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Chronobiology is a relatively young and fast evolving research field, which aims at understanding
the origin, the mechanisms and the prerogatives of endogenous biological clocks.

The Chronobiology section of Frontiers in Physiology provides an interdisciplinary forum for
the publication of research covering all aspects of the field, including molecular clock circuitry,
clock evolution, animal models, physiology, translational studies, and chronotherapy. Over the
past few decades, chronobiology has moved from occupying a specialist niche within physiology
research, to influencing every aspect at all levels of the discipline. In 2017, the Nobel Prize in
Physiology or Medicine was awarded to Jeffrey C. Hall, Michael Rosbash and Michael W. Young,
three chronobiologists and drosophilists, “for their discoveries of molecular mechanisms that
control circadian rhythms.” The field went on to receive considerably more interest and attention,
and the efforts of those researchers who had been working on chronophysiology and its medical
implications and applications were also rewarded as chronobiology entered its true translational
era (Cederroth et al., 2019). This has been characterized by a flourishing of relevant, novel clinical
observations (to name one, the fact that the outcomes of certain types of cardiac surgery are
heavily dependent on time of day; Montaigne et al., 2018), by the evolution and the definition
of an almost entirely novel chronobiology vocabulary and, most interestingly, by experiments and
observations that constantly challenge the few true dogmas of this relatively young science. The
definition of clock cells themselves has changed, moving away from the idea that there are cells
with specific features that qualify them as oscillators to a model where the clock or oscillator results
from the interaction of distinct physiological players (circadian networks) (Mizrak et al., 2012).
Similarly, it has become evident that brain structures other than the suprachiasmatic nuclei (SCN)
clock neurons [for example astrocytes within the SCN itself (Hastings et al., 2019), the habenula
(Baño-Otálora and Piggins, 2017) and the blood brain barrier (Cuddapah et al., 2019)] exhibit
clock properties or produce oscillations that modulate SCN outputs in many different ways. Thus
rhythmicity, both circadian and over other time scales (for example seasonal, lunar and tidal)
is transforming into an ever more complex, versatile and interesting natural phenomenon. The
influence of chronobiology on society at large has also been profound, resulting in campaigns,
for example, to modify urban lighting, to amend school times and to abolish daylight saving time
(Roenneberg et al., 2019). Amongst these developments, I will now focus on a few that fascinate me
and, hopefully, will stimulate you.

IN SEARCH OF PRIMORDIAL AND NON-CANONICAL CLOCKS

Over the past 15 years or so, evidence has accumulated that non-canonical circadian clocks–i.e.,
clocks which are not based on the transcription/translation feedback loop (TTFL) that characterizes
the molecular timing mechanisms of almost all organisms investigated so far–also exist. Further,
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they seem to play a significant role in orchestrating the
temporal expression of portions of the genome in several
organisms. For example, the cyanobacterium Synecochoccus
elongatus exhibits a circadian biochemical oscillation involving
three clock proteins (KAI A, KAI B, and KAI C), generating
a post-transcriptional phosphorylation loop, which occurs
in vivo and can be reproduced in vitro, in the absence
of transcription and translation (Nakajima et al., 2005).
More recently, TTFL-independent oxidation-reduction circadian
cycles of peroxiredoxins (i.e., highly conserved antioxidant
proteins involved in the control of peroxide levels) have been
described in bacteria, archaea, fungi, plants and animals (O’Neill
and Reddy, 2011; O’Neill et al., 2011; Edgar et al., 2012).
Both KAI B and peroxiredoxins belong to the superfamily of
thioredoxins and they may represent conserved relics of the
primordial clock of the last common ancestor of prokaryotes
and eukariotes. While progress has been made in understanding
the molecular mechanisms driving these oscillations, their origin
and most of their features remain obscure. There are also
indications that a non-canonical clock controls the expression
of a significant set of genes, proteins and protein modifications
in mammalian cells and tissues cultivated ex vivo (Ray et al.,
2020). In further detail, cultured (i.e., not under the influence of
the SCN) skin fibroblasts and liver slices defective for BMAL1,
a transcription factor which is essential for the TTFL-based
circadian clock, both exhibit 24-h oscillations of portions of their
transcriptome, proteome, and phosphoproteome. The authors
propose that this insofar ignored piece of clockwork could
result from the interplay of a novel set of transcription factors
and non-transcriptionally regulated peroxiredoxin-like redox
oscillations (Ray et al., 2020). Nonetheless, the findings remain
unexpected and concerns have been recently raised in relation
to their consistency, validity and significance (Abruzzi et al.,
2021; Ness-Cohn et al., 2021). Finally, the examination and
interpretation of available data on the role of circadian and
non-canonical clocks in embryonic development suggests that
cell division, metabolism and epigenetic modifications become
temporally organized before the emergence of a functional TTFL
clock (Bedont et al., 2020). Thus a non-canonical, somewhat
primordial clock would regulate development throughout cell
stem progression toward pluripotency. The nature of such clock,
the exact temporal definition of a TTFL clock and their respective
roles in early cell commitment are one of the hottest topics in
the field.

