CpG leads to intense transcriptional suppression.
Most methylated CpGs develop stably in adults. In cancer,
however, CpG methylation is usually accompanied by an
oppressive epigenetic marker, the methylation of H3K27, which
concentrates chromatin and suppresses transcription (Suganuma
and Workman, 2011).

EPIGENETIC REGULATION OF HEPATIC
STELLATE CELL AND MACROPHAGE IN
CHRONIC LIVER INFLAMMATION

Hepatic stellate cells and macrophages are two important
cell groups in the process of chronic liver inflammation, but
their roles in liver injury are different. After the injury of
hepatocytes, macrophages are activated to produce cytokines and
signalingmolecules, including tumor necrosis factor alpha (TNF-
α), interleukin 1 beta (IL-1β), interleukin 6 (IL-6), and other
signalingmolecules (Seki et al., 2001), which activate downstream
pathways and clear pathogens. While fibrosis occurs in the
liver, HSC is activated. The activation of HSC comes from the
inflammatory activity of liver immune cells, mainly macrophages
(Koyama and Brenner, 2017). For example, damaged hepatocytes
activate Kupffer cells, resulting in the release of IL-1β, thereby
inducing the activation of HSC (Miura et al., 2010). When
there is an occurrence of inflammation in the liver (including
fibrosis), macrophages are activated, but HSC is mainly involved
in the occurrence of liver fibrosis. The epigenetic regulation
of chronic liver inflammation by HSC and macrophages was
discussed separately.

HEPATIC STELLATE CELL

Non-Coding RNAs
In the case of liver injury, especially chronic inflammation,
HSCs are activated and transdifferentiated into hepatic
myofibroblasts to repair wounds, and miRNA can regulate
the posttranscriptional expression of HSC. Analysis of miRNA
arrays in human HSC isolated from normal liver revealed a
small number of miRNAs expressed in these cells, 47 of which
were downregulated after activation, while 212 were upregulated
(Coll et al., 2015). In epigenetic signaling, miRNA can regulate
the activation of HSC (Yu et al., 2020). The fibrosis-promoting
miRNAs include miR-873-5p (Fernandez-Ramos et al., 2018),
miR-21 (Zhang et al., 2013), miR-942 (Tao et al., 2018), miR-125b
(You et al., 2018), miR-221 and miR-222 (Ogawa et al., 2012),
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and miR-27 (Ji et al., 2009), while the anti-fibrosis miRNAs
include miR-200a (Yang J. J. et al., 2014, 2017), miR-101-3p
(Meroni et al., 2019), miR-214 (Chen et al., 2014), miR-378a
(Hyun et al., 2016; Yu et al., 2016), miR-148a (Liu et al., 2015;
Jung et al., 2016), miR-29 (Huang et al., 2015; Yang Y. L. et al.,
2017, 2019), miR-15b and miR-16 (Guo et al., 2009), miR-122 (Li
et al., 2013), miR-133a (Roderburg et al., 2013), miR-195 (Sekiya
et al., 2011), miR-150 and miR-194 (Venugopal et al., 2010;
Chen W. et al., 2020), and miR-30, miR-335, let-7, and miR-338
(Winkler et al., 2020). The mechanism of miRNAs regulating
HSC activation is complex. Different miRNAs regulate activation
of HSC and liver fibrosis through targeting different molecules
or pathways. In addition to regulating some signaling pathways,
miRNAs also act on some histone-modifying enzymes, such
as HDAC4, Sirtuin 1(SIRT1) (a class III HDAC), histone
methyltransferase DNMT, and glycine N-methyltransferase
(GNMT) (Huang et al., 2015; Yang J. J. et al., 2017; Yang
Y. L. et al., 2017, 2019; Fernandez-Ramos et al., 2018). The
specific mechanisms by which miRNAs regulate liver fibrosis are
summarized in Supplementary Table 1.

Long non-coding RNAs (LncRNAs) can also regulate the
activation of HSC. LncRNAs regulate gene expression by
competing with miRNAs or acting as miRNA sponges. For
example, lncRNA-p21 is increased significantly in liver fibrosis
and regulates miR-30 by acting as a competing endogenous RNA
(ceRNA), and suppression of miR-30 can weaken the effect of
lncRNA-p21 on fibrosis (Tu et al., 2017). Similar mechanisms
include the negative regulation of lncRNA HOX transcript
antisense RNA (HOTAIR) on miR-29 (Yang Y. L. et al., 2017; Yu
et al., 2017) and the regulation of lncRNA plasmacytoma variant
translocation 1 (PVT1) on miR-152 (Zheng et al., 2016). Both
HOTAIR and PVT1 can activate HSC and promote liver fibrosis.
LncRNA H19 can also stimulate liver fibrosis, the expression
of which is increased in human and mouse liver at fibrosis
(Chen et al., 2015; Zhang et al., 2016). However, other studies
reported that lncRNA H19 expression was decreased in activated
HSC and fibrotic liver tissues of rats (Yang J. J. et al., 2016,
2018). The decreased expression of lncRNA H19 may be due
to the expression of histone methyltransferase DNMT1 and
increased methylation in the H19 promoter region. Knocking
down DNMT1 can increase the expression of H19 in activated
HSC (Yang J. J. et al., 2018). Therefore, the regulation of
lncRNA H19 on HSC may have a more complex mechanism.
The expression of lncRNA antisense non-coding RNA in the
INK4locus (ANRIL) is also decreased in liver fibrosis tissues
and activated HSC, and the decreased expression of ANRIL is
associated with histone methyltransferase DNMT3A (Yang J. J.
et al., 2020). CircRNAs are involved in the activation of HSC
as well, for example, mmu_circ_34116, mmu_circ_33594, and
mmu_circ_35216 are significantly increased in mouse HSC cell
lines and fibrotic liver tissues (Zhou Y. et al., 2018). These
results reveal that ncRNAs play a crucial part in the activation
of HSC, and an in-depth understanding of the mechanism
of their action may provide new ways for the treatment of
liver fibrosis.

Recent studies have shown that exosomes are involved in
the activation of HSC and that exosomes play an important

role in the communication between hepatocytes, macrophages,
and HSCs. Exosomes mediate the communication between
hepatocytes and HSC during hepatitis C virus (HCV) infection,
and miR-19a in exosomes secreted by HCV-infected hepatocytes
can activate HSCs and promote liver fibrosis (Devhare et al.,
2017). Exosomes from palmitic acid (PA)-treated hepatocytes
can also mediate communication between hepatocytes and HSC,
promoting the activation of HSC (Lee et al., 2017). In addition,
exosomal miR-103-3p from lipopolysaccharide (LPS)-activated
THP-1 cells (a human leukemia monocytic cell line) can promote
the proliferation of HSC and plays an important role in the
communication between THP-1 macrophages and HSC during
the progression of liver fibrosis (Chen L. et al., 2020). Exosomal
lncRNA H19l derived from bile duct cells can also promote
differentiation and activation of HSC and promote cholestatic
liver fibrosis (Liu et al., 2019). In a nutshell, the role of exosomes
in the activation of HSC has been confirmed by an increasing
number of reports. The mechanisms of lncRNAs on HSC are
summarized in Supplementary Table 2.

DNA Methylation
Significant changes in global DNA methylation are observed
during the activation of HSC, and methyl donors are also related
to HSC activation, revealing that DNA methylation plays a key
role in the activation of HSC (Gotze et al., 2015; Page et al., 2016;
Cheng et al., 2020; Zhu et al., 2020). Usually, gene expression is
inhibited by methylation of CpG dinucleotide in the promoter
region, which is regulated by DNMTs (Hardy and Mann,
2016). Reports have shown that methyl-CpG-binding protein
2 (MeCP2) is highly expressed during the transdifferentiation
of HSC and plays an important role in the activation of HSC
(Bian et al., 2013). MeCP2 activates HSC by negatively regulating
the two key molecules inhibitor of nuclear factor kappa B
alpha (IκBα) and peroxisome proliferator-activated receptor
gamma (PPARγ) that maintain the stasis phenotype of HSC.
The mechanism by which MeCP2 negatively regulates IκBα and
PPARγ is mainly through interaction with the promoter; for
example, MeCP2 is recruited to the promoter region of PPARγ,
promoting H3K9 methylation and recruiting the transcriptional
repressor heterochromatin protein 1 alpha (HP1α). DNA
methylation inhibitor 5-aza-2′-deoxycytidine (5-azadC) prevents
the loss of IκBα and PPARγ, which can maintain the stasis
phenotype of HSC (Mann et al., 2007, 2010). MeCP2 also
negatively regulates lncRNA H19 to promote the proliferation
of HSC (Yang et al., 2013; Yang J. J. et al., 2016). The team
further discovered that HSC transdifferentiation is regulated by
MeCP2, histone methyltransferase enhancer of zeste homolog

2 (EZH2), and miR-132. MiR-132 negatively regulates MeCP2
(miR-132 expression is absent in HSC during liver injury), and
MeCP2 promotes EZH2 expression and H3K27 methylation
(Mann et al., 2010). These results show direct evidence for
epigenetic regulation on the activation of HSC. The mechanisms
of MeCP2 on HSC are summarized in Supplementary Table 3.