THE TRUE COLORS OF CIRCADIAN

PHOTOPIGMENTS

The nature of the photopigments and photoreceptors mediating
mammalian SCN synchronization with the environment by
means of light had been a puzzling issue until Provencio et al.
(1998) discovered melanopsin in retinal tissues and hypotesized
a role for it in circadian physiology. Then Hattar et al. (2002)
and Provencio et al. (2002) went on to describe intrinsically
photosensitive retinal ganglion cells (ipRGC), within the
inner retina, containing melanopsin and sending monosynaptic
projections to the SCN. For a long time the paradigm was that

only these cells (about 1% of the all RGCs)–and not the classical
photoreceptors rods and cones (contributing to perceptual vision
and located in the outer portion of the retina)–contributed to
photic entrainment of the master clock through their blue light-
sensitive photopigment melanopsin. ipRGCs are less sensitive
to light than rods and cones, they are depolarized rather than
hyperpolarized by light, and more recently it has also been
shown that, in addition to the SCN, they innervate several other
areas of the brain, to regulate non-image forming responses
to light (Fernandez et al., 2016). These include modulation of
melatonin synthesis in the pineal gland, synaptic plasticity in
the hippocampus (Fernandez et al., 2016) and functioning of the
lateral habenula, which has been implicated in phenotypes such
as sleep, mood and propensity to addiction (Baño-Otálora and
Piggins, 2017).

More recent studies have pointed to an even more complex
ipRGCs form of signaling to the brain, and to the SCN
in particular, involving also rods and cones through largely
unknown mechanisms but within a neural network which
includes bipolar and amacrine cells (Ko, 2020). This model is
supported by the observations that melanopsin null mutants
mice can still be somehow synchronized by light (Panda et al.,
2003) and exhibit phase shifting responses, albeit strongly
attenuated (Ruby et al., 2002). Further, photic entrainment is
abolished if ipRGCs are completely ablated (Chen et al., 2011).
Thus it is ipRGCs and not melanopsin that are essential for
photic entrainment, implying that they functionally interact with
rods and cones. Therefore, alternative photopigments sensitive to
other wavelengths could, through ipRGCs projections, modulate
SCN photic entrainment and, most likely, also non-visual light
responses depending on other areas of the brain. Finally, inner
retina melanopsin, in spite of its low temporal resolution, has
also been implicated in some features of form and spatial vision,
raising fascinating questions on its role in visual perception
(Allen et al., 2019). Thus, time seems ripe for un upgrade of the
palette of light colors which modulate non visual photoreception.
This will no doubt inform and possibly re-define some aspects of
light hygiene over the 24 hours.

NON-CIRCADIAN RHYTHMICITY

Convincing evidence of the existence of bona fide endogenous
clocks dictating time in temporal domains other than the
circadian one, and information on their molecular and
functional features are recent acquisitions. Evidence for
circatidal, circalunar, circannual and seasonal biological
rhythmicity is starting to acquire solid bases and some of the
molecular components of these clocks have now been identified.
Interestingly, there are indications that some canonical circadian
clock genes also contribute to the generation of ultradian and
infradian rhythmicity. Pioneering work in this respect has been
performed in marine organisms such as Euridice pulchra (Zhang
et al., 2013) and Platynereis dumerilii (Zantke et al., 2013) for
which tidal and circalunar clocks have been shown to control
tide-related migration and gonadal maturation, respectively.
In the marine midge Clunio marinus, moon light seems to
play an important role in circalunar clock synchronization
(Kaiser et al., 2016). All these clocks also exhibit some degree
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of independence, as they have been shown to function when
the circadian clock is pharmacologically blocked (Zantke et al.,
2013; Zhang et al., 2013). Further work is needed to define and
functionally characterize the full set of components of such
clocks, which represents one of the major current challenges
in chronobiology.