Histone Modification
Histone methylation is catalyzed by histone methyltransferases,
such as EZH2, myeloid/lymphoid or mixed-lineage leukemia 1
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(MLL1), absent, small, or homeotic discs 2 (ASH2), and WD
repeat-containing protein 5 (WDR5), and histone demethylases
(KDMs), including lysine-specific demethylase (LSD) family
and jumonji C domain-containing (JMJD) family. During HSC
activation, histone methyltransferases are recruited, such as
ASH2, WDR5, and EZH2 (Mann et al., 2010; Kong et al., 2019a).
Histone methyltransferase and demethylase have opposite effects
on the activation of HSC. For example, methyltransferase
EZH2 promotes HSC activation and fibrosis by inhibiting the
transcription of PPARγ (Mann et al., 2010), while histone
H3K9 demethylase JMJD1A can promote PPARγ expression by
regulating the demethylation of PPARγ gene and thus inhibit
HSC activation and fibrosis (Jiang et al., 2015). Inhibition
of EZH2 can decrease H3K27me3 on the genes coding anti-
inflammatory cytokines, promote gene expression, and inhibit
the activation of HSC, whereas inhibition of JMJD3 has the
opposite effect. EZH2 inhibitor and JMJD3 activator have the
potential to be the new direction of blocking liver fibrogenesis
(Martin-Mateos et al., 2019; Jiang et al., 2021). Besides, during
the activation of HSC, histone demethylase KDM4 is reduced,
and KDM4 can suppress HSC activation by inducing the
transcription of miR-29 (Kong et al., 2019b). KDM4D, a member
of the KDM4 family, regulates HSC activation through toll-
like receptor 4 or nuclear factor kappa-light-chain-enhancer of
activated B (TLR4/NF-κB) signaling pathway (Dong et al., 2019).

Acetylation is also critical for regulating gene expression.
Transforming growth factor-β (TGF-β) is a key molecule that
induces the activation of HSC. Histone acetyltransferase P300 can
enhance the HSC response to TGF-β (Wang et al., 2016, 2019;
Dou et al., 2018), whereas histone deacetylase SIRT1, contrary
to P300, has a weakened effect on the TGF-β pathway and
inhibits HSC transdifferentiation (Li et al., 2017, 2018; Jiang et al.,
2019). Moreover, in liver fibrosis, high expression of HDAC can
activate HSC by regulating miRNA transcription, while HDAC
inhibitors can suppress the activation of HSC (Han et al., 2017;
Yang Z. et al., 2017; Lu et al., 2019). For example, HDAC
inhibitor suberoylanilide hydroxamic acid (SAHA) can improve
liver fibrosis in rats (Wang et al., 2018). The mechanisms of
HMEs on HSC are summarized in Supplementary Table 3. And
the epigenetic regulation of HSC activation is shown in Figure 1.

MACROPHAGE

Hepatic macrophages mainly include Kupffer cells (resident
liver macrophages) and circulating monocytes (van der Heide
et al., 2019). Monocytes and macrophages are the key drivers
of inflammation, and macrophages transform into two extreme
phenotypes, classically activated phenotype (M1) and alternately
activated phenotype (M2), under different stimuli (Gordon,
2003). However, the phenotype of macrophages is not limited
to these two extreme phenotypes but to a continuous spectrum
related to the function of macrophages (Colin et al., 2014;
Orecchioni et al., 2019). Epigenetic regulation has been
shown to be involved in the reprogramming of monocytes
and macrophages and can regulate the transcription and

phenotype of macrophages (Saeed et al., 2014; Amit et al.,
2016; Zhou et al., 2017). For example, DNA methylation
regulates polarization and activation of hepatic macrophages
(Yang Y. et al., 2018; Jain et al., 2019), and miR-221
and miR-222 regulate macrophage functional reprogramming
(Seeley et al., 2018). HDAC2 and HDAC3 can also regulate
inflammatory genes in macrophages (Raghuraman et al.,
2016).