In mammals, it has been observed that the phase differences
between electrical and transcriptional/translational activity of
neurons located in different SCN regions may reflect and
thus code for the length of photoperiod (Inagaki et al.,
2007; Yoshikawa et al., 2017; Honma, 2018). Such anatomical
and functional organization may therefore provide organisms
with relevant information to facilitate their adaptation to the
environmental changes that characterize the course of seasons
(circannual clock).

In humans, endogenous rhythmicity over any time scale
is difficult to study, for reasons that are inherent to rhythms
themselves and because of the masking/confounding effects of
environmental cues to which we are sensitive, habits, social
constraints etc. These can be removed only by complex and
prolonged experiments [so-called constant routines (Duffy and
Dijk, 2002)], which are generally performed in small numbers
of young healthy individuals. Alternatively, rhythmicity can also
be studied within the environment it is normally expressed in,
in a sort of more ecological fashion, which yields somewhat
less pure but still useful information. Further, while human
circadian rhythmicity is fairly obvious, rhythms over different
times scales are less apparent, and have not been the object
of many studies. Of great interest, two sets of data have
been recently published that provide examples of this non-
circadian rhythmicity in humans. The first, which is the result of
painstaking, patient and decades-long observations, has shown
how women temporarily synchronize their menstrual cycles with
the luminance and gravimetric cycles of the moon (Helfrich-
Förster et al., 2021). The second one, which is the result of
big data analysis, documents seasonality in human laboratory
data collected for medical purposes, with a winter-spring peak
in hormones related to reproduction, growth, metabolism, and
stress adaptation (Tendler et al., 2021). It is not difficult to
imagine how once the interest has focused on non-circadian
human rhythmicity, both big data analyses of available datasets
and the acquisition of new sets, for example by apps or other
monitoring devices, will help producing information that is
bound to be interesting and clinically relevant.

CHRONOBIOLOGY AND COVID-19

Infection from SARS-CoV-2 and the development of COVID-19
disease are very likely to affect circadian clock functioning.
Moreover, rhythmicity over different time scales–most likely

circadian and seasonal–may modulate the likelihood of
acquisition and/or the course of infection and disease. Similarly,
the intensive care arrhythmic environment may have unexpected
effects on disease evolution (Haspel et al., 2021). The time of
administration of approved treatments may impinge on the
entity of their desired and side effects, in relation to both the
nature of treatment itself, and to the patient’s response to it
(Haspel et al., 2021). These and other aspects of the complex
and yet largely unexplored relationship between the pandemic
and rhythmicity over different time scales have been considered
by eminent colleagues in a collection of articles recently
published in the Journal of Biological Rhythms (Sengupta
et al., 2020, 2021; Borrmann et al., 2021; Cermakian and
Harrington, 2021; Haspel et al., 2021; Kronfeld-Schor et al.,
2021). As the pandemic continues to unfold, chronobiologists
and scientists in related fields have become more sensitive to
this relationship, and are examining available laboratory/clinical
data retrospectively, and collecting them prospectively. Issues
such as the appropriateness of time-stamping (clock time in
addition to the full date) the acquisition of any human samples
(may they be swabs, blood, urine etc.), the administration
of treatment (Ruben et al., 2019) and the administration
of vaccination for subsequent use in prognostic, large and
long-term studies has once again come to the fore. Active,
generous and powerful colleagues are lobbying on our behalf to
this end.

Lockdowns put in place to different extents, in different
countries and at different times of year have lead to some degree
of stratification of society, with more fortunate groups enjoying
some relief from social constraints and no major other changes
to their lifestyle and productivity, and other groups being under
considerable physical, emotional, organizational and economical
stress, leading to a significant increase in mild and more severe
psychiatric disorders (Holmes et al., 2020). There is an established
relationship between psychiatric disease and rhythmicity, and
the evidence for the benefits of chronotherapy (i.e., timed
administration of light and/or melatonin) in this clinical field
is considerably less anecdotal than generally perceived in other
medical circles (Wirz-Justice and Benedetti, 2020).

At a time when all experience is needed to face
the pandemic and its medium and long-term effects,
translational chronobiology, chronopharmachology and
chronotherapy, which also happens to be an inexpensive and
substantially side-effect free form of treatment, may turn into
powerful resources.
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