Non-Coding RNAs
Non-coding RNAs play a crucial part in regulating transcription
in all aspects. For example, ncRNAs can promote or inhibit
transcription by recruiting HME or transformingmRNA splicing
(Katayama et al., 2005). NcRNAs, especially miRNAs, play a
crucial role in regulating the function of macrophages. Studies
have found that the expression of miR-155 is increased in
Kupffer cells of alcoholic liver disease model mice. Further
studies have shown that miR-155 can directly regulate the
function of macrophages (Bala et al., 2017). MiR-155-deficient
mice showed reduced expression of genes related to steatosis
and fatty acid (FA) metabolism, and reduced steatosis and
fibrosis in steatohepatitis (Csak et al., 2015). In addition,
the expression of miR-142-5p increased, and miR-130a-3p
decreased in macrophages from patients with cirrhosis. These
changes can regulate the transcription of pre-fibroblast genes
in macrophages and maintain the fibro-promoting effect of
macrophages. Inhibition of miR-142-5p and increase in miR-
130a-3p expression can inhibit chemokine (C-C motif) ligands 4
(CCL4)-induced liver fibrosis in mice (Su et al., 2015). Therefore,
miRNAs are important regulators of inflammatory signals in
liver macrophages.

Exosomal miRNAs also play an important role in regulating
the function of macrophages in chronic liver inflammation.
Reports have shown that the hepatitis B virus (HBV) can
encode a miRNA (HBV-miR-3) that inhibits HBV replication by
targeting HBV transcripts. HBV-miR-3 in exosomes can promote
M1 macrophage polarization, and exosomes containing HBV-
miR-3 can increase the secretion of IL-6, indicating exosomal
HBV-miR-3 may inhibit hepatocyte damage caused by HBV
replication through activating immune response (Zhao et al.,
2020). The study also finds that the level of miRNA-122 in liver
monocytes and Kupffer cells of alcohol-fed mice is increased,
and exosomal miRNA-122 derived from hepatocytes can
reprogram monocytes. The exosomes (containing miRNA-122)
from Huh7.5 cells can be absorbed by THP-1 monocytes. The
miRNA-122 transferred through exosomes further promotes the
expression of inflammatory factors. These results indicate that
exosomes can mediate the communication between hepatocytes
and monocytes/macrophages and then affect the function of
macrophages (Momen-Heravi et al., 2015).

DNA Methylation
The regulation of DNA methylation on macrophages is mainly
manifested in the regulation of methylation of inflammation-
related genes, such as proline–serine–threonine phosphatase-
interacting protein 2 (PSTPIP2), suppressor of cytokine signaling
1 (SOCS1), zinc finger swim-type containing 3 (ZSWIM3)
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FIGURE 1 | Epigenetic regulation of hepatic stellate cell (HSC) activation.

FIGURE 2 | Epigenetic regulation of hepatic macrophage.

genes, and so on (Cheng et al., 2014; Yang Y. et al., 2018;
Li et al., 2020). Studies have found that CCL4 induces more
DNA methylation on the CpG islands of liver macrophages
in mice. Among the 26 liver fibrosis-related genes verified,
130 CpG sites in the CpG islands of the PSTPIP2 gene are
significantly hypermethylated, and the expression of PSTPIP2 is
significantly reduced (Yang Y. et al., 2018). In vitro experiments
have found that the hypermethylation of PSTPIP2 is mediated by
methyltransferases DNMT3a andDNMT3b. Further studies have
found that PSTPIP2 overexpression can inhibit M1 macrophage
polarization and promote M2 macrophage polarization (Yang Y.

et al., 2018). These results indicate that the DNA methylation
of PSTPIP2 in macrophages can affect liver inflammation and
fibrosis in mice by regulating the polarization of macrophages.
In addition, SOCS1 plays a key role in inhibiting tissue damage
and inflammation. Knockout of DNMT1 or DNA methylation
inhibitors to treat LPS-induced RAW264.7 macrophages can
reduce the hypermethylation of SOCS1 promoter and upregulate
the expression of SOCS1, thereby inhibiting the release of
inflammatory factors such as TNF-α and IL-6 in macrophages
(Cheng et al., 2014), indicating that DNMT1-mediated SOCS1
hypermethylation leads to the loss of SOCS1 expression and
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enhances the release of cytokines in macrophages. Another
important gene is ZSWIM3, which has been reported to
activate the NF-κB pathway and affect inflammatory response.
Preliminary screening of macrophage methylation shows that
ZSWIM3 is hypermethylated in the 5′-untranslated region (5′-
UTR) and is consistently reduced in macrophages isolated from
the liver of ethanol-fed mice (Li et al., 2020). The abnormal
expression of ZSWIM3 in alcoholic liver injury (ALI) is related
to its hypermethylation. DNMTs-small interfering RNA (siRNA)
and methylation inhibitors can rescue downregulated ZSWIM3.
Chromatin immunoprecipitation (ChIP) analysis shows that
DNMT3b is the main regulator of ZSWIM3 (Li et al., 2020).
These studies confirm the important role of DNA methylation
in the function of macrophages.

Histone Modification
Histone methylation is a widespread epigenetic marker. Histone
methyltransferases EZH2 and H3K27me3 catalyzed by EZH2
are significantly upregulated in Kupffer cells of mice with
liver failure, which can trigger the release of pro-inflammatory
cytokines, such as TNF, and activate NF-κB and protein
kinase B (Akt) signaling pathways to participate in the
pathogenesis of liver failure. EZH2 inhibitors can relieve
the severity of liver failure in mice, which may be related
to the reduction in H3K27me3 and the downregulation
of liver pro-inflammatory cytokines (Zhou T. et al. 2018).
The methyl donor S-adenosylmethionine (SAMe) can also
inhibit the activity of methyltransferase in Kupffer cells and
further inhibit the promoter H3K4me3, thereby blocking
LPS-induced TNF-α secretion and expression of inducible
nitric oxide synthase (iNOS) in Kupffer cells (Ara et al.,
2008). Furthermore, inhibition of PPARγ mediated by histone
methyltransferase suppressor of variegation 3-9 homolog 2
(SUV39H2) in macrophages promotes pro-inflammatory M1
polarization, thereby promoting liver inflammation. Lack of
SUV39H2 protects mice from non-alcoholic steatohepatitis (Fan
et al., 2017).

Compared with blood monocytes, Kupffer cells show
significant levels of H3K27 acetylation (Sakai et al., 2019).
When comparing Kupffer cells isolated from the liver of non-
alcoholic steatohepatitis mice with Kupffer cells isolated from
homeostasis mice, more than 6,000 enhancers are found to
be significantly different in H3K27ac. Both histone acetylase
and histone deacetylase are involved in regulating the role of
macrophages in chronic liver inflammation. Studies have shown
that histone acetylase P300 can regulate the polarization of
macrophages, and knockdown of P300 or application of highly
selective P300/CBP inhibitors can inhibit M1 polarization and
significantly reduce the production of inflammatory factors
during liver injury. The mechanism is that the expression of
pro-inflammatory genes is inhibited by inhibiting H3K27/H3K18
acetylation in the promoter region of key inflammatory genes,
leading to reduced activation of inflammatory pathway in the
liver injury mice model, thus reducing M1 polarization and
playing a protective role in the liver (Peng et al., 2019). Besides,
histone acetyltransferase MOF is downregulated in human

steatohepatitis. Liver injury induced by MOF deletion requires
the interaction between hepatocytes and Kupffer cells. The loss of
MOF in hepatocytes does not show obvious liver abnormalities.
Only the loss of MOF in macrophages and hepatocytes at the
same time can lead to enhanced expression of inflammatory
genes and nitric oxide (NO) signal transduction, which further
leads to hepatocyte apoptosis and lipotoxicity. These results
indicate that the expression of histone acetyltransferase MOF in
macrophages plays an important role inmaintaining normal liver
metabolism (Lei et al., 2020). In addition, histone deacetylase 11
(HDAC11) is induced in Kupffer cells of alcoholic liver disease
model mice, which reduces the expression of IL-10. Knocking out
HDAC11 results in an increase in IL-10 expression and a decrease
in TNF secretion in macrophages, which suggests an important
role of HDAC11 in promoting inflammation in macrophages
(Bala et al., 2017). Therefore, the regulation of HMEs on
macrophages is important and complex. The mechanisms of
epigenetic regulation on hepatic macrophages are summarized in
Supplementary Table 4 and displayed in Figure 2.

SUMMARY AND PROSPECT

Hepatic stellate cell (HSC) is activated during chronic liver
inflammation to repair liver tissue damage, and macrophages
play a crucial part in inflammation. Transcription factors
modify chromatin during stimulation and form cellular memory,
enabling cells to respond more quickly when restimulated.
Although this regulation allows inflammatory cells to respond
effectively to external stimuli, it is also prone to dysregulation.
Mild inflammation can result in changes in the status of
inflammatory cells, which are driven by cytokine-induced
epigenetics. In conclusion, the influences of transcription factors
and epigenetics on the activation of inflammation-related cells
play an indispensable part in the pathogenesis of chronic liver
inflammatory diseases, which will be a potential target for liver
inflammatory diseases in the future.
